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WHAT IS WRONG WITH BAYES NETS?[*]
By Nancy Cartwright
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1. The basic question: Can we get to causality via Bayes nets?

Probability is a guide to life partly because it is a guide to causality. Work over the last two
decades using Bayes nets supposes that probability is a very sure guide to causality. I think not,
and I shall argue that here. Almost all the objections I list are well-known. But I have come to
see them in a different light by reflecting again on the original work in this area by Wolfgang
Spohn and his recent defense of it in a paper titled "Bayesian Nets Are All There Is to
Causality".[1]

Bayes nets are directed acyclic graphs that represent probabilistic independencies among an
ordered set of variables. The parents of a variable X are the minimal set of predecessors that
render X independent of all its other predecessors. If the variables are temporally (or causally)
ordered, we can read the very same graph as a graph of the (generic-level) causal relations
among the quantities represented, it is maintained. This commits us to the causal Markov
condition described below, which is a relative of Reichenbach's claim that conditioning on
common causes will render joint effects independent of other another. It is also usual to add an
assumption called faithfulness or stability as well as to assume that all underlying systems of
causal laws are deterministic (plus the causal minimality condition, which I will not discuss).
With these assumptions in hand there are a variety of algorithms for inferring causal relations
from independencies. These I will loosely call "Bayes-nets methods".

In criticizing the inference of causes from Bayes nets it is usual to list the objections I note. Is
this just an arbitrary list? And why should one have expected any connection between the two to
begin with? After all, Bayes nets encode information about probabilistic independencies.
Causality, if it has any connection with probability, would seem to be related to probabilistic
dependence.

The answers to the two questions are related. When we see why there might be a connection
between causality and independence, we see why there will be a list of objections. The answer to
"why" is not one that will sound surprising, but I want to focus on it because working through
the argument will show that we have been looking at probability and causality in the wrong way.
Probabilities may be a guide to causes, but they are, I shall argue, like symptoms of a disease:
there is no general formula to get from the symptom to the disease.

2. The call for explanation

It is usual to suppose that once the right set of assumptions are made about the causal systems
under study, we can read information about causes from a Bayes net that satisfies those
assumptions. Wolfgang Spohn maintains that if there is a tight connection like this between



Bayes nets and an independent notion of causation, there should be a general reason for this. He
cannot find one; so he proposes that the notion of causation at stake is not independent. The
probabilistic patterns of a Bayes net is our concept of causation: "it is the structure of suitably
refined Bayesian nets which decides about how the causal dependencies run."[2]

I agree with Spohn that if there is a tight connection, there should be a reason for it. The
alternative is what Gerd Buchdahl called a "brute force" connection, one which holds in nature
but has no "deeper" explanation. There are such brute-force connections between concepts we
use in science. These are what we record in fundamental laws. And some of them involve
relational concepts like" ... causes...." For instance, if the allowed energy configuration for a
system in relation to its environment is represented by a specific Hamiltonian, say H, then
whatever the system's current state (say phi), the system will evolve in time according to -i/h
deltaphi/deltat = Hphi.

But I do not think there is a brute force connection in the case of Bayes nets and causation. That
is primarily because there is a reason for the connection, a good reason. The problem is that the
reason does not justify a tight connection. The reason lets us see why the connection will hold
when it does, but it also allows us to see how loose the connection between the two is. For
simplicity I will stick to yes-no causes and effects in the subsequent discussion. We are looking
for an equivalence between causal connections and Bayes nets. I will start with causation and see
first how--and when--we can get from causation to the probability relations pictured in Bayes
nets.

3. From causation to probabilistic dependence

3a. Where have all the caveats gone?

Causes produce their effects; they make them happen.[3] So, in the right kind of population we
can expect that there will be a higher frequency of the effect (E) when the cause (C) is present
than when it is absent; and conversely for preventatives. What kind of populations are "the right
kinds"? Populations in which the requisite causal process sometimes operates unimpeded and its
doing so is not correlated with other processes that mask the increase in probability, such as the
presence of a process preventing the effect or the absence of another positive process.

Here are some of the conditions that we know need to be satisfied: the necessary triggering and
helping causes for C must operate together sometimes in the population, and their joint operation
should not be probabilistically dependent on that of other causes or preventatives, nor of C itself.
Nor is the operation of C to produce E probabilistically dependent on the operation of other
causes or preventatives of E.

The trouble with Bayes nets is that they ignore all these caveats. When Bayes nets are used as
causal graphs, effects are probabilistically dependent upon each of their causes. That's it. Nothing
can mask this. The assumptions about causality made by the Bayes-net approach go all the way
back to the first, then ground-breaking, probabilistic analysis of causality by Patrick Suppes.[4]
Suppes begins with prima facie causation: any earlier factor that is correlated with an effect is a
prima facie cause of that effect. Real causes are ones that survive the same independence tests



that are required in the Bayes net. But nothing gets to be a candidate for a cause unless it is
correlated with the putative effect.

Twenty to thirty years later we have the Bayes-net approach, in all essentials equivalent to the
original formulation proposed by Suppes when the subject first began. It is as if Simpson's
paradox and causal decision theory never existed. Nor decades of practice by econometricians
and other social scientists, who plot not simple regressions but partial regressions. Nor the
widely deployed definition proposed by Granger in 1969, which looks for probabilistic
dependence only after conditioning on the entire past history of the cause--which ensures that all
the other causes up to the time of the putative cause will be held fixed.

The demand that effects always be probabilistically dependent on each cause follows in the
Bayes-net approach from the assumption that Peter Spirtes, Clark Glymour and Richard Scheines
call faithfulness.[5] Judea Pearl calls it stability.[6] The assumption is necessary to the approach.
Without it the procedures developed by Pearl and by Spirtes, et al., cannot get very far with the
discovery of causal connections; and the proofs that assure us that they will not make mistakes if
sample sizes are large enough will not go through. For Spohn it matters because he argues that
causal connections are the connections marked out on God's big Bayes net once the variables
have been temporally ordered. With the faithfulness/stability assumption, the causal connections
are unique; but they are seldom unique otherwise.

For those readers who are not already deeply into this discussion let me rehearse the standard
objections to the assumption that all genuine causes are prima facie causes. First there is
Simpson's Paradox: facts about probabilistic dependency can be reversed in moving from
populations to subpopulations. For example, factor X may be positively dependent or negatively
dependent or independent of Y in a population, but still be any of these three in all partitions of
the population along the values of a third factor Z, if Z is itself probabilistically dependent on X
and Y. Z may, for instance, be a preventative of Y; because of its correlation with X, the
presence of X does not, after all, increase the frequency of Y's in the population as my opening
argument suggests.

It is typical in social science to sidestep this problem by looking for probabilistic dependence
between a putative cause and its effect only in subpopulations in which all possible confounding
factors are held fixed. This is apparent in the econometrics concept of Granger causality, where
X Granger causes Y if X and Y are probabilistically dependent holding fixed everything that has
occurred up to the time of the putative cause.

The same strategy was at the heart of various versions of causal decision theory two decades ago.
What is the probability that if I were to do C, E would occur? The conditional probability P(E/C)
gives the wrong answer. It could be either way too big or way too small because of the operation
of confounding factors; relevant here--it could be zero even though my doing C could have a
substantial impact on whether E occurs. One standard proposal (the one I urged[7]) is to set
P(C*(This character cannot be represented in ASCII text)E) = P(E/C&K), where K is a state
description over the values of a full set of "other" causal factors for E that obtain (or will obtain)
in the decision situation.[8] Where we do not know the values of the factors in K we should



average over all possible values using our best estimate of the probability that they will occur:
summation of P(E/C&K[sub j])P(K[sub j]).

Exactly the same formula has reappeared among the Bayes-nets causal theorists. Judea Pearl has
recently produced a very fine and detailed account of counterfactuals and their probabilities,
based on Bayes nets. According to Pearl, the probability of y if we were to "set" X = x[sub j] is
summation of P(y/x[sub j] & parents of x[sub j])P(parents of x[sub j]).[9] Despite Pearl's
endorsement of stability, from this formula it looks as if a factor can have a high degree of causal
efficacy even though on his account it is not really a cause at all because it is not prima facie a
cause. I take it that Pearl does not take this to be a problem because he thinks cases where
"stability" is violated involve "'pathological' parameterizations"[sup 10] and are not in the range
he will address.

The second kind of case usually cited in which genuine causes are not prima facie causes is when
one and the same cause has different kinds of influence on the effect. The different influences
may cancel each other. The easiest version of this to handle is when a given factor acts as both
cause and preventative of the effect, by different routes. G. Hesslow's birth-control pills[11] are
the canonical philosophical example. The pills are a positive cause of thrombosis. On the other
hand, they prevent pregnancy, which is itself a cause of thrombosis. Given the right weights for
the three processes, the net effect of the pills on the frequency of thrombosis can be zero.

If we suspect that cancellations of this kind are occurring, we can confirm our suspicions by
looking at the probabilities of thrombosis, given the pills in populations in which factors from the
separate causal routes between pills and thrombosis are held fixed. But this is no comfort to the
Bayesnets theorist.

Even this strategy is not available where there are no routes between the cause and its effects.
We have two kinds of trouble with routes. The first is a worry that I share with Glenn Shafer.[12]
Let us accept that in every case of singular causation there is a temporally continuous process
connecting the cause with the effect. That does not guarantee that there will always be a vertex
between any two other vertices in God's great causal graph. That is because the graphs are graphs
of causal laws that hold between event-types. Every token of the cause-type may in actuality be
connected by a continuous process with the effect token without there being some chain of laws
in between: C[sub 1] causes C[sub 2], ..., C[sub n] causes E. For instance, the signal from the
cause to the effect may piggyback on causal processes that the cause in question does not initiate.
This is particularly likely where there are a lot of processes with the necessary spatiotemporal
relations already available for use in conveying the influence from the cause to the effect.[13]

Roman Frigg offers a number of examples.[14] He explains that what is wanted are cases for
which there is

A generic law without contiguity: On the generic level cause and effect do not exhibit contiguity,
neither in space nor in time.

No unique causal chain: There is no unique causal chain that connects cause and effect. That is,
on the concrete level the connection between the two can be realised in many different ways.



No unique transmission of causal information: The causal information may be transmitted in
different ways. (In addition the kind of physical and/or institutional structures that guarantee the
capacity of the cause to bring about its effect may be totally different from those that guarantee
that the causal message is transmitted, i.e., the causal law and the individual chains connecting
the cause and effect may result from different structures.)

One of Frigg's examples involves as cause Person B getting an HIV virus from another person
and as effect, that B dies later on. He tells us

1. The infection with the HIV virus leads in most cases to death. But a long period of time
elapses between these two events ...

2. The infection with the HIV virus leads (in most cases) to the outbreak of AIDS, i.e., the
destruction of the immune system. This in turn can lead to death by a variety of different routes.
To mention just a few: diarrhoea (various pathogenes possible); encephalitis with brain atrophy;
neuropathy; pneumonia; ringworm (various types); meningitis; herpes simplex; tuberculosis; and
fever.

3. The causal information can initially be transmitted on various different paths as well: Sexual
contact (vaginal, oral, anal), exchange of blood (blood transfusions, use of dirty needles, injuries
in the hospital), communication from the mother to the child.[15]

Frigg also offers examples of death by malaria and from exposure to strong radiation, and of the
democratic election of an individual as president of a country resulting in that person's becoming
president, the receipt of a court order causing someone to appear in court and the ordering of a
plane ticket causing a person to receive a ticket.

The other is a problem we all sweep under the rug: the representations in a causal graph are
discrete; for every vertex there is always a predecessor and a successor. Is causality really like
that? If it is then we can have causes of causes with mixed influences on the effect, directly, not
by different routes. So the device of holding fixed vertices along the various routes is not even
available to provide us with a way of using facts about probabilistic dependencies and
independencies to test whether a factor is really causally inefficacious rather than having mixed
influence on the effect.

3b. Can the caveats be ignored?

What justification do Bayes-nets theorists give for ignoring all these caveats and insisting that all
causes must appear as causes at the first crude look? Spirtes, Glymour and Scheines discuss
Simpson's Paradox at length. They present two graphs, the first embodying Simpson's paradox;
the second is a graph that by contrast is "faithful" to all the independencies assumed in the
paradoxical case--i.e., as in Suppes's original formulation, all causes are prima facie causes:[16]

They then invite us to



[s]uppose for a moment that we ignore the interpretation that Simpson gave to the variables in
his example.... Were we to find A and C are independent but dependent conditional on B, the
Faithfulness Condition requires that if any causal structure obtains, it is structure (ii). Still,
structure (i) is logically possible,[17] and if the variables had the significance Simpson gives
them we would of course prefer it. But if prior knowledge does not require structure (i), what do
we lose by applying the Faithfulness Condition; what, in other words, do we lose by excluding
causal structures that are not faithful to the distribution [i.e., that allow genuine causes that do
not appear as causes prima facie]?[18]

I assume that this passage is meant as a defense of the faithfulness condition since it appears at
the end of the long exposition of Simpson's Paradox in the section in which they introduce
faithfulness as an axiom[19] and just before the only other remark that could be construed as a
defense of this axiom in the face of Simpson's Paradox. But what is the defense? The answer to
their question is obviously: What we lose is getting the causal structure right.

Perhaps they mean to suggest that when we do not know anything, it is more reasonable to
plump for structure (ii) than for structure (i). But what is the argument for that? I respond with a
truism: when you don't know, you don't know; and it is often dangerous to speculate. If we have
no idea what the variables stand for, let alone how they operate, we are not in a position to make
a bet with any degree of credibility. "Ah yes," I am sometimes told, "but what if you had to bet?"
Well, tell me more about the context in which I am forced to bet--a psychological experiment
perhaps?--and I may be able to tell you which bet I would plump for.

Perhaps, however, Spirtes, Glymour and Scheines are speaking sloppily. They did not mean
"What do we lose?" but rather "How often will we lose?" For immediately after this they report
that "[i]n the linear case, the parameter values--of the linear coefficients and exogenous
variances of a structure--form a real space, and the set of points in this space that create
vanishing partial correlations not implied by the Markov condition [i.e., that violate faithfulness]
have Lebesgue measure zero.[20]

This is surely intended as an argument in favor of faithfulness--and it is frequently cited as being
so intended--though I am not sure exactly what the conclusion is that it is supposed to support. I
gather we are to conclude that it is unlikely that any causal system to which we consider
applying our probabilistic methods will involve genuine causes that are not prima facie causes as
well.

But this conclusion would follow only if there were some plausible way to connect a Lebesgue
measure over a space of ordered n-tuples of real numbers with the way in which parameters are
chosen or arise naturally for the causal systems that we will be studying. I have never seen such a
connection proposed; that, I think, is because there is no possible, plausible story to be told.
Moreover, were some connection mooted, we should keep in mind that it could not bear directly
on the question of how any actual parameter-value is chosen because, as we all know, any
specific point in the space will have measure zero. So we not only need a story that connects a
Lebesgue measure over a space of n-tuples of real numbers with how real parameter values arise,
but we need a method that selects as a question to be addressed before values are chosen: shall
values occur that satisfy faithfulness or not?



Not only is the theorem about Lebesgue measure not relevant to the issue of whether all causes
are prima facie causes. I think it is an irresponsible interjection into the discussion. Getting it
right about the causal structure of a real system in front of us is often a matter of great
importance. It is not appropriate to offer the authority of formalism over serious consideration of
what are the best assumptions to make about the structure at hand.

Judea Pearl argues somewhat differently about the choice of parameter values. He uses the term
stability for the condition that insists that effects be probabilistically dependent on their causes
even before confounding factors are conditioned on. Here is what he says in its entirety:

Some structures may admit peculiar parameterizations that would render them indistinguishable
from many other minimal models that have totally disparate structures. For example, consider a
binary variable C that takes the value 1 whenever the outcomes of two fair coins (A and B) are
the same and takes the value 0 otherwise. In the trivariate distribution generated by this
parameterization, each pair of variables is marginally independent yet is dependent conditioning
on the third variable. Such a dependence pattern may in fact be generated by three minimal
causal structures, each depicting one of the variables as causally dependent on the other two, but
there is no way to decide among the three. In order to rule out such "pathological"
parameterizations, we impose a restriction on the distribution called stability....

This restriction conveys the assumption that all the independencies imbedded in [the probability
distribution] P are stable; that is, they are implied by the structure of the model D and hence
remain invariant to any changes in the parameters [of D]. In our example only the correct
structure (namely, A right arrow C left arrow B) will retain its independence pattern in the face
of changing parameterizations--say, when one of the coins becomes slightly biased.[21]

We can see here two points of view that Pearl takes that make stability seem plausible to him.
First, Pearl thinks causal systems should be decidable. It is clearly a criticism of the systems
described that "there is no way to decide among the three". This attitude is revealed in
discussions of other topics as well. For instance, as we shall see below, I reject the causal
Markov condition. Pearl objects that by so doing I make questions about the causal structure and
about the truth of certain counterfactuals unanswerable.[22]

Unanswerable given what information? Immediately after the section defining "stability" Pearl
tells us, "With the added assumption of stability, every distribution has a unique minimal causal
structure ..., as long as there are no hidden variables."[23] Clearly he intends that the questions
he is concerned about should be answerable given an order for the full set of causally relevant
variables and the probability distribution over them. But so far as I can see, once we have given
up the idea that there is something wrong with the notion of cause so that it has to be reduced
away, there is no good reason to suppose that probabilities should be able to answer all questions
about causality for us. (Nor am I sure that Pearl insists they should; for it is unclear whether he
thinks all causal systems are stable or takes the more modest line that his methods are capable of
providing answers to all his questions only for systems that are stable.)



The other point of view that matters for Pearl's claims about stability is the point of view of the
engineer--which he is. It is apparent from the passage that Pearl thinks of causal structures as in
some sense coming first: they get fixed, but then the parameter values can vary. But of course a
causal system comes with both its structure and its parameters--you can't have one without the
other.

I think the way to put the issue that makes sense of the idea of "structure first" is in terms of the
kinds of operation we typically perform on the kinds of engineered devices Pearl generally has in
mind. Think of a toaster. Its parts and their arrangement are fixed. We may bend the position of
the trip plate a little, or of the expanding metal strip which it will meet, in order to keep the
brownness of the toast calibrated with the settings on the brownness control. The values of the
parameters do not matter so long as the basic causal structure does not break down; indeed the
values are just the kind of thing we expect to drift over time. But we would have a legitimate
cause of complaint if the same were true of the structure within the first year we owned the
toaster.

That is fine for a toaster. But for other situations the parameters may matter equally with the
structure, or more so. If birth-control pills do cause thrombosis we may work very hard to
weaken the strength with which they do so, at least to the point where people who take the pills
are no worse off than those who do not. Indeed we may take this as an important aim--we are
more obliged to get the effects to cancel out than we are to continue to spend money and research
time to reduce the risk of thrombosis among pill-takers below that of non-pill-takers. Getting the
cancellation that stability/faithfulness prohibits is important to us.

This brings us to what seems to me a real oddity in the whole idea of stability/faithfulness.
Probabilities and causal structures constrain each other. If the probability is fixed, then nature--
and we--are not allowed to build certain kinds of causal structures. For instance, if we have the
three binary variables, A, B and C, as in Pearl's example, with a probability in which they are
pairwise independent and have to create a causal arrangement (or lack of!) among the three, we
are prevented from building just the one Pearl describes. Or, to think of it with causal structure
first, as Pearl generally seems to, if C is to take value 1 or 0 depending on whether the outcome
of the flip of two coins is the same or not, we are prevented from using fair coins and must
introduce at least a little bias.

I come, finally, to the question of whether we should in fact expect to see a lot of causes that are
not causes prima facie. A good many of the systems to which we think of applying the methods
advocated by Bayesnets theorists are constructed systems. Either highly designed, like a toaster
or an army admissions test, or a mix of intentional design, historical influence and unintended
consequences, as in various socio-economic examples. In these cases cancellation of the effects
of a given cause, either by encouraging the action of other factors or by encouraging the contrary
operation of the cause itself, can be an important aim, particularly where the effect is deleterious.
It will often be a lot easier to design for, or encourage the emergence of, cancellation than it is to
eliminate the cause of the unwanted effect, or less costly or more beneficial overall (as in my
discussion of birth-control pills). There is no good reason to assume that our aims are almost
always frustrated.[24]



This is a view that Kevin Hoover also stresses in his work on causality in macroeconomics. He
considers a macroeconomic example in which "agency can result in constraints appearing in the
data that [violate faithfulness]."[25] He concludes

Spines et al.... acknowledge the possibility that particular parameter values might result in
violations of faithfulness, but they dismiss their importance as having "measure zero". But this
will not do for macroeconomics. It fails to account for the fact that in macroeconomic and other
control contexts, the policymaker aims to set parameter values in just such a way as to make this
supposedly measure-zero situation occur. To the degree that policy is successful, such situations
are common, not infinitely rare.[26]

Perhaps, however, the issue will be made: can we ever really expect exact cancellation? After all,
to get an arrow in a Bayes-net causal graph, any degree of dependence between cause and effect
will do. After we have the arrow in, we need not be misled by the smallness of the dependence to
think the influence is small. For we can then insist on measuring degree of efficacy by the
formula above that I and other causal-decision theorists proposed and that Pearl endorses for P(C
*(This character cannot be represented in ASCII text) E).

One reason we may think exact cancellations are rare is that actually getting any really precise
value we aim for is rare. In a recent discussion of instrumentalism, Elliott Sober[27] talks about a
comparison of the heights of corn plants in two populations. One thing we know, he claims, is
that they are not really equal. Still, that is the working hypothesis. I take it that one of the reasons
he thinks we know this is that "exactly equal" is very precise; and any very precise prediction is
very likely to be wrong in an imprecise discipline.

This raises some very difficult issues about modelling and reality, especially for probabilities.
We design a device to set the difference between two quantities at zero; tests for quality-control
show that, within bounds of experimental error, we succeeded; and we model the difference as
zero. Should we think it "really" is zero? It is not certain the question makes sense, even when
we are thinking of, say, a difference between the length of two strips in a single designated
device. It becomes particularly problematic when we are thinking about a difference of two
probabilities in a population. Is the increase in probability of thrombosis on taking birth control
pills exactly offset by the decrease via pregnancy prevention in British women between the ages
of 20 and 35 in the period from 1980 to 1990? All the conventional issues about what we intend
by talking about the true probability become especially acute here.

Some, I think, we can sidestep, particularly when we are thinking about the application of the
Bayes-nets approach to causality as opposed to the philosophical issue about substitutability
raised by Spohn. For we are going to be using these methods in doing real social, medical and
engineering science, using real data.[28] And here it is not unusual for our best estimates from
the data to render two quantities probabilistically independent where estimates of appropriate
partial conditional probabilities--as well perhaps as our background knowledge or even other
kinds of tests we have conducted for the relevant causal connections--suggest the result is due to
cancellation. In this case we either have to insist that the probabilities are not those our best
estimates indicate or forsake the commitment to faithfulness.



Before leaving this section I should repeat an old point, for completeness. Sometimes it is argued
that Bayes-nets methods should supplement what we know. So if we do have independent
evidence of cancellation, we should use it and not insist on faithfulness. But where we do not
have such information we should assume faithfulness. As I indicated earlier, this strategy is ill-
founded; indeed, I think irresponsible. Where we don't know, we don't know. When we have to
proceed with little information we should make the best evaluation we can for the case at hand--
and hedge our bets heavily; we should not proceed with false confidence having plumped either
for or against some specific hypothesis--like faithfulness--for how the given system works when
we really have no idea.

4. From probabilistic dependence to causality.

If we have a hypothesis that C causes E, we can use what we have just reviewed to test it, via the
hypothetico-deductive method. But that is a method that we know to be more accurate at
rejecting hypotheses than confirming them. Bayes-nets methods promise more: they will
bootstrap from facts about dependencies and independencies to causal hypotheses--and, claim
the advocates, never get it wrong.

Again, as Spohn argues, if there really is this tight connection, there ought to be an argument for
why it obtains. And there is. Again, we can see from looking at the argument why the inference
from and independencies sometimes works, and why it will not work all the time. As with the
other direction of inference, there is an argument for the connection and the argument itself
makes clear that the connection is not tight.

What kinds of circumstances can be responsible for a probabilistic dependence between A and
B? Lots of things. The fact that A causes B is among them: Causes produce their effects; they
make them happen. So, in the right kind of population we can expect that there will be a higher
frequency of the effect (E) when the cause (C) is present than when it is absent; and conversely
for preventatives. With caveats.

What else? Here are a number of things, all discussed in the literature: 1) A and B may have a
common cause or a common preventative or correlated causes or correlated preventatives, where
either the causes are deterministic or the action of producing B is independent of the action
producing A. 2) A and B may cooperate to produce an effect. In populations where the effect is
either heavily present or heavily absent, A and B may be dependent on each other. 3) When two
populations governed by different systems of causal laws or exhibiting different probability
distributions are mixed together, the resulting population may not satisfy the causal Markov
condition even though each of the sub-populations do. (This is analogous to Simpson's paradox
reversals.) 4) A and B may be quantities with the same kind of temporal evolution, both
monotonically increasing, say. Then the value of A at t will be probabilistically dependent on the
value of B at t. 5) A and B may be produced as product and by-product from a probabilistic
cause.

Let us look at each in turn and at what the defenders of Bayes nets have to say about them. I
begin with 1) which is the case that advocates of Bayes-nets methods acknowledge and try to
deal with squarely--assuming the underlying system is deterministic.



3a) Why factors may be dependent: 1) Common causes (where nature is deterministic).

Following Judea Pearl?[29] let us call the total effect of all those causes of X that are omitted
from V and which combine with the direct causes in V of X to form a set of causes sufficient to
fix the value of X, a random disturbance factor for X.[30] Bayes-net methods are applied only to
special sets of variables: sets V such that for each X in V, the random disturbance factor for X is
probabilistically independent of that for every other variable in V. In such a variable set we can
prove that the causal Markov condition will be satisfied.[31]

The causal Markov condition, along with the assumption that all causes are prima facie causes,
lies at the heart of the Bayes-net methods. It tells us that a variable will be probabilistically
independent of every other variable except its own effects once all of its direct causes have been
conditioned on. So we eliminate cases where a dependence between A and B is due to reason 1)
by requiring that the dependence persist once we have conditioned on the parents of A.

Everyone acknowledges that some constraint like this is necessary. You cannot get directly from
dependence to causation; you at least have to first hold fixed the causal parents or something
equivalent, then look for dependence. So in the remaining sections when I talk about the route
from dependence to causation, I mean dependence conditional on a set of causal parents. To
claim that this is enough to ensure a causal connection is to maintain the causal Markov
condition.

My description of the restriction on the variable set V is rather long-winded. The first reason is to
avoid a small problem of characterization. What I have called "random disturbance factors" are
sometimes called "exogenous" factors. There are various concepts of exogeneity. This usage
obviously refers to the one in which exogenous factors are not caused by any variables in the
system. Pearl clearly assumes that is true of random disturbance factors. But the proof requires
more, for it is possible for all exogenous causes of one variable to be independent of those for
another without the disturbance terms themselves being independent. That's because it is possible
for a function of X and Y to be dependent on Z even if the three factors are pairwise
independent. So it is not enough that the exogenous causes for a variable be independent of those
for other variables: the proof needs their net effects to be independent.

The second reason is that some of the other terminology used in the discussion is unclear. Often
we are told, as by Spirtes, Glymour and Scheines,[32] that the methods will be applied only to
sets that are causally sufficient, adding the bold assumption that as a matter of empirical fact, this
will ensure the necessary independencies among the disturbance factors. But what is causal
sufficiency? Spirtes, Glymour and Scheines tell us, "We require for causal sufficiency of V for a
population that if X is not in V and is a common cause of two or more variables in V, that the
joint probability of all variables in V be the same on each value of X that occurs in the
population."[33]

Let us assume that C is a common cause of A and B if C is a cause of A and a cause of B. The
problem then is that this definition is too demanding. Every cause of a common cause is itself a
common cause. These could go back in time ad infinitum. And for any system for which there is



a temporally continuous process connecting a cause with an effect at the type-level, between
each common cause and an earlier one there will be infinitely more. If we apply the methods
only to variable sets that get them all in, we will not apply them at all. What we want to get in are
all the last ones--the ones as close to both effects as possible.[34] But it will take some effort to
formulate that properly. Spirtes, Glymour and Scheines are particularly hampered here because
they restrict their definitions to facts about causally correct representations rather than talking
about causal relations in the world.

Spirtes, Glymour and Scheines avoid this problem by offering a different characterization. They
define, "We say that a variable X is a common cause of variables Y and Z if and only if X is a
direct cause of Y relative to {X,Y,Z} and a direct cause of Z relative to { X,Y,Z } ."[35] And for
direct cause: "C is a direct cause of A relative to V just in case C is a member of some set C
included in V/{A} such that (i) the events in C are causes of A, (ii) the events in C, were they to
occur, would cause A no matter whether the events in V/({ A } union of C} were or were not to
occur, and (iii) no proper subset of C satisfies (i) and (ii)." [36]

The variables in V are seldom sufficient to fix the value of an effect. So how can fixing whether
the events in C occur or not ensure that A occurs? So let us add into the set C the random
disturbance factor for A. But in fact, it looks as if we have to assume as fixed all exogenous
causes, or at least the "last" one if that makes sense, since it will not help to fix one but allow
temporally subsequent ones to vary. We also need to add that quantities occurring between C and
A in nature's objective graph must be assumed to take on the values dictated by C. And so forth.

I do not know how to formulate all this correctly. But it needs to be done if the notion of causal
sufficiency is to be used. Quite reasonably the advertisements for Bayes-nets methods make
much of the fact that the subject is formal and precise: we can prove theorems about
manipulation, abut efficient conditioning sets for measuring the size of a causal effect, about the
certainty of the results of the algorithms when applied to systems satisfying specific conditions,
etc. But this is all pseudo-rationalism if we do not provide coherent characterizations of the
concepts we are using.

The trouble with the characterization of "causal sufficiency" arises from the fact that for Spirtes,
Glymour and Scheines the notion of direct cause is relative to the choice of a particular variable
set. Spohn's talk of the set of "all variables needed for a complete description of empirical
reality",[37] temporally ordered, avoids this; Pearl, too, because he supposes that the underlying
system is a set of deterministic causal laws on a finite set of causally ordered variables. No-one
to my knowledge has a good account of causal sufficiency for dense sets of effects, for instance,
for the kinds of systems studied by time-series analysis. As I remarked, Spirtes, Glymour and
Scheines talk only of correct causal representations?[38] That not only allows them to appear to
avoid metaphysics, as Spohn and Pearl clearly do not, but also leaves an opening for supposing
that the underlying metaphysics is continuous. But the advantages are illusory if we cannot
produce adequate definitions.

Before proceeding to look at the list of factors that undermine the causal Markov condition, I
should comment on one recent defense of it. Daniel Husman and James Woodward[39] offer a
proof of the condition alternative to the proof by Pearl and Verma. Central to their discussion is a



concept they call modularity: each separate effect under study should be manipulable without
disturbing any other. They claim that, given certain other conditions (such as the existence for
each effect of a cause not in the variable set under consideration), the causal Markov condition is
"the flip side of" modularity. This would be a good defense if it were true. For we need not agree
with Hausman and Woodward that all causal systems must be modular; we could nevertheless
(supposing their other conditions are met) assume the causal Markov condition whenever we
assume modularity.

The trouble is that the proof does not bear the interpretation they put on it. For given their other
conditions, both modularity and the causal Markov condition follow separately. One is not the
flip side of the other, both are the result of the conditions they suppose at the start. And these
conditions are at any rate strong enough to call the Pearl and Verma proof of the causal Markov
condition into play.[40]

3b. Other reasons why factors may be dependent.

2) When two causes cooperate to produce one effect, they will be mutually dependent in a
population homogeneous with respect to that effect. These kinds of cases are common in
practice. Data is hard to come by. We collect it for one reason, but need to utilize it for many
others. Imagine for example that we have data on patients from a given hospital, where one
disease, D, is especially prevalent. But we are interested in another condition, B. Unbeknownst
to us B cooperates with A in the production of D, so A and B are dependent in our population
(even once we have conditioned on all the parents of A in a causally sufficient variable set). We
erroneously infer that A causes B in this kind of population.

The problem here is not with the sample size. We can imagine that the sample is large and the
frequencies are indicative of the "true" probabilities for the population involved. The problem for
the causal Markov condition is with the choice of population. We all know that to study the
relation between A and B we should not use populations like this. But how should we--properly--
characterize populations "like this"?

3) Mixing. Even if we assume the causal Markov condition for populations where the
probabilities of the effect are fixed by the causal history, for mixed populations cooperating
causes can still be correlated if the proportion of the effect is determined by some external factor
rather than the causal history. Spirtes, Glymour and Scheines tell us that there are no cases of
mixing for causally sufficient variable sets: "When a cause of membership in a sub-population is
rightly regarded as a common cause of the variables in V, the Causal Markov Condition is not
violated in a mixed population."[41] I think this is a bad idea: the "variables" that are the "cause
of membership in a sub-population" will often look nothing like variables --they don't vary in
any reasonable way and there is no reason to think there is a probability distribution over them;
and even if we did count them as variables, it looks as if we would have to count them as
common causes of every variable in V to ensure restoration of the causal Markov condition.[42]

4) Many quantities change in the same direction in time. There will thus be a probabilistic
dependence between them. Social scientists solve this problem by detrending before they look
for dependencies. Spirtes, Glymour and Scheines maintain that there is no problem to solve.



They use their previous solution to the problem of mixing plus a bold claim: "If we consider a
series in which variable A increases with time, then A and B will be correlated in the population
formed from all the units-at-times, even though A and B have no causal connection. Any such
combined population is obviously a mixture of populations given by the time values."[43]

Like others[42] I find this claim ungrounded. Moreover it seems to me to be in tension with their
commitment to determinism--which is important to them since in deterministic systems the
causal Markov condition is bound to be true if only we add enough into the set of parents. Their
idea I take it is that there will be different probability distributions across the causes operating at
each time slice, hence mixing. But consider deterministic models in physics. These I take it are
important for Spirtes, Glymour and Scheines because these are what make many people
sympathetic to their claim that all macroscopic processes are deterministic. Any two systems
moving inertially will have their positions correlated, and they have exactly the same causes
operating at each instant with the same probability distribution over them, namely--none.

5) Products and by-products are mutually dependent, and when causes act purely
probabilistically, no amount of conditioning on parents will eliminate the dependence. Perhaps
then there isn't any purely probabilistic causation --that would save the causal Markov condition.
But that is a big metaphysical gamble, especially in the face of the fact that for the kind of
variables for which Bayes-nets methods are being sold, we seldom are able to formulate even a
reasonable probabilistic model, let alone a deterministic one. We can of course stick to the
metaphysical insistence that everything must be deterministic. I think this claim is unwarranted,
but I will say no more about the matter here since I have written much about it elsewhere.[45]

5. Analysis

Dependence could be due to causation. But there are lots of other reasons for it as well. Bayes-
nets methods stress one--the operation of common causes--and tell us how to deal with it when
the underlying system is deterministic. The other four reasons standard in the philosophical
literature are badly handled or made light of. And what about other reasons? Have we listed them
all?

The reasons I listed are prevalent not only in the philosophical literature. They are standard fare
in courses on social-science methodology, along with lots of other cautions about the use of
probabilities to infer causes in even experimental or quasi-experimental contexts. And they are
not handled so badly there. In part the failures in the philosophical discussion arise from the
requirement that the connection, whatever it is, be tight. We look for a claim of the form: A
causes B iff A and B are probabilistically dependent in populations satisfying X. Then X is hard
to formulate in the kind of vocabulary we need for formal proofs and precise characterizations.

But why should we think the connection is tight? As Spohn says, if it is tight there ought to be a
reason. There is, as I have argued, a reason for the connection between probabilistic dependence
and causality, but the very reason shows that the connection is not tight. Causes can increase the
probability of their effects; but they need not. And for the other way around: an increase in
probability can be due to a causal connection; but lots of other things can be responsible as well.



I think we are still suffering under the presumptions of the old Hume program. First, we don't
like modalities, especially strange ones. My breakfast cereal box says: "Shredded Wheat can help
maintain the Health of your Heart." In the same sense, causes can increase the probability of
their effects. Distressed at this odd modality,[46] we try to render this as a claim that causes will
increase the probability of their effects, given X; then we straggle to formulate X. Second, we
cannot get loose from the idea that causes need associations to make them legitimate. So we
want some "if and only if" with probabilities on the right, even if we grudgingly have to use
some causal concepts to get the right-hand side filled in properly. I think we are looking at the
issue entirely the wrong way. The connection between causes and probabilities is not like that. It
is, rather, like the connection between a disease and one of its symptoms. The disease can cause
the symptom, but it need not; and the same symptom can result from a great many different
diseases.

This is why the philosopher's strategy is bad. We believe there must be some "if and only if" and
so are inclined to make light of cases that do not fit. The advice from my course on methods in
the social sciences is better: "If you see a probabilistic dependence and are inclined to infer a
causal connection from it, think hard. Consider the other possible reasons that that dependence
might occur and eliminate them one by one. And when you are all done, remember--your
conclusion is no more certain than your confidence that you have eliminated all the possible
alternatives."

NOTES
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1. Spohn, forthcoming.

2. Spohn, forthcoming, p. 10.

3. When we deal with quantities of more than two values, there are other possibilities; e.g., a
cause may raise the level of the effect.

4. Suppes 1970.

5. Spirtes, Glymour and Scheines 1993.

6. Pearl 1999.

7. Cartwright 1983, "Causal Laws and Effective Strategies."

8. What counts as a complete set of factors is not so easy to characterize for probabilistic
causality. (For one definition, see Cartwright 1989, p. 112.) The task is easy if we are allowed to
help ourselves to the notion of the objective system of causal laws governing a population, as



Pearl and Spohn and I do (see Cartwright, forthcoming). In that case K ranges over all the
parents of E, barring C, relative to God's great causal graph for the population.

9. Pearl 2000, p. 73.

10. Pearl 2000, p. 48.

11. Hesslow 1976.

12. Shafer 1996.

13. For further discussion, see Cartwright 1999, chs. 5 and 7.

14. Frigg 2000.

15. Frigg 2000, p. 1.

16. Spirtes, Glymour and Scheines 1993, p. 68.

17. I suppose they mean by "logically" possible that it is consistent with the other assumptions
they wish to make about causal laws and probabilities.

18. Spirtes, Glymour and Scheines 1993, pp. 67-68.

19. In fact this is not literally true since the section, though headed "Axioms", only introduces a
definition of faithfulness and does not make any claims about it. It is clear from the various sales
pitches they make for their methods, however, that they take it to be a condition true of almost all
causal systems.

20. Spirtes, Glymour and Scheines 1993, p. 68.

21. Pearl 2000, p. 48.

22. UCSD Philosophy of Economics Seminar, May 1999.

23. Pearl 2000, p. 49.

24. For further discussion see Cartwright 1999, ch. 2, and 2000.

25. Hoover forthcoming, pp. 7-33.

26. Hoover forthcoming, pp. 7-35.

27. Sober 1999.



28. For an example of an attempt to use the Spirtes, Glymour and Scheines methods on real
economic data in economics, see Swanson and Granger 1997. Their struggles there are
particularly relevant to my point in this paragraph. Which of the low partial correlations
observed in their data should be taken to indicate that the "true" partial correlation is zero? They
consider various alternatives choices among the lowest observed partial correlations and show
that different choices give rise to different causal structures.

29. Pearl 2000, p. 44.

30. These are often designated u[sub x] when variables in V are designated x, y,. ...

31. Cf. Verma and Pearl, 1991 or Pearl, 2000, p. 30.

32. Cf. Spirtes, Glymour and Scheines 1993, p. 54.

33. 1993, p. 45.

34. Note that where A cright arrowB and B cright arrowC and B cright arrowD, if C and D are
independent conditioning on B, they need not be independent conditioning on A if P(B/A) is not
equal to 1. So B must be included if the causal Markov condition is to be satisfied.

35. Spirtes, Glymour and Scheines 1993, p. 44.

36. Ibid., p. 43.

37. Spohn forthcoming, p. 11.

38. This is my account. They say what they do. For instance, in their section "Axioms," they
provide no axioms bur only definitions (of the causal minimality condition, the faithfulness
condition, and the causal Markov condition). But I take it their claims are: every correct causal
graph over a causally sufficient set of variables satisfies these conditions.

39. Hausman and Woodward 1999.

40. For a full discussion see Cartwright forthcoming b).

41. Spirites, Glymour and Scheines 1993, p. 60 (italics in the original).

42. For details see Cartwright 1999, ch. 5 and Cartwright 2000.

43. Spirtes, Glymour and Scheines 1993, p. 63.

44. Cf. Berkovitz forthcoming and Hoover forthcoming, ch. 7, and Sober 1988, pp. 161-62 and
2000.

45. See Cartwright 1997, Cartwright 1999, ch. 5 and Cartwright 2000.



46. I offer a treatment--though not yet really satisfactory--of these kinds of modality in
Cartwright 1999.
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