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CHAPTER ONE

An Overview of the Representation and
Discovery of Causal Relationships Using
Bayesian Networks

Gregory F. Cooper

To assist readers who are new to the area of causal discovery from observa-
tional data, this chapter describes some important concepts. The cemphasis is
on informal insight rather than formal rigor. The chapter introduces Bayesian

networks as a representation of causal relationships. Other representations of

causality are mentioned. but are not discussed in detail. Some basic proper-
ties of causal and noncausal Bayesian networks are described. Several funda-
mental methods and assumptions for learning causal Bayesian networks from
observational data are introduced, and strengths and weaknesses of the meth-
ods are also discussed.

1. Bayesian Networks

A Bayesian network consists of a structural model and a set of probahilities
(Castillo, Gutierrez, and Hadi 1997: Jensen 1996 Neapolitan 1990; Pearl
1988; Spirtes, Glymour, and Scheines 1993). The structural model is a dJi-
rected acyclic graph! in which nodes represent variables and arcs represent
probabilistic dependence. For convenience, I will use the terms node and
variable interchangeably in this chapter. Each node can represent a continu-
ous or discrete variable. For each node there is a probability distribution on
that node given the state of its parents. A Bayesian network specifies graphi-
cally how the node probabilities factor to specify a joint probubility distribu-
tion over all the nodes (variables).

Let S be the graphical structure of a Bayesian network G and Iet P be the
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Figure 1. A hypothetical Bayesian network structure.

joint probability distribution represented by G. By definition, S is a directed,
acyclic graph. A node in S denotes a variable that models a feature of a pro-
cess, event, state, object, agent, etc., all of which I will denote generically as
an entity. For example, the presence or absence of fatigue is a feature of a pa-
tient, and the patient is an entity. § may contain both measured (i.e., record-
ed) and hidden (i.e., unrecorded) variables. Hidden variables are variables for
which we have no data.

Figure 1 illustrates the structure of a hypothetical medical Bayesian net-
work, which contains five nodes. Table 1 shows the probabilities that are as-
sociated in this example with the structure in figure 1.

1.1. The Markov Condition

The independence relationships represented by the structure of a Bayesian
network are given by the Markov condition:

Any node is conditionally independent of its nondescendants, given its

parents.

A descendant of a node X is a node ¥ that can be reached by a directed
path from X to ¥. The Markov condition can be used to define equivalence
classes of network structures. Two Bayesian network structures are Markov
equivalent if and only if they contain the same set of variables and they rep-
resent the same conditional independence relationships on those variables, as

Cuarrer ONE S

-

P(X, =no)=0.80 PX; =yes) =020

P(X, = absent 1 X =no) =0.95
P(X; = absent | X, =yes)=0.75

PUXy = present ) X, = noy = 0,08
PUXy = present | X, = yes) =().25 R

P(X; = absent | X, = no) = 0.99995
P(X; = absent 1 X, = yes) = 0.997

PUXy = present | X, = no) = 0.00008
PXy = present 1 X, = yes) = 0.003

P(X4 = absent | X, = absent, X, =absent) = 0.95 PUX, = presentt X, = absent, Xi=absent) = 0.08

P(Xy = absent | X, = absent, X, = present) = 0.50 P(X, = present | X, = absent, Xy = present) = 0.50
P(X, = absent I Xy = present, Xy = absent) = 0.90 P(X,y = present | Xy = present, X, = absent) = 0.10
P(Xy = absent | X, = present, Xy =present) =025 px, = present | X, = present, X, = present) = 0.75

P(Xs = absent 1 X, = absent) = 0.98
P(Xs = absent | X, = present) = 0.40

P(Xs = present | X, = absent) = (.02
P(Xs = present { X, = present) = (.60

Table 1. The probabilities associated with figure |.

These probabilities are for illustration only; they are not intended to accurately reflect fre-
quencies of events in any actual patient population.

given by the Markov condition. For example, consider a two-node Bayesian
network. The network structure X —s y is Markov equivalent to X Y. be-
cause both networks represent the same conditional independence relation-
ships between X and ¥ (namely, none). Neither network is Markov equiva-
lent to a structure with no arc between X and ¥, which we will represent as X
no_arc Y.

The Markov condition also permits the factorization of a joint probability
distribution on model variables Xy X5 oo, X, into the following product
(Pearl 1988):

n

PX, X, X,) = TP, 1 parents(X,)) ()

i=1
where parents(X,) denotes the set of nodes with arcs into X i+ If X, has no par-
ents, then the set parenis(X;) is empty, and therefore P(X, | parents(X,)) is
Just P(X;).
C(.)n.sider the example given by figure 1. Equation | permits the derivation
of a joint probability on the five model variables as follows:

P(anzvXJvaXs)
= PX; | XDPX, | X, X)P(X, | X)P(X, | X)P(X,)

Thus, for example, P(X| = yes, X, = present, X3 = present, X, = present.
.Xs = presenF) =0.20 x 0.25 x 0.003 x 0.75 x 0.60 = 0.0000675. The factor-
1zation entailed by a Bayesian network often allows a compact representa-
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tion of the complete Joint probability distribution. For instance, in the pre-
vious example, the exhaustively enumerated joint distribution requires 32
probabilities. In contrast, table ] contains only 11 independent probabilities
(the other 11 in table 1 can be derived from the axioms of probability theo-
ry). Often, unless a Bayesian network structure contains a high density of
arcs, the amount of space savings is substantial.
Consider a node X in a Bayesian network. The Markoy blanket of X is de-
. fined as the set of nodes consisting of the parents of X, the children of X, and
the parents of the children of X. It follows from the Markov condition that if
we condition on values of each node in the Markov blanket of X, then X is
probabilistically independent of all other nodes in the network other than X
and its Markov blanket.

1.2. The d-Separation Criterion

A graphical criterion called d-separation captures exactly all the conditional
independence relationships that are implied by the Markov condition
(Geiger, Verma, and Pearl 1996; Meek 1995; and Pearl 1988), which was de-
fined in section 1.1. The following is a definition of d-separation (Pearl
1995):
Let A, B, and C be disjoint subsets of the nodes in S. Let p be any
acyclic path between a node in A and a node in B, where an acyclic path
is any succession of arcs, regardless of their directions, such that no
node along those arcs appears more than once. We say a node w has
converging arrows along a path if two arcs on the path point to w. Sub-
set C is said to block p if there is a node w on p satisfying one of the fol-
lowing two conditions: (1) w has converging arrows (along p) and nei-
ther w nor any of its descendants are in C, or (2) w does not have
converging arrows (along p) and w is in C. Subset C is said to d-sepa-
rate A from B in § if and only if C blocks every acyclic path from a
node in A to a node in B, '

If A and B are not d-separated given C, then we say they are d-connect-
ed given C. For example, in the Bayesian network structure in figure 1, X,
and X; are d-separated given X,, which implies that X, and X, are condi-
tionally independent given X,. If we do not condition on X, then X, and
X3 are not d-separated, because the path from X, to X; through X, is not
blocked. As another example, X, is d-separated from X, by X, and X; . As
a final example, Suppose we remove X, from figure 1 to create a new ex-
ample network, then X, and X; would be d-separated, without any condi-
tioning. Note, however, that once we condition on X, then X, and X, are
not d-separated; in section 4.5.3 I provide a causal justification for such 4-
connectivity.

ferences given only observations, in section 2 I discuss how to derive a pos-
terior probability distribution of a variable when we observe some of the
variables and manipulate other variables,

Since a Bayesian network encodes a joint probability distribution, as given
by equation 1, it contains all the information needed to compute any

P (X, =yes| X4 = presenr)

PX 1 =yes | X, = absent and X5 = presenr)

P (X, = present and Xs = present1 X | = no)

P (X, = yes and X, = absent I X, = present and X s = present)

P (X, = present and X 3 = present)
Let S and T be sets of variables with assigned values. For example. S might he
{X,= yes) and T might be (X, = present}. Suppose we wish to know P51 T).
Conceptually, we can view inference as a simple procedure in which the

P(T) = ZHP(X'_ I' parents(X,)) ; )

U =l
where the sum is taken over al| unique combinations of value assignments to
the variables in U, and in the product if X; appears in T, then X; is assigned
the value given by T. For the example in which T js {X4 = present}, the ap-
plication of equation 2 yields:

P(D) =
P(X, =no) P(X, = absent | X, = no) P(X; = absenr | Xy =no)
P(X, = present | X, = absent, X 3= absent) P(X s=absent | X 3
= absent)
+ P(X, = yes) P(X, = absent | x 1 =¥es) P(Xy = absent 1 X | = ves)
P(X,=presenti X, = absent, X 3 = absent) P(X» = absent | X,
= absent)

pi
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+ P(Xl = no) P(X2 = present | Xl = no) P(X3 = absent | X] = no)
P(X, = present | X, = present, X; = absenr) P(X5 = absent | X;

= absent) \

+ P(X| = yes) P(X, = present | X 1 =yes) P(X; = present | X | = yes)
P(X, = present | X, = present, X3 = present)
P(X5 = present | X, = present)
which by equation 1 is equal to
P(X| =no, X, = absen, X; = absent, X, = present, X; = absenr)
+ P(X, = yes, X, = absent, X; = absent, X, = present, X; = absent)
+PX 1 =10, X, = present, X5 = absent, X, = present, X5 = absenr)

+ P(X, = yes, X, = present, X, = present, X, = present, X, = present)‘

That is, we sum over every possible joint instantiation of the vanal?les,
while holding the variables in T constant to their as.signed values'. A. serious
practical problem with using equation 2 is that jts t1m<': cqmplexny is expo-
nential in the number of variables in U. Thus, often this simple, brute-force
inference algorithm is not computationally tractable. Researchers 'have de-
veloped general inference algorithms that can take advantage of mdept?n-
dence relationships represented in a Bayesian network to often perform in-
ference much more efficiently than equation 2 (Jensen 1?96). Indee(‘i, ff)r
some networks, inference can be performed in time that is polynomial in
the number of nodes in the network. For example, if a network has only
one path between any two nodes, then algorithms have been de\"eloped that
perform inference in time that is linear in the size of the Bayesian netwgrk
(Kim and Pearl 1983, Pearl 1988). Nonetheless, it has been shown that in-
ference is NP-hard (Cooper 1990). Thus, we would not gxpect tf) find an
inference algorithm that is efficient (e, polynomial-time? in the size of the
network) in the worst cases for all Bayesian networks. High compL.ltatlonal
complexity results from having multiple pathwa){s between nodes in a net-

work. For a network with multiple pathways, typically the n'umber of'palh-
ways between nodes increases with the number of arcs, makm.g exact mfe'r-
¢nce more computationally expensive. When‘exact 1.nference is
prohibitively time consuming, stochastic approxim'atlon algonthrps can be;
applied (Henrion 1990). These algorithms may yield usefu‘l estlmatejs o
exact inference results, although in the worst cases sto.chastlc approxima-
tion algorithms are unlikely to yield usefully precise estimates (Dagum and

Luby 1993). N

. CHAPTER Ong: 9
2. An Operational Test of Causality

The usefulness of causal knowledge stems from its ability to predict how ma-
nipulation of the world will (or did) change the world. The immediate goals
for acquiring causal knowledge include causal explanation of past manipula-
tions and outcomes (e.g., legal liability often is based on the probable causes

prediction of outcomes that will follow from manipulations (e.g., the cure
rate of a disease when a particular surgery is performed). In this book, we
emphasize insight and prediction.

This book does not attempt to develop a comprehensive, formal definition
of causality. Intuitively, however, causal knowledge is knowledge that pre-
dicts how actions are likely to change the world. Operationally, for example,

4.3) that leads to a change in the probability distribution of values that ¥ will
take on. Since no claim js being made that such a test can detect all causal re-
lationships, the test is not being proposed here as a definition of causality.
The notion of a manipulation is closely related to the concept of an ucr in
decision theory (Savage 1954). In most formulations, the application of nor-

rently receiving no chest-pain medication and residing in a given geographi-
cal area). Thus, causal relationships that are discovered are relatjve to a pop-
ulation of units and a context. In an RCE, for 3 given experimental unit, the
value to set the cause in question, which I denote as X, is randomly selected
using a uniform distribution over the possible values of X. The state of X js
then manipulated to have the selected value. The RCE defines explicitly the
details of how these manipulations are made (e.g., the quantity of chest-pain
medication to take and the time course of taking the medication). For each
unit, after the new valye of X is set (e.g., either receive chesr-pain medica-
tion or receive no chest-pain medication), the value of Yis measured at some
designated time later (e.g., either has chest pains or does not have chest

73?7771”"*‘. m ’ -
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F igure 2. Chronic bronchitis is the variable being manipulated,

pains). The greater the experimental data support a statistical dependency
between X and ¥, the more the data support that X causally influences Y.

The population units under consideration may have properties, as repre-
sented by variable values, that are intrinsic to the meaning of those units. If
such values of such a unit were changed as a result of manipulations, then
the unit would no longer be in the population under study. For example, if we
are interested in causal processes within an intact e. coli cell (the population
units of interest), but a manipulation completely destroys the cell membrane
of e. coli cells, then we could not use such a manipulation to study the causal
processes of interest.

The notion of a manipulation deserves further description. A manipulation
can be represented with a variable that is external to the system being mod-
eled, such that the manipulation variable has an arc to the variable within the
system that is being manipulated. We assume that such an external variable is
not caused by or confounded with any variable in the modeled system. The
marginal probability distribution over the values of the manipulation variable
should be positive; that is, it should contain no probabilities of zero or one.
With an RCE we can test experimentally that variable X (or variable set X)
has a causal influence (on one or more other variables) if it is possible for a
manipulation variable to influence (i.e., have an arc into) just X (or X), with-

CHAPTER ONE [ ]

out influencing the state of the remaining modeled system variables. The ma-
nipulation variable has the same value set as the manipulated variable, The
relationship between the two variables is deterministic. so that the manipula-
ed variable always takes on the same value as the manipulation variable: this
deterministic linkage ensures that the manipulated variable will not be influ-

lation is a special type of causal relationship that we assume exists in order to
define and discover more subtle causal relationships within some system of

Figure 2 shows chronic bronchitis as the variable being manipulated. The
variable named M denotes the manipulation variable, which is outside the en-
circled system of five modeled variables X, X,. ..., Xs. Note that the manip-
ulation of X, by M means that all other arcs into X, (i.., the arc from X in
the example) are causally inconsequential and therefore are removed. The
arcs into and out of the manipulation variable M indicate that variables out-
side the modeled System may causally influence and be influenced by M. as
long as they are not causally related to the variables in the modeled system.

The manipulation theorem, which is stated and proved in Spirtes, Gly-
mour, and Scheines (1993) (see also chapters 2 and 3), provides a simple
graphical procedure for inferring the posterior probability distribution of
variables under manipulation M given observations O. The procedure is as
follows: We remove all the arcs into each manipulated variable and set the
variable to the value given by the manipulation. We then perform regular
Bayesian network inference, as outlined in section 1.3, conditioned on the
observations given by O and the instantiated values of the manipulated vari-
ables. For example, for the causal network shown in figure 2, suppose we
wish to infer the expected distribution of fatigue, given that an individual has
a mass seen on X-ray and we cure him or her of any existing bronchitis. In
this case, we set chronic bronchitis to the value absent and remove its are
from history of smoking. We set mass seen on X -ray to the value ves. We
then apply regular Bayesian probabilistic inference methods (sce section 1.3)
to compute the posterior probability of fatigue.

While we can use RCEs to provide (at least conceptually) a test of causali-
ty, in practice even a limited RCE might not be safe, ethical, logistically fea-
sible, financially worthwhile, or even theoretically possible, all of which are
reasons for using observational data to attempt to infer causal relationships.
Because (1) RCEs have limitations and (2) causal discovery from RCEs is
well addressed in the literature (see, for example, Bulpitt 1996 and Friedman,
Furberg, and DeMets 1996), this book focuses on learning causal relation-
ships from observational data. The ability to use observational data for causal
discovery significantly extends our analytical capabilitics beyond using ex-
perimental data alone.
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3. The Possibility of Causal Discovery
~ from Observational Data

Observational data is passively observed, as contrasted with experimental da-
ta in which one or more variables is manipulated (often randomly) and the
- effects on other variables are measured. Observational data is more readily
- available than experimental data. As observational databases become in-
creasingly available, the opportunities for causal discovery increase.
Traditional statistical thinking says that “correlation does not imply causa-
tion.” Observational data, however, can be informative regarding which
causal relationships do or do not exist. Perhaps the simplest example of such
" a constraint is the inductive principle that if two variables X and Y are not
correlated (or, more generally, are not statistically dependent according to
some measure), then X does not cause ¥, and ¥ does not cause X. While this
principle ‘can fail, it also can serve as a powerful guide in the .search .for
causal relationships. The story, however, is much richer and more interesting
than that simple principle. In particular, a key idea in this book is that among
“a set of variables, the statistical relationships that are obtained from observa-
tional data sometimes can strongly suggest likely causal relationships among
a subset of those variables. For example, suppose that in fact X causes Y. By
measuring just X and Y, we indeed cannot determine whether X causes Y. So,
in that limited sense, correlation does not imply causation. If, however, there
is a variable W that is known not to be caused by X or ¥, then by examining
the statistical independence and dependence relationships among W, X, and ¥
 that are obtained from observational data, it sometimes is possible to infer
that X very likely causes Y. Section 7 illustrates how. In some instances, even
though we may not be able to induce that X causes ¥, we may be fible to de-
termine, for example, that ¥ does not cause X, and thereby constrain the pos-
sible causal relationships between X and Y.

In order to show how it is possible to discover causal relationships from
observational data, we first need a representation of causality. In the next sec-
tion, I show how Bayesian networks provide such a representation, which I
discuss in some detail.

4. Causal Bayesian Networks

A causal Bayesian network (or causal network for short) is a Bayesian network
in which each arc is interpreted as a direct causal influence between a parent
node and a child node, relative to the other nodes in the network. In this sec-
tion, I discuss nodes, arcs, and their combination within causal networks,
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4.1. The Entity Being Modeled

Assume that there is an entity about which we are representing causal rela-
tionships. That entity might be a single system or it might be a sct of sys-
tems. An example of a single system is a manufacturing plant in which we
are trying to detect causal relationships in order to improve productivity. An
example of a set of entities (units) is a set of paticnts. There are many medi-
cal causal relationships that are of interest, including discovering preventable
causes of serious disease. When we model the causal relationships of a set of
entities, the component entities may or may not share all of the same causal
relationships. The chapters in this book focus primarily on entities that share
the same causal relationships. If the entities do not share a common set of
causal relationships, then our model of those relationships should be a causal
mixture model (see section 4.5.6).

4.2. Nodes

A node represents a variable that characterizes some aspect of the entity be-
ing modeled causally. The variable may contain continuous or discrete val-
ues. If it contains discrete values, then those values may be ordered or un-
ordered.

The meaning of a node is given by its definition, which for simplicity we
will assume is equal to its name; in general, the name is any unique label that
identifies the definition. For example, history of smoking is the name of node
X, in figure 1. If 2 name of a variable is not sufficiently precise, then it may
not be possible to know the value to give the variable. Consider again history
of smoking. This name does not indicate whether we mean smoking cig-
arettes, cigars, or other materials. The name alse does not indicate the
amount of smoking required for history of smoking to be given the value ves,
or the time period over which such an amount of smoking must occur, A
variable with a name that js insufficiently precise is said to fail the clarity test
(Howard and Matheson 1984). But such failure or success is not absolute,
Generally, we want all variables in a causal model to have names that pass
the clarity test well enough for the purposes to which we plan to apply our
model. For the example, the name/definition patient has smoked one 1o o
packs of cigarettes per day during the past 10 years of his or her lifetime,
but did not smoke prior 1o that time arguably passes the clarity test well
enough for many clinical purposes, even though we have not precisely de-
fined, for example, what we mean by a cigarette.

The value of a variable may represent any aspect of the modeled entity, A
value may represent a state of the entity, a change in the state of the entity, or
some sequence of changes. The value may or may not contain explicit tem-
poral information. The value of any particular variable may be measured or
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missing. If the value of a variable will always be missing, then we say this is
a hidden or latent variable; otherwise, we say it is a measured variable. We
-may have no description or identification of hidden variables in a network
other than by their causal and probabilistic relations to observed variables.

4.3. Causal Arcs

Let X be a subset of the modeled variables, Suppose that there are two different Figure 3. Causal network Structure
manipulations of the variables in X, called manipulate; and manipulate, such '
that P(Y | manipulate; (X)) = P(Y | manipulate;(X)). Now let X’ be a subset of 4.4, Causal Markov Condition
X such that P(Y| manipulate (X)) 2 P(Y | manipulate(X")), and for every prop- e, .
er subset X” of X' it is 2the case that either X" = & of P(Y | manipulate (X”)) = I};ei: ?;f:h“:racr:‘:eC;'\‘/‘::‘:‘;;jsgl“’;n‘:af 'r‘;;:::d&mn ?escr'ibcd in section
-P(YI mfznlpulatej(X )).. Not«.e that in general there ma.y be mqre than one set X’ from Spirtes, Glymour, and Schernes (l;% N, - More formally, as a'd.ap[c.d
that satisfies these relationships. We say that each variable X in X’ causally in- as follows: ’ ). the causal Markov condition is
fluences Y and we place an arc from X to Y in the causal Bayesian network. In Let § be a causal Bayesian network with .

etwork with node set V. Let P be proba-

words, X is a necessary member of a set of variables whose manipulation is
sufficient to change the distribution of ¥. (Mackie [1974] contains a detailed
discussion of causal sufficiency and necessity.) Note that this characterization
of causal influence is relative to the set of modeled variables. The causal influ-
ence could be direct or it could be mediated through other measured model
variables. Note also that the characterization of causality given here requires
that we are able to manipulate Just the variables in X and just the variables in
each subset of X, without manipulating (disturbing) other variables. The proba-

The intuition underlying the causal version of the Markoy condition is as
follows. Assume that the structure S of a causal network G js causally valid.
A descendant ¥ of X jn § is on a causal path from X. Thus, we would expect

bilities used in this analysis may be interpreted from either a frequentist or a there to be the possibility of a probabilistic dependency between X and ¥
Bayesian perspective. _ Now, consider the nondescendants of X: that is. consider all entities rcprc:
Suppose that there is some variable Z, such that X only causally influences sented by the variables in G that are not directly or indirectly caused by X

Y through Z. We express this relationship in causal network notation as X —
Z — Y. Here X is no longer a direct cause of Y in the network, but rather is an
indirect cause. We say that Z is a direct (or immediate) effect of X, and Y is Since parents(X) represents all of the direct causes of X, if we do not change
an indirect (nonlocal) effect of X, Similarly, we say that Z is a direct (or im-
mediate) cause of Y and X is an indirect (nonlocal) cause of Y.

If X is a direct cause of ¥ (relative to a set of modeled variables), that does

not mean there are no unmodeled hidden variables (representing hidden pro-
cesses) that link X to Y. Indeed, there almost always will be. We are not re- $0 are probabilistically independent of X, given just parents(X), unless such

quired to represent such hidden variables in a causal graph, however, because - an effect happens also to be an effect of X.

their influence is captured by the probability distribution of ¥ given X. Simi- The basic intuition underlying the causal Markov condition is that causalj-
larly, if a hidden variable only influences one of the measured variables, as ty is local in time and space. The philosophy literature contains cons‘idcr.:lhlc
for instance variable Z, we need not represent the hidden variable explicitly, discussion of this issue (Cartwright 1989; Reichenbach 1956; Sulm;m 1984;
because its influence is represented by the conditional probability distribu- i ’
tion of Z given its parents. Thus, a causal network provides a causal abstrac- According to the causal Markov condition, if we know the local measured
tion that typically represents certain types of hidden processes only implicit- . causes of X, then nonlocal, indirect causes provide no additional informvaui(m
ly. If, however, a hidden variable causally influences two or more measured about the value of X, Consider the causal network in figure 3. Since ¥ is a Jo-
variables, then in general it should be represented in a causal network. cal cause of Z, if ¥ is fixed to some value then changes in the valye of ;’( will

wil! be prob.abilistically independent of each node in C; thus, C will give us
no information about the distribution of X, Furthermore, given values for
parents(X), we expect that the direct and indirect effects of C (and so on) al-
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Figure 4. A causal network structure with divergent arcs.

Figure 5. A causal relationship that is probabilistic due to a hidden variable (H).

not causally influence Z. Thus, proximal causes block or screen off more dis-
tal, indirect causes. '

Consider next the causal network depicted in figure 4. According to the
causal Markov condition, if the value of cause variable X is fixed, the value
of effect variable ¥ provides no information about the value of effect variable
Z and vice versa. More generally, if there is no directed causal path between
two variables, then conditioning on just their common causal ancestors ren-
ders the two variables independent.

Causal relationships may be inherently probabilistic (see the end of this
section) or probabilistic due to hidden variabies, Regarding the latter, consid-
er the causal network depicted in figure 5 in which X, ¥, and 7 are measured
variables, and H is a hidden variable. In this situation, X and Y are indepen-
dent given . Suppose Y is a deterministic function of H and /, and the proba-
bility distribution over H contains no probabilities of 0 or 1. Because of the
causal influence of H on ¥, the value of ¥ is not a deterministic function of
the value of I; thus, if we are not modeling H explicitly (i.e., it is a hidden
causal factor), then we use a probability function to specify a distribution
over the values of Y given each value of I.

The causal independence relationships implied by the causal Markov con-
dition should be interpreted relative to (1) the measured and unmeasured
variables represented explicitly in the model, and (2) the values of those vari-
ables. [ discuss both of these provisos next.
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PX, = present) = 0.5

P(X3 = present) = 0.5

P(X3 = present | X| = present, Xa = presenty = 0}
P(X3 = present | X1 =present, X, = absent) = (.9
P(X3 = present | X1 = absent, X3 = present) = 0.9

P(X3 = present | X} = absent, X2 = absent) = ).

Figure 6. A causal network structure in which X, and X 3 taken
together (but not alone) have a causql influence on x -

PX, = present) = 0.5
P(X3 = present) = 0.5

8 Ci 2 .
Y, tgure ;. Jhe ausal ”E’”H"k Structure in ﬁ ure 6 with X ”R"Rl”(l 12¢d out
8 d /~.

Figure 6 illustrates the first proviso. Suppose there is o causal process tha

c?ndbe represented by .the.ﬁgure. Given the joint probability distribution im-
P led by the ;.)rob.abllmes In figure 6, if we consider just variables X and X
(i.e, by marginalizing out X3). we obtain the causal network in ﬁgurc'7 !

As shown in figure 6, when taken together, both X, and X, causally influ-

ence X;. Figure 7 shows that if we only consider the relationship between
and Xj;, then X, does not (by itself) have 3 causal influence on X C()llﬁi(;"
an RCE that involves Just the two variables X, and X, If we l]lilil.ipul'lic \tr
z{nd measure X;, the RCE will show no causal influence of X, on X‘t Tl;is‘

ptret.ed. relative to the set of variables that are in the model. The absence of 3
statistical dependency between two variables does nog mean they are causally
unrelated to one another when unmeasured varjables gre considered

o N
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history of
smoking

chronic
bronchitis

cough

Figure 8. A simple three-node causal network structure.

Note that this example contains a special type of distribution that violates
the faithfulness assumption discussed in section 6.1; for most distributions,
marginalizing out X, would not lead to a situation in which X, has no causal
influence on X;. Still, the distribution of X3 given X, may be significantly dif-

* ferent when X, is in the model than when it is not. For example, there exist
distributions for which X; having the value present, when considered alone,
makes X; highly likely to have the value present; however, when a variable
X, has the value present, then X | having the value present makes X; highly
likely to have the value absent. The general point, then, is that the causal re-
lationships in a model should be interpreted relative to the variables in that
model (Aliferis and Cooper 1998).

The network structure depicted in figure 8 illustrates the second proviso
previously mentioned, which involves the values of variables. Suppose that
the three variables can take on a value from the following respective com-

panion sets:

history of smoking: {none, moderate, severe}

chronic bronchitis: {absent, moderate, severe}

cough: {absent, present}
It could well be that given this value representation, then the Markov condi-
tion applied to the above network would imply the correct independence re-
lationships: namely, the value of cough is independent of the value of history
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history of
smoking

chronic
bronchitis

Figure 9. An ;;mmple in which Xe is not independent of Xy given X, bocause th
. o ! Al Se ("H’\-
alues of X, are 100 coarse 10 sustain that independenge.,

of smoki .
of smoking, given that we know the value of chronic bronchiris,

Consi i
oo ider, ho'w"ever, the following Tepresentation of the vajyes which for
chronic bronchitis are coarser than before: '

htstor%: of smoking: { none, moderate, severe}
chronic bronchitis- {absent, present}
cough: {absent, present}

maSugpors'e we condition on chronjc bronchiris having the value present. It
Y be the case that a severe degree of smoking suggests (with high likéli-

su I

» agtgels.lt(s ? }:r]oii’erz;te degree of chronic bronchitis, which suggests an interme
¢ likelthood of a cough In this situatj i indeper -
. S Siuation, cough is not indepe de i

o I ' ) : s pendent of #is-
uer) ‘ gs ;:1](:.1(11;;9, given that all we know js that chronic bronchitis has the val-
re]aﬁo,;shi[;s [thetcagsa: network in figure 9 expresses the independence

at exist (namely, none) given the ¢ i
' . , oarser variable-value repre.
Sentation being used for chronic bronchitis s
Ist . : j '

o ;)e arc fr.om.lns{or_y of smoking 1o cough causal in figure 97 In a sense
')1'] am ;ve r:z‘nntam (i.e., fix) chronic bronchitis o the value present and wc‘
o 5u ate lz(;vtorj' of smoking between values of nope, moderate, and severe

et ‘ ' . Land .
ould expect (given this story) that the likelihood of cough will vary

G st

. «3..5:% e <3 &“’;‘3“":‘ B
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history of
smoking
hidden measured
chronic chronic
g .. bronchitis
f;:x:Chms state

cough

Figure 10. An alternative representation of the
causal network structure shown in figure 9.

with the value of history of smoking. The reason is t.hat even thougtil ;;'e
maintain chronic bronchitis to just the value present, it can .(and Prto 'ainy
will) still vary between being moderate and severe. That is, in mamt z}i:onld Sg
chronic bronchitis to be present, we only ensure that the \falue presen ° S,
we do not ensure that any more specific value of the variable holds or doe
m;::]golfe. 9 illustrates only one specific situation in which the .valut.es of ;1;:
work variables are important; there are other more complex ﬁltuano;:ss.tmc-
general point, however, is that there is no ﬁxe.d, dlI‘CCt?d z'icycllcllgrgpthe e
ture for which the causal Markov condition will be v.alld, if we a 0\: e val
ue sets of the variables to vary. In other words, the mterpretatlo.nho A e s
in a causal network is relative to the sets of values. associated with t 'Z noed )
in the network. Thus, those sets of values should“m esience be colns'l e:hi :
part of the causal network structure. When we read” causal re a;ltul)n; ph
from the directed acyclic graph, our interpretation of lhe' arcs in t :: grap
should be relative to the value representation of the not‘ies in the grap h. -
An alternative representation of the causal network in figure 9 is sd <;(wr;] n
figure 10, where Hx, has the value set {abSt.znt, moderz?tg, s.evere} 'an sz
the value set {absent, present}. Variable X,isa determmlstl? furllctl‘on o loxf;
but not vice versa. The basic idea underlying the representatlon. in hgu;: ! i;
that measured variables can be abstractions of unmeasured variables (Aliferis
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and Cooper 1998). According to the causal Markov condition, conditioning
on X; does not render X 1 and X independent.
I close this section with a brief discussion of one additional issue regard-

data provide support for the notion that at the quantum level, causality is not
temporally and spatially local (Herbert 1985). Thus, at that level, there may
be no local variables that render a variable X independent of other variables,
Such a situation would not imply that the Markov condition is violated, but

4.5. Causal Relationships

This section introduces several important concepts regarding causal relation-
ships, including temporal representation, transitivity, multivariate causes,
confounding, selection bias, and compound relationships.

4.5.1. Temporal Representation

Often the temporal relationship between a cause and an effect is left implicit
in a causal network. Consider the nodes history of smoking and chronic
bronchitis in figure 8. For simplicity, assume that we are using the causal net-
work to predict chronic bronchitis given a history of smoking. Suppose that
P(chronic bronchitis = present | history of smoking = severe) = 0.3. What
does this probability mean exactly?

We view history of smoking as taking on the valye severe some time in the
past. But when in the Past? And what was the value of history of smoking
from which we manipulated it to the value severe? These details are unspeci-
fied here. A problem may arise if history of smoking has a modeled cause ¢
In that case, the value of C may change the distribution over the possible

. ways that history of smoking takes on the value severe. Thus, depending on

the value of C, we may have a different distribution tor chronic bronchiris
conditioned on history of smoking. The problem is one of an insufficient rep-
resentation of the values of history of smoking. It is the same type of phe-
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nomenon that I discussed in association with figures 9 and 10, except spe-

cialized here to be the temporal dimension of the value set. A solution is to

represent the temporal dimension of the values of history of smoking in finer

detail, so that conditioning on history of smoking makes chronic bronchitis chronic
bronchiris

independent of ancestors of history of smoking.
Researchers have begun to develop temporal Bayesian networks that per-

lung cancer

mit detailed explicit modeling of temporal causal relationships among vari-

ables (Aliferis 1998; Aliferis and Cooper 1995; Aliferis and Cooper 1998;

- Berzuini, Bellazi, Quaglini, and Spieglehalter 1992; Dagum and Galper
Jatigue

1993; Provan and Clarke 1993). These representations provide the basis for
future learning algorithms that can induce detailed causal temporal patterns

from data.
4.5.2. Transitivity Figure 11. The structure of a causal network thay illustrates explaining away,
couts Y 1 coutdbe 1 X dooe mt s ot v | maY more likely: This likelihood of lung cancer wil decrease, however |
L e ge . o nstivily q' learn that chronic bronchitis is pres b case, fowever, if we
special probability distributions in order to exhibit nontransitivity. Consider an explanation for the i (l? e enltl, ecause chronic bronchitis provides
i ich X is a bi i ) igue (i.e., chroni e 4
the followmg exafnple for.whlch X is a binary variable that takes the .values tigue). Thus, conditioned on ot ronic brOl’lChlll:ﬁ explains away™ f3-
x1 and xy, Yis a binary variable that takes the values y, and y,, and variable 7 cancer are not probabilistica atigue, the events chronic bronchitis and lung
can take on any one of the values i., i,, i, Or i,. : robadilistically independent.
PX =) = §/4 R A _ The appearance of “explaining away” is one example of how parent nodes
PU=1, ll X=x)=29 P(= i 1X=x,) =209 . ]C{ilzlrt;(emdfg;g()iegtthgw?n that we co'n'ditlon on the child node (Wellman zmd R
PU=iy|X=x)=4/9 P(= H1X=xy)=1/9 . causal Baver . er types of co.ndmonal dep.endency can exist. Although in
PU=i,1X=x)= 109 PU=ilX=x)=4/9 . yesian networks there is not a requirement that parents be de
P i3 | X—xl) Z29 PU- i3lX—x2) 2 ' t(nient conditioned on some valye of their child, often they are (l;carl lt),t;;r;
Thla=x)= Shitda=n)= ‘ or example, in |i : - ) ;
P(Y=y, 11=i)=2/3 Ple, in linear models and in noisy-or-gate models, they must be,
P(Y=y lI=i)=1/2 : 454, Confounding '
;’()}:f Y : I= i3) = :g _ _ If two variables are probabilistically dependent due (at least in part) to one or
Y=y =i, = more shared causes (either direct o indirect), then the two variables are said
In the distribution defined by this causal Bayesian network, X and I are de- to be confounded and their common causes are called the mnj ‘/ -L iy
- pendent, and / and ¥ are dependent, yet X and ¥ are independent because P(Y= confounders can be ejther measured or unmeasured variahlcs(an}(]l " ThT
. A o € caus;
N1X=x)=P¥=y | X=x)=1/2. netW(?rk Structure in figure 12, which s taken from figure 1, shows history n}
4.5.3. Multivariate Causes and Explaining Away smoking as a confounder of chronic bronchitis and lung cancer '
: Confounding is important, because when two variables X an.d Y are statis

When a node X has more than one parent node, those parent nodes often
have a characteristic pattern of being dependent conditioned on X. To illus-
trate, consider the causal network in figure 11, in which we assume X; and X,
are marginally independent and are both causes of X 4+ While X, and X are
marginally independent when we do not condition on X,, they often are de-

pendent when we condition on X,. Since chronic bronchitis and lung cancer
are causally independent (as assumed here), it is appropriate that they are An RCE is one way to eliminate a confounder. F. ]
CL For example, if we manip-

marginally independent. Consider conditioning on fatigue. If fatigue is pre- ulate chronic bronchitis, then we break the arc f hi )
sent, then the presence of chronic bronchitis and lung cancer each become chronic bronchitis, because our manipulation fmr.::? | ll]l.rtll;":v of .s'm;kuw into
S that history o, smoking

) .
Cher;1 an((ji. remove the statistical dependency between X and ¥ that is due 1o

onfoun mg..If the confounders are not measured, then we need other meth-
ods for detecting or eliminating them,
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history of
smoking

chm{u:c lung cancer
bronchitis

f igure 12. History of smoking is the confounder of chronic bronchitis and lung cancer.

history of

smoking

chronic @
bronchitis

lung cancer

Figure 13. An RCE is one way to eliminate a confounder.

no longer has a causal influence on chronic bronchitis. Thus, we would (})lb—
tain the causal network shown in figure 13. Data genera.ted by a P{ocess t. at
is represented by figure 13 is expected to support chronic brorfchms a; F)e‘:m'g
independent of lung cancer, which would support that chronic bronchitis is

not a cause of lung cancer. ' . .
Section 7 contains a discussion of assumptions under which observational

data is sufficient to determine that two variables are statistically dependent due
to confounding.

4.5.5. Selection Bias .
If V’ denotes an arbitrary instantiation of all the variables in V, then we want
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@

Figure 14. Unirs may share this causal nerwork Structure
but differ in the distribution of Zgiven Y.

that V”is sampled for inclusion in D with probability Pr(v’| G), where G is
the causal Bayesian network to be discovered, which represents the data gen-
erating causal process. If selection bias exists, then V” s sampled with a
probability other than Pr(v’i G).

Suppose that an individual with only a fever (X) is likely to stay home and
take aspirin. Similarly, a person with only abdominal pain () is likely to stay
home and take an over-the-counter medication for relief. Suppose, however,
that an individual with both fever and abdominal pain is likely to be con-
cerned about the possibility of a serious illness, and therefore, is prone to go
to his or her local emergency room, where we have been collecting our data.
In this situation, X and ¥ may be dependent, due to selection bias, even
though X does not causally influence ¥, ¥ does not causally influence X, and
X and Y have no common confounder. Such bias can persist, regardless of y
how large the sample size. Selection bias can be avoided in RCEs by measur-
ing the outcomes that follow in time for each unit in the experiment (c.g., the
outcomes for each patient in a clinical trial). The presence or absence of se-
lection bias sometimes can be inferred from observational data (Cooper
1995b). Chapter 6 provides a detailed handling of selection bias when using
constraint-based methods for causal discovery from observational data.

4.5.6. Causal Mixtures

Recall that in section 4.1 | stated that usually the units under study are as-
sumed to share a common set of causal relationships, both in terms of causal
structure and the parameterization of that structure. It could be, however, that
the members of a given population of units do not all share the same causal
relationships. For example, all units may share the same causal network
structure (figure 14), but one subpopulation of units may have a different dis-
tribution between Y and Z than does the remaining subpopulation.

e B R G e
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Figure 15. A hidden variable H can represent a mixture of subpopulations
that differ according 10 the parameterization of Z given its cause Y.

We can represent such a mixture by using a hidden binary variable H,
which is included in the causal network structure shown in figure 15. More
generally, hidden variables seem adequate to represent mixtures that involve
just the parameters relative to a common structure (rather than mixtures of
causal network structures). »

The structure depicted in figure 15 represents at least two possible situa-
tions. In one, which I just discussed, there is a mixture of units represented
by H, with each subpopulation having a common distribution (possibly de-
terministic) of Z given Y. In the other situation, all the population units are
homogeneous and each unit has the same distribution of Z given Y; the vari-
able H serves only to represent the inherent uncertainty expressed by that
distribution.

In an extreme case, one subset of the population might have the causal net-
work structure shown in figure 16a, and the remaining subset might have the
network shown in figure 16b. Causal structure includes both the arcs among
nodes and the value range of each node. In general, admitting mixtures
weakens our ability to learn causal relationships from observational data.
The discovery of mixtures of causal structures is a challenging, largely open

_ problem.

One approach to admitting mixtures is to have a graphical language that
expresses them as members of an equivalence class of causal networks that
are statistically indistinguishable. Another approach would be to search over
subsets of the cases to locate for each subset a causal network (or set of net-
works) that is most likely given the subset. A Bayesian version of this ap-
proach would require specifying a prior probability over the various ways of
forming subsets of the cases in the database. This approach makes possible
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(a)

®

(b)

Figure 16 a and b. The causal network structures Jor two subpopulations,

the scoring of causal relationships for subsets of the population: from such
analyses we could derive the posterior probabilities of causal relationships
for the .population as a whole. A challenge in applying this Bayesian up;
proach is to find ways to make it computationally tractable.

4.5.7. Compound Relationships

The statistical dependency between two measured variables X and ¥ may he
due lq a complex combination of the following mechanisms: h di’rcct
causalfly, (2) indirect causality, (3) confounding, and (4) selection bias. The
Bayem.an network structure in figure 17 illustrates one such possibility
.Wthh .mvolves all four mechanisms. The shaded node § represents a SpCCi:-ll‘
Instantiated variable that indicates selection of a unit for observation hased
on the values of the parents of S, namely X and ¥ in the current cxumblc
There are of course many other combinations of the four mechanisms. F()r.
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Figure 17. Bayesian network structure involving direct causality,
indirect causality, confounding, and selection bias.

example, suppose we limit consideration to just the five nodes in the ﬁgyre
17 network. Consider every directed acyclic graph on those nodes for which
X and Y are d-connected (conditioned on no other variables). Each such
graph represents a set of mechanisms which can render X and ¥ statistically

dependent.

5.ACausal Discovery

Up to this point, I have described the causal Bayesian network as a repre-
sentation of causal relationships, and I have discussed some of its proper-
ties. In the remainder of this chapter, I discuss two approaches for discover-
ing causal Bayesian networks from observational data. One approach, which
is described in sections 6 and 7, uses tests of conditional independence and
dependence among subsets of model variables to constrain the ‘causal r.ela-
tionships among the model variables. Another approach, which is .descrlbed
in section 8, computes the probability that causal relationships exist among
the variables. Section 9 introduces several basic search algorithms that have
been used with these two fundamental approaches to causal discovery.
These sections are not intended to provide a comprehensive overview of re-
search on causal discovery methods (see, for example, Angrist, Imbens, and
Rubin 1996; Balke and Pearl 1994; Bollen 1989; Bowden and Turkington
1984; Heise 1975: Manski 1995; Meyer 1995; Pearl 1996; Pratt and
Schlaifer 1988; Robins 1986, 1989; Rubin 1974; Simon 1953; and Wright
1921 for samples of relevant prior work), but rather to introduce basic con-

CHAPTER ONE 29

cepts for the graphical causal discovery methods that are emphasized in this
book.

An assumption that typically is made with the causal discovery ap-
proaches described in this book s that the samples (i.e., cases, records, in-
stances, etc.) in the observational database are independently sampled and
identically distributed. Independent sampling means that given a causal
Bayesian network model. the probability of one sample is independent of
any other samples that have been obtained. In theory, a lack of indepen-
dence among cases could be modeled using hidden variables (see Spirtes,
Glymour, and Scheines 1993, section 9.4), but this makes learning causal
relationships more difficult and is seldom done. Samples are identically
distributed if the probability of seeing a given case at one point in time is
the same as seeing that case at another point in time; that is, the joint prob-
ability distribution defined by the causal Bayesian network is time invari-
ant. The assumption of identically distributed cases can be relaxed by using
temporal causal Bayesian networks that explicitly allow the representation
of changes in distributions over time. While progress is being made on the
representation of temporal Bayesian networks (see section 4.5.1), relatively
little research has been done yet in learning such representations from time
series data.

If a set of causal structures can equally account for the same observational
data, then no observational data can distinguish among them. This
fundamental concept is a type of statistical indistinguishability. If no mem-
bers of a set of causal structures are statistically indistinguishable, then they
are called stati&tical[y distinguishable, or equivalently, statistically identifi-
able. Different types of statistical indistinguishability are established based
on different meanings of the phrase “can equally account for” in the preced-
ing sentence. Retumning to a previous simple example, consider the causal
networks X — Y and X « Y, If we do not restrict the distributions consid-
ered, then both networks can represent any joint probability distribution on
the two variables, and thus, they each can equally well account for the same
observational data, Therefore, we would say that the two networks are statisti-
cally indistinguishable given only observational data, By contrast, the causal
network X no_arc ¥ is in general statistically distinguishable from X — ¥ he-
cause with observational data X and ¥ will be statistically independent in the
former network, whereas in the latter network they will not. For a more de-
tailed discussion of statistical distinguishability in causal discovery, sce
chapter 4 of Spirtes, Glymour, and Scheines (1993). A key theme underlying
the topics in this book is that there are interesting classes of causal networks
that under assumptions are statistically distinguishable. based on observa-
tional data. Section 6 introduces one such set of assumptions. Section 10 pro-
vides some support for these assumptions, although further evaluation is an
important open problem.

o o S5 o L 0 S
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6. Assumptions for
Constraint-Based Causal Discovery

In this section I discuss the assumptions typically made in constraint-based
methods for discovering causal knowledge from observational data. Almost
always the methods assume that the causal processes generating the data can
be modeled as a Bayesian network; in this chapter, for brevity, I sometimes
state that the Bayesian network itself generated the data. Since, as described
in section 1.1, the Markov condition is inherent in the Bayesian network rep-
resentation, the discovery methods assume the causal Markov condition. Re-
cently, researchers have begun to extend the Bayesian network representation
of causal relationships; one extension is the representation of causal feedback
cycles with directed cyclic graphs (see chapter 7).

Constraint-based causal discovery involves a two-step procedure in which
(1) statistical tests are used to establish conditional dependence and indepen-
dence relationships among the variables in a model, and (2) those relation-
ships are used to constrain the types of causal relationships that exist among
the model variables. ) .

The remainder of section 6 summarizes and illustrates typical assumptions
that have been used in applying constraint-based causal discovery methods.
Chapters 2, 3, 5, and 6 describe these assumptions and their use in additional
detail. Chapters 8, 9, 10, and 11 contain arguments for and against some of
these assumptions holding for causal discovery in the real world.

6.1. Causal Faithfulness Assumption

Let G be a causal Bayesian network, V be the nodes in G, § be the network
structure of G, and P be the joint probability distribution generated by G.
The causal faithfulness assumption is as follows:
For all disjoint sets A, B, and Cin V, if in § we have that A is not d-sepa-
rated from B given C, then in P we have that A and B are conditionally
dependent given C, where A and B are not empty but C may be.

The causal faithfulness assumption says that the only way variables will
be probabilistically independent is if their independence is due to the Markov
condition, or equivalently, to the d-separation condition. In other words, if
variables are d-connected (i.e., not d-separated) in G then they are dependent
in P. Thus, the network structure S reveals all the independence relationships
among all the variables in V relative to the underlying distribution P. Note
that P must be estimated from data D; we generally do not know P exactly.

For example, in the network in figure 1, consider just nodes X, and X,,
which are d-connected by the arc between them. The faithfulness assumption
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would be violated if the probabilities given in figure 1 were changed so that
X, and X, are marginally independent, but the arc from X to X, remained. In
the actual joint probability distribution that follows from the probabilities
given in figure 1, the faithfulness assumption is not violated.

The Markov condition relates causal structure to probabilistic indepen-
dence and the faithfulness assumption relates causal structure to probabilistic
dependence. Together, they provide a highly informative mapping between
the independence and dependence relationships of model variables as given
by the their probability distribution and the d-separation/d-connection rela-
tionships of the corresponding nodes in a Bayesian network structure. Thus,
we can use statistically inferred independence and dependence relationships
(see section 7) to constrain the structure of the Bayesian network that is gen-
erating the data.

The following result regarding the faithfulness assumption has been
proved for discrete (Meek 1995b) and for multivariate Gaussian (Spirtes,
Glymour, and Scheines 1993) Bayesian networks. Consider any smooth dis-
tribution’ Q over the possible parameters in a Bayesian network. The param-
eters are just the probabilities represented in the network. Now consider
drawing a particular set of parameters from distribution Q. The results in
Meek (1995b) and Spirtes, Glymour, and Scheines (1993) show that the
probability of drawing a distribution that is not faithful is Lebesgue measure
zero. These results do not mean that drawing such a distribution is impossi-
ble, but rather, under the assumption of a smooth distribution, such an out-
come is exceedingly unlikely.

Most current constraint-based causal discovery methods, including those
described in this book, are based on the faithfulness assumption. Alternative
assumptions, such as the minimality assumption, also have been considered
(Yao and Tritchler 1996; Spirtes, Glymour, and Scheines 1993). These alter-
native approaches are not, however, discussed further in this chapter.

While the faithfulness assumption is plausible in many circumstances,
there are circumstances in which it is invalid. In the remainder of this section
I outline some basic reasons that the faithfulness assumption can fail.

Deterministic relationships can interfere with causal discovery from ob-
servational data. Consider the following causal Bayesian network structure

X>Y->2Z
for which all three variables are binary and

P(X = yes) =p,

P(Y =yes X =yes)=gq,

P(Y=nolX=no)=gq,

P(Z=yes|Y=yes)= q, and

P(Z=no|Y=n0)=q.

For the moment, assume P =1and q =1. Thus, the three variables are de-

e B e
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terministically related, and indeed, they always have the same value yes.
Since there is no variation in the values of variables, we cannot determine
from observational data what would happen if variation (in the form of ma-
nipulation) were to take place.

Consider next that p = 0.5 and again g =1. The Markov condition applied
to the network structure of the example does not imply (through d-separa-
tion) that X is independent of ¥ given Z, and thus, by the faithfulness as-
sumption such independence should not hold. But, for the distribution de-
fined, X is independent of ¥ given Z. Knowing the value of Z tells us the
value of X exactly, and therefore, conditioning on Y makes no difference. In
the example, the faithfulness assumption is valid for any value of q that is
not equal to 0, 0.5, or 1. Practically, however, as q gets close to 0, 0.5, or 1,
the usefulness of the assumption being technically valid begins to decrease,
because with finite data samples the variables will appear to be deterministi-
cally related (for g = 0 or g = 1) or independent (for ¢ = 0.5), and thus the
faithfulness assumption will appear to be violated.

Violation of the faithfulness assumption does not, however, require the
presence of deterministic relationships, as shown previously by the example
given in figures 6 and 7. Here each of X, and X, considered alone is
marginally independent of X;. When X, and X, are taken together, however,
there is a dependency between them and X3. Other nondeterministic distribu-
tions that violate the faithfulness assumption are described in Spirtes, Gly-
mour, and Scheines (1993), including distributions based on special cases of
Simpson’s paradox, which 1 briefly describe next.

Qualitatively, Simpson’s original example (Simpson 1951) is as follows.
Consider a population of people. Among males in the population there is a
positive statistical association between receiving a particular treatment and
surviving. Similarly, among females there is a positive statistical association
between receiving a particular treatment and surviving. However, when con-
sidering the population as a whole (both males and females), there is no sta-
tistical association between the treatment and survival. Suppose, in reality,
that treatment causally influences survival and that gender confounds treat-
ment and survival. Then, the example distribution violates the faithfulness
condition, relative to a Bayesian causal network that represents the causal re-
ality. Two additional points are worth noting here. First, not surprisingly,
very special distributions are required to exhibit Simpson’s paradox. Second,
in the example just given, the statistical associations among the variables
representing gender. treatment, and survival are based on observational data.
The example does not indicate that the paradox would persist under manipu-

lation in an RCE, and indeed, it would not.

Goal-oriented systems, both animate and inanimate, provide another general
class of situations in which violations of the faithfulness conditions may tend
to occur. Consider a generic clinical situation that is modeled in figure 18. As-
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disease
(a hidden variable)

patient O\’ O tient
( >\> patien
'mpto,
symptom outcome

physician
action

Figure 18. Model of a general clinical Situation.

sume that the patient outcome is near-term mortality. A disease causes a pa-
tlﬁent Symptom, which the physician observes and which influences the physi-
cian’s actiqn to obtain a cure, Suppose that if the disease is severe cnough to
Cause a patient’s death, then the Symptom appears and the physician initiates n
lneatmf:nt action. Assume further that the treatment always prevents near-tern)
mortality. Based on information about their patients, physicians take actions
that .m.aintain patient outcomes 10 be the preferred state of surviving, This
physician goal-oriented behavior leads to near-term survival of all paticnts:
thus, the physician action variable and the patient outcome variable will be in:
de.pendent, which violates the faithfulness assumption. This example does con-
tain probabilities of one and zero. More significantly, however, js that the ex-

tho.ugh the goal may not be completely achieved in practice, the induced distri-
b.utmn may be close enough to being unfaithful that it makes causal discovery
filfﬁcult; this point is supported by an experiment described in chapter 15 that
involves the photosynthetic rate and internal CO, concentration in plant leaves.
The faithfulness assumption would more plausibly hold for systems (or sub-
Systems) that are not goal-oriented.

In the context of all possible distributions on a set of variables, there are
relatively few unfaithful distributions. Thus, a violation of the faithfulness
assumption is not likely unless we have reason to believe that such special
distributions are present (Meek 1995b; Spirtes, Glymour, and Scheines
1993). This section has described several cases in which the likelihood of oe-
currence of such special distributions is heightened. The existence of such
unfaithful distributions can Jead to errors by causal discovery methods that
assume faithfulness.
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6.2. The Assumption of Valid Statistical Testing

In attempting to discover causal relationships from observational data, we do
~ not have a probability distribution for the underlying causal process that is
generating the data, we just have the data. Thus, we need some way of link-
ing inference of independence and dependence relationships from data to the
underlying probability distribution on which the Markov condition and faith-
- fulness assumption are based. The following assumption regarding valid sta-

tistical testing does just that:
Consider the sets of variables A, B, and C in V. If in the underlying dis-
tribution P we have that A and B are conditionally dependent given C,

. then A and B are conditionally dependent given C according to test T
applied to the data in D. Similarly, if in P we have that A and B are con-
ditionally independent given C, then A and B are conditionally indepen-
dent given C according to test T applied to the data in D.

We are assuming that test T can be used to uncover the probabilistic de-
pendence and independence relationships among the measured variables, as
given by P. Note that T implicitly includes the value of any statistical signifi-
cance threshold (e.g., an alpha level) that is required in applying the test.

The smaller the number of cases in D, the more skeptical we should be of
whether statistical testing is valid. When using classical statistical tests of in-
dependence, such as the chi-square test, it is not clear, even for a large
database, precisely which value to use as a statistical threshold. The

Bayesian causal discovery methods (see section 8) avoid categorical tests of .

independence and dependence, and instead use a continuous measure for
scoring networks that inherently encodes the uncertainty of small data sam-
ples. Closely related methods, based on using minimum description length
scores or entropic measures, also avoid categorical tests (Bouckaert 1995,
Herskovits and Cooper 1991, Lam and Bacchus 1994, Wedelin 1993).

As mentioned in section 6.1, there is an interplay between the faithfulness
assumption and the assumption of valid statistical testing. As distributions

approach being unfaithful, we require more data in order for statistical tests
to reliably detect dependence among network variables. Chapters 8—11 pro-

vide further discussion of this issue.

6.3. Missing Data

Constraint-based causal discovery programs may make one of several as-
sumptions about how to handle missing data. I discuss several possible ap-

proaches in this section.

Consider a database D that contains records (e.g., patient cases). Often
there is missing data in D; that is, each variable is not measured for each
record. One approach to dealing with missing data is to remove all records
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from D in whj i
wih apprlggczn'y (:f thc;sclzdvanables has a missing value. The problem
1S two-fold. First, we i
e . st, may end up with a very sm:
paat i:zs; n(posanly €ven zero records) for leamning. Second, 1he data l{m\":lllt,
ran . . . . ’ ', N
o s mgy an (;mly, m which case the distribution among the complete
ton of e ccurately reflect the distribution in the unselected populy
on o est. Although sometimes we may be able to detect such s‘elccti(;n

missing to i i i
- ag 0 :C l\lzanable ! a record for which that variable was not measured
- Otheris may, however, lead to the loss of independence relationshi s
oo stmc(:u:vo;ld hold were all the data measured, Consider the c;msr':.l
hive mone theethr;) Y—?éas a valid representation of the causal rcl'ui(;n-
vanables when each j iti ‘
b e abl $ measured. Conditioned o
o agotll:te ﬂelxphilt value missing, the value of X may provide some infor::my
€ value of Z, and thus, X ap ing d N
o \ d Z may test as being dependent con-
A third i i
e o Ss(?lutlo:t(? th'e problem is to fiil in each missing value of each vari-
e amr;e. a mlssxble value for the variable, There are numerouys mL:lh
SS1gnIng missing valyes (Little a i A -
s nd Rubin 1987). 4 ‘ i
course, i : ). Hopefully, of
o o inubsutuled vallljes correspond closely to the actual, undcrli’in r
, general there is no guarantee that this will be the case )

6.4. Types of Variables and Distributions

In princi i i
o lf)ou cnplet. I;:lonslramt-based dlscovery methods apply when there are ¢
§ vanables, or even a mixt i e
, ure of continuous and djse i
lonn o ) . . us and discrete varighles as
Nuiemltlherte .Iire. relllable statistical tests of independence and (Jcr;mdcr;u5
§ statistical tests of inde ist f i
lerol S pendence exist for discrete vari 3
Ul e, . s 1screte variables, For
m SCheir:ng;igugs:lan BayeSA?n networks, tests also exist (Spirtes Glymour
v digmbm.‘ 3). Developing statistical tests that apply 10 a wide '\"lricl ‘
s 10ns on continuous variables (or mixed continyous and dis‘crclz

7. Constraint-based Methods for
Evaluating Causal Bayesian Networks

In this sect i i i
o digco?,zr; ﬁrstthpr;)v?; a simple illustration of the constraint-hased
$ s method. Then | briefly discuss ‘ I
: . < SS two re CSentiative -
rithms for constraint-based causal discovery peenatve algo-
Figure 19 ext i i .
g ends figure 1 by adding a causal are from a node representing
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gender
history of
smoking
chronic lung cancer
bronchitis
fatigue mass seen
on X-ray

Figure 19. An extension of figure I with the node gender added.

gender (X)) to a node representing history of smoking (X 1)- Does smoking
cause lung cancer? For the purpose of this simple example, suppose we
know, or are willing to assume, that gender causally influences whether an
individual smokes. Consider the four causal Bayesian networks in table 2 as
representing among the three variables the set of causal relationships that we
believe are tenable. Suppose that smoking actually does cause lung cancer.
Given the assumptions in section 6, we can infer the d-separation conditions
in row 2 of table 2, which are unique relative to the d-separation conditions
of the other three possible causal hypotheses being considered. Thus, under
the assumptions made, we can conclude that history of smoking is causally
influencing whether a patient gets lung cancer. We can quantify that causal
relationship by using the data to estimate P(lung cancer | history of smoking).
In general, if we know that the set of variables in T causes variable ¥ without
confounding or selection bias, then we are warranted in equating P(Y | ma-
nipulate(T)) with P(Y | T), which we can estimate from available observa-

tional data.
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Structure of a
causal network C

d-separation conditions
as inferred by statistica) tests

DS( Xy, X3) DS(Xy. X1 1x))

+ +

meTt;z]a(l))(lje 2 lll:stra!es the fundamental idey underlying how constraint-based
S can discover causal knowledge from observational data although the

straint- i i
: mnetsbgfd procedure is described, along with proofs of convergence, by
p " , ymour, and Scheines (1993). Chapter 13 discusses a Bayesian
me(t} ‘od for using instrumental variables for causal inference .
lve . . . . . v ’
o frn thebassumptlons In section 6, is it possible to discover causal knowl-
Thi an;);l o.servaulofn:l data alone, without background domain knowlcdgc"
er is yes. idden variables (co '
s nfounders) are excluded as pocc:
b . excluded as possy-
Cauzlaele, tllletr.l at l}fast three measured variables are needed. The simplest [:ct of
Sal relationships that admit causal dis ‘ &
: s scovery from observational daty i«
shown in figure 20, We can usal relationehion,
. n infer both of the following caycal roln: shi
Weatoes 1o Xeane g causal rle(l()nShlpSZ
If hidd i
v i: confounders may exist and we cannot assume an instrumental
» then at least four measured variables are needed to discover g
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®

Figure 20. The simplest set of causal relationships that admit causal discovery
¢ Jfrom observational data, assuming no hidden confounders.

®

Figure 21. Simplest set of causal relationships that admi.t causal discot:iery
frorgn observational data, allowing for the possibility of hidden confounders.

causal relationship; the simplest set of causal relationships tha(; atdmitn cezrl:tiz:;
i i is shown in figure 21. From data ge
discovery from observational data is s :
b;ca cal?s,al process that can be modeled by the network shown in figure 21,
. - Y
infer only one causal relationship: X causes Y. . .
Wepcéma:;:] FC1 zilre constraint-based algorithms that consxderablﬁ/ g]ene.r;:ni
i hat is illustrated in figure 21. Both algorithms
the type of causal discovery t . 1903 o ey
i i il i irtes, Glymour, and Scheines (
are described in detail in Spirtes, . he
i rams which are commercially
have been implemented as computer prog e,
i i i lymour, and Meek 1995 and chap .
available (see Scheines, Spirtes, Gly , paper o)
d chapter 3 for related research.
See also Pearl and Verma (1991) an ; o roand
i 1 model, the faithfulness condition,
FCI assume a Bayesian network causa L, . !
valid statistical testing. Current implementations of the.al.gonthms tygé:ca;lg)"
involve deleting cases in which any variable has a missing .val;gl ¥ “;S
sumes that hidden variables and selection bias do not exist, while allo
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hidden variables and selection bias. Under the assumptions that each algo-
rithm makes, the algorithms are provably correct. PC and FCl allow the user
to specify categorical background knowledge about causal relationships, as

8. Bayesian Methods for
Evaluating Causal Bayesian Networks

In 199] Cooper and Herskovits described a general Bayesian formulation
for learning causal structure (including latent variables) and parameters
from observational data using Bayesian networks (Cooper and Herskovits
1992, 19913, 1991b). To my knowledge, this was the first such description,
Their Bayesian formulation assumed only that causal relationships are mod-
eled as Bayesian networks; the basic ideas are similar to those presented lat-

tractable. Since that initja] research, Bayesian causa) discovery has become
an active field of research in which numerous advances have been—and are
continuing to be—made (Buntine 1991, 199¢; Chickering and Heckerman
1996; Cooper 1995; Heckerman 1996; Heckerman, Geiger, and Chickering
1995; Meek 1995b),

Bayesian methods for causal discovery differ in several ways from con-
straint-based methods. First, the methods take a user-specified prior probability
over Bayesian network Structures and over parameters. If the user has linle pri-
or information, or it is not feasible to specify this information, then noninfor-
mative priors can be used, Given a set of modeling assumptions, the Bayesian
approach combines one’s prior probabilities with observational data (o produce

Consider deriving the posterior probability that variable x causes variable
¥ given observational database D on measured variables V. Lot § denote an
arbitrary causal network structure containing all of the variables in V and

BN ERI Ty o

N R
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ossibly additional hidden variables. Let K denote our l.)ackhg.rouerll;i1 ::go\:;lle
: influence our beliefs about the causal relations ips y e
edg'e s ’mal); Such background knowledge could come from RC S, s

Z ?inalztz lI<:on;mon sense, expert opinion, accumulated personal experience,
ific " ,

as Well as ()t.hel sources. »&e can dellve the pOS(eIlOI pl()bablllty that X caus-

es Yas
PX - YIDK)= Y P(SID,K) o

over al hat contain an arc
’ the sum is taken over all causal network str.u‘ctures that ¢ e
Whe"; tg Y and that have a nonzero prior probablllt){. Based on the prqpt)ten
lfir:sn:)f probabilities, the term within the sum in equation 3 may be rewri

as follows:
P(S5,DIK)
P(SlD,K):W N
P(S,DIK)

TS Ps.DIK)
s

Since relative to the entire set of causal structures being consu.ierrec:,o :::
rol;:bility P(D 1K) is a constant, equation 4 shows that th;a1 P(l)lss:za : oba
gility of causal structure § is proportional to P(:S‘: DIK), w 1;] e an iew
s a score of S in the context of D. The probability terms on gl
a .
equation 4 may be expanded as follows:
P(S,DIK)=P(SIK)P(DIS, K) )
=P(SIK) [P(DIS,0,,K)P(6,15, K)d,
I rela-
i i i S captures correctly the causa
S 1K) is our prior belief that tly ‘
Wherﬁi(ls)a]:flong t)he variables in V, (2) 0, are the probabllltfes h(pall'rzg;iehtzgz
:L(;Tsrelrz;te the nodes in S to their parents, (3) P(D1S, 6, K) 1stitn e [[l] ool
f data D being produced given that the causal process general gd o P(g |
'oomo hic to the causal Bayesian network given. l?y S gnqbesg. arr:s e 5e
s rl)z resses our prior belief about the probabxllty.dlstn utio " o serve
lts;; rlf'l)o;elpthe u;lderlying causal process. The integral in equzkis‘tltonde ::, ¢ gP e
i i k with structure S to
eters 6 in a Bayesian networl ruc . |
gml(t)hivrl’]?:ﬁs calleds the marginal likelihood. Combining equations 3, 4, an

5, we obtain equation 6.
P(X - YIDK) =
P(SIK) [P(DIs,6,,K) P(81S. K)a, (6)

S: {X>7Y)eS
2. P(SIK) [P(DI15,6,, K) P(6,15, K)db,
s

i i i ips are
The only assumption made in equation 6 is that causal relationship

ful distribution js inﬁnitesimally smal] (Lebesgue measure zero) (see chapter
4). If we wish, however, we can express parameter Priors that violate the

among a set of variables.

Although equation 6 makes few assumptions, and the Bayesian theory up-
derlying it js quite general, to render evaluation of the equation tractable, ad-
ditional assumptions typically must pe made, as [ pex; describe,

One primary probiem with Bayesian methods js computationa] tractability,
Exact computation using equation ¢ requires summing over 3 umber of
causal graphs that js €Xponential in the number of graph variables (see see-
tion 9. 1). In the limited set of simulation experiments done to date, however,
ication of Bayesian methods with heuristic search techniques hag of.
ten been effective in rapidly and accurately Tecovering much of the causal
generating structure o Mmeasured variapjeg (Aliferis and Cooper 1994: Her.
skovits and Cooper 1990, Heckerman, Geiger, and Chickcring 1995). Thus,
there s hope that sometimes~perhaps even often—we cyp hcuris(icully lo-
Cate quickly the most probable structures that are denoteq in the sums in

be computed efficiently in closed form whep there are no hidden variaheg or
missing data, When there are hidden variapleg Or missing data, the Bayesjan
approach can mode) them explicitly and normatively; however., exact compy-
tation of the integral with current methods usually js intractable, even when
causal graphs contain only a few variables. The yse of sampling methods and
asymptotic approximations have shown promise (Chickcring and Heckerman
1996) in estimating the integral whep there is missing data or hidden vari.
ables, and chapter 4 discysse several such methods.
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rameters for those structures. On the one hand, the ability to represent such
prior information is a great strength of the Bayesian approach. With it, we
can potentially express prior causal knowledge that comes from many
sources other than the observational data D. While good progress has been
made in facilitating the expression of priors on Bayesian network structures
and parameters (Heckerman, Geiger, and Chickering 1995), assessing such
prior probabilities (particularly when there is a large set of variables) can still
be difficult and sometimes infeasible; thus, assessment remains an important,
open problem. Currently, it is common to specify some form of a noninfor-
mative prior on the causal structures (e.g., a uniform prior over all possible
structures) and on the parameters of those structures. Noninformative priors
typically require that the user specify only a few parameters; still, it some-
times is not obvious what those few parameters should be. In that case, per-
forming a sensitivity analysis over the parameters may be a good idea.

In summary, even though exact application of Bayesian methods often is
intractable, approximate solutions may be acceptable. The ability to specify
structural and parameter priors is a significant strength of the Bayesian ap-
proach to causal discovery, because it allows us to incorporate into a causal
analysis relevant knowledge beyond the observational data. When informa-
tive priors are not available, or are impractical to assess, noninformative pri-
ors may be used, such that the causal analysis is driven largely by the avail-

able observational data.

9. Model Search

In this section, I first describe the size of the space of causal Bayesian net-
work structures as a function of the number of nodes in the network. Since
the space is large, I provide a selected overview of methods that have been

developed for searching the space.

9.1. The Size of the Model Space

Sections 6, 7, and 8 describe methods for evaluating a causal Bayesian net-
work given a set of observational data. In this section, I describe how to use
those evaluations in searching for causal models. The emphasis here is on
model selection wherein we attempt to find the single best causal model that
represents the relationships among the measured variables. I also briefly dis-
cuss model averaging that uses more than one model. In practice, both tasks
require considering a large space of possible causal networks. In particular,
as a function of the number of measured variables, the number of possible
causal structures containing just those variables grows exponentially. Thus,

number of
measured variableg

number of causal
Bayesian network
Structures

L1 x 109
7.8 x 101!
1.2 x 1015
4.2 x 1018

Table 3. j
The number of causal Bavesian nerwort Structures

asa . .
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an . .
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o sho Witha;!: is ;?r?blem 1s NP-complete, Thus, finding the causal network
e v ;mlnlmal number of arcs s NP-hard. It can be shown tha jf
ine e neC[on l,:mn an.d the faithfulness assumption hold. then the generat-
e cm;dmo wozi con!ams's a minimal number of ares 1o represent P2 Thus ‘il'

N and assumption hold, determining the structure of an undcriy
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ing causal network using constraint-based methods must be NP-hard.

Chickering (1996a) has shown that a version of Bayesian learning of
Bayesian networks is NP-hard. An instance of the decision problem consists
of a set of variables V, a database D, a Bayesian network structure S, the like-
lihood-equivalence Bayesian scoring metric M(S, D) that computes equation
5 (see chapter 4 for a definition of likelihood equivalence), and a real value
p- The decision question is as follows: Does there exist a network structure §
defined over the variables in V, where each node in $ has at most k parents
(for k greater than 1), such that M(S, D) = p? Chickering shows that this
problem is NP-complete. Thus, finding the causal network structure with the
maximum score is NP-hard. The proof of NP-completeness uses a reduction
that relies on informative priors.

Thus far in this section I have considered Bayesian networks on measured
variables only. Chapter 4 discusses several methods for estimating equation 5
when § contains hidden (latent) variables or missing data.

9.2, Search Algorithms

Since searching the usually enormous space of causal Bayesian networks ap-
pears infeasible, researchers have developed a number of approaches to cope
with the task. In the remainder of this section I provide a brief survey of a se-
lected set of those approaches. No attempt is made to provide complete cov-
erage of all the algorithms that have been developed. As concrete examples,
three search algorithms (PC, K2, and OccamsWindow) are described in more

detail than the others.

9.2.1. Search Algorithms for Constraint-Based Causal Discovery

In this section, 1 provide a brief summary of the PC search algorithm that
was developed by Spirtes, Glymour, and Scheines (1993) (figure 22). In fig-
ure 22, steps 1 and 4 are performed in O(n2) time. PC has relatively efficient
techniques for performing steps 2 and 3. In the worst case, however, steps 2
and 3 require time that is exponential in n. The worst cases occur when the
nodes in the generating graph are highly connected, and therefore, F is a
dense graph. In particular, the computational time complexity of PC is

bounded from above by

n’(n=1*"Jtk=1)!
where k is the maximum number of edges directly connected to a node in
graph F that is produced by Step 2 (Spirtes, Glymour, and Scheines 1993).
Thus, when & is bounded, the complexity is polynomial in the number of
nodes. This analysis provides a loose upper bound on the worst-case time
complexity; the expected time complexity will depend on the details of the
underlying causal model and the data it produces.
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Procedure PC;
{Input: A set of n nodes and i
X a function T to test conditional inde,
ndenc )
ot pendence of sets of
{Output: A set <?f arcs that indicate causal relationships between variables, and a set
of undlrf:c(ed edges that indicate relationships between variables in which
causal directionality is left undetermined. }
{Assumpn(.)ns: The data generating process is a causal Bayesian network. the
falthfuln.ess assumption holds, the test T is correct, and there are no missin
data or hidden variables. ) o

Step 1. Form a complete undirected graph Con the n nodes,
Step 2. Using T,. begin with low order conditional independence tests and
progressively remove edges from C whenever two nodes are marginally or

Step 3. Fo.r each triple of nodes (X. Y. Z) such that (X. Vand (Y, 2) are each

resulting partially directed graph.
Step 4. Repeat, until no more edges in F' can be oriented:

a.Ifin F itis the case that X > v appears. ¥ — Z appears, and X and 7 are
not connected (by an undirected edge or an arc), then orient ¥ — 7
asY -2z '
b. If there is a directed is i
s path from X to ¥, and x — YisinF, th ic
thasx—)x nen onient

end {PC};

Figure 22. The pC algorithm,

Ye@a and Pearl (1990). Arcs represent causal relationships. Undirected cdges
indicate relationships in which causal directionality js left undetermined by lf(‘
The PC algorithm does not always orient al| undirected edges that can hz ()ri-.
ented. For a discussion of rules for obtaining a complete orientation, see Meck
(19?5), as well as the discussion of essentjal graphs in section 9.2.2. B
. I:I!ghure 23 shows an example of applying PC. In this example, I assume
at the causal network that generated the data is shown gt the top of figure
23.In Step 1 in the figure all four nodes are connected by edges. In Stcp%’ A
anq B are marginally independent, so the edge between them s removed -/\l
S0 tn Step 2, A and D are independent given C, and therefore the ed vc. be-
tween them is removed. Similarly, B and p are independent given 'ﬁhc fi-
'nal. grflph in Step 2 contains Jjust three edges, which form 2 gi\'clcmn
mdlcatllng variables that have direct causal relationships. In Step 3 (;f the ¢x-
ample, it happens that the independence conditions on A, B, andiC that lk;l-

R
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The generating causal Bayesian network:

RS

The results of Step 2

The results of Step 1 of the PC algorithm:

of the PC algorithm: . e

The results of Step 4
of the PC algorithm:

The results of Step 3
of the PC aigorithm:

RS

>

Figure 23. An example of the application of the PC algorithm.

lOW fl()“l the ge consistent ()]lly Wlth an arc 110”1 A to C
neratl”g lletW()Ik are
lldallaICfl() Bt C ther I'CS can gl’lra dln tp3. p
a m (] . ]q() (8] he arc: a l)e enerate S €, Ill S[e 48

i from C to D and quit. ‘ o c
weI ortiler:r:ggrcl l:;)ve shown one of the simplest possible applications of P!
n fig s s

i Scheines
For more complex applications of PC, see Spirtes, Qlymo/:r, Iz;ne(:1 : gned -
(109r93) which also describes extensions to the algorithm. As

(.
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section 7, FCJ js 5 constraint-based caysa] discovery algorithm thy admits

both measyred and hidden variables. A detailed description and analysis of

9.2.2. Search Algorithms for Bayesian Causal Discovery

In this section | describe severa] heuristic search algorithms thy have heen
used along with Bayesian scoring metrics to search for the mog probable
causal network given a set of observationg) data. Many of these algorithms
have close parallels to search algorithms yged in statistics f,

predictive models (e.g., logistic regression models), although | do noy focus
here on that €omparison. | also describe 3 method for mode] averaging. Al

Special Case Algorithms. Researchers have developed special case search
algorithms that are efficient for restricted caysal network structyres, When
We can assume that each node in the generating network has at most one par-
ent, then a polynomial time algorithm exists for finding the most probable
structure (or set of Structures) (Heckerman, Geiger, and Chickering 1995).
Unfortunately, such restrictiong rarely apply, ang thus the need for other
search methods,

addition of no single arc can increase the scoring metric, the algorithm stops
adding arcs. A backward stepping algorithm usually begins with a fully con-
nected network ang then removes one arc at a time, unti] ne single arc can he

Sometimes cap provide such information: i general, however, gy ordering
will not be available. Researchers haye therefore explored greedy algoriths
that do not require an ordering (Buntine 1991 Heckerman, Geiger, and
Chickering 1995). A problem with greedy search algorithms is they may haj
at local maxima of the scoring metric, rather than at 2 global maximgy (Xiang,
Wong, and Cercone 1996) Various Procedures, such gg multiple scarch
festarts from random graphs, can be ysed In an attempt 1o ameliorate the fo.
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Level I: X,

Level2: | x, X, X3

X— X;

Level 3: | X —— X, X X—*X, X3 X—X% 3
//

Level 4: X— X,— X; X—X— X

Figure 24. An example of the application of the K2 forward ‘stepping search algo-
¥ rithm. The path taken in the search is shown in bold.

cal maxima problem by taking the maximum of a set of local. max1ma.h e
I now illustrate a simple application of a forward stepping s.earc a Eo
rithm called K2 (Cooper and Herskovits 1992). The K2 algorithm ma ]es
assumptions that allow it to search for the parents of each node separa}t\e y.
Figure 24 shows an example in which the search starts at level 1 wit 20
arcs. Suppose the node ordering is given by the list ()'(|, X, X3), sol.thtatr;h:
potential parents of a node are given by the nodes tlo 11tsK1;ft in tl;,eegl;o'r o
i i in the list. At level 1, searches
earch starts with the first node in t . -
lsaarems of node X,, which can have no parents, accordmg hto the n(l)lde ;)(:r
i level 2. Here the algorithm searches
dering. So, the search advances to :
the pfrents of X, by considering no arcs (left box) and one arc.(nght) froren
X,. Suppose the causal network structure on the right has the highest sco; 0.
w;lere the score for a structure § is given by P(.S; )? | l;) Slmc?t::;rg ;1: y
iti i ible parents of X,, the algor 1
additional arcs to consider as possi . . :
d then it continues onward to
a parent of X, (shown as a bold arc) an . . rd
2<S)mizer X; Forznode X3, K2 considers each possible single arc ;llddl'll(;ll:,
Jhi e he addition of no arc. Suppose the right-
of which there are two, as well as t ' -
i the highest score. In that case,
most causal network structure receives or : :
i iders all additional single arcs i
fixes X, as a parent of X;. Next, it consi addi
could aiid into X;, of which there is only one, which is from X,. Suppose
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the rightmost structure at level 4 has a score lower than Xi-X - X;. In
that case the algorithm halts and returns X, — X, > X, ’
Greedy Search Algorithms on Essential Graphs. Markov equivalence is a
relationship based on independence that establishes a set of equivalence
classes of causal network structures relative to 3 set of measured variables, In
particular, these structures are statistically indistinguishable based on inde-
pendence relationships among the measured variables. Let U/ be 3 set of

(Andersson, Madigan, and Periman 1997, Chickering 1995; Meek 1995),
who use the terms maximally oriented graph, completed pdag representq.-

example, consider a two node mode! with variables X and Y. There are three
causal network structures that contain just these two measured variables (X
no_arc ¥ X > ¥ and X Y), but only two essential graphs (X no_arc Yand
X — Y) because in this case X > Yand X « ¥ are Markov equivalent.

Researchers have developed greedy algorithms for searching over essential
graphs (Anderson, Madigan, and Perlman 1998; Chickering 1996; Meek 1995;
Spirtes and Meek 1995). For a given set of n measured variables, there are
fewer essential graphs than causal network structures (directed acyclic graphs).
For example, for n equal to 4, there are 543 causal network structures, but only
185 essential graphs.# Since the essential graph space is smaller, it is potential-
ly easier to search, Thus, searching the space of essential graphs appears to be
a promising method for causal Bayesian network selection,

Model Averaging. Suppose we perform an inference, as for example to de-
rive the probability that in light of observation ¢/ the manipulation of vari-
ables W and X to particular values will cause variable ¥ to have a particular
value. The normative Bayesian approach (o performing this inference is
model averaging. Model averaging involves performing the inference for
each possible causal mode] and multiplicatively weighting the inference re-
sult (a probability) by the posterior probability of the causal model. The
Bayesian inference is just the sum of these weighted inferences.

The large space of possible causal network structures generally makes it in-
feasible to perform complete model averaging. Researchers, therefore, have jn-
vestigated heuristic methods for performing selective model averaging. These
methods heuristically search for high probability causal network structures; the
networks encountered during the search are used for model averaging,

Madigan and colleagues developed an algorithm called Occam's Window
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procedure OccamsWindow;
Step 1. Initialize a set A of models {e.g., place in A a Bayesian network with no arcs}
Step 2. Consider each possible legal, one-step, greedy modification to each member
of A. Modifications include single arc additions, deletions, and reversals that
induce no cycles.
Step 3. Choose the modification in Step 2 that leads to the highest scoring
structure S (if any) that satisfies the following conditions:
*» The highest scoring structure already in A is not more than 20
times greater than P(S, D | K).
» There is no model §' in A that is a subgraph of S such that
P, DIK)> P(S,DI|K).
Step 4. If step 3 produces a new structure S, then add S to A and go to Step 2;
otherwise, continue to step 5.
Step S. Perform model averaging using the structures in A.
end; {OccamsWindow}

Figure 25. The Occam’s Window algorithm.

(Madigan and Raftery 1994), which can be applied to search for a set of
causal Bayesian network structures with which to do model averaging. A
high-level description of the algorithm is shown in figure 25. Researchers al-
so have investigated a method for performing heuristic model averaging us-
ing essential graphs rather than Bayesian networks (Madigan, Andersson,
Perlman, and Volinsky 1996).

Combining Constraint-based and Bayesian Methods. Researchers have de-
veloped hybrid search algorithms that have two stages (Singh and Valtorta
1993, Spirtes and Meek 1995). The first stage involves selecting a causal net-
work structure using a constraint-based search method. The second stage in-
volves using that structure to start a Bayesian search. The main idea underly-
ing these algorithms is that constraint-based methods provide a relatively
quick first approximation structure, which is then refined by the Bayesian
methods.

Other combinations of constraint-based and Bayesian methods are possi-
ble, and the general approach appears promising. For instance, chapter 14 de-
scribes a method that uses a constraint-based method for constructing the
structure of a causal model and a Bayesian method for parameter estimation.
As another example, as mentioned in section 9.1, an unconstrained search for
hidden variables using a Bayesian scoring method generally is intractable. It

may be more effective to use constraint-based methods to limit the space of
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lt;)t m:)del‘equivalence classes of causa] Bayesian networks that may include

greeel:i yv:g;bl:;]s. A greedy search s performed in the space of PAGs. For c"n:lLI
» 1€ corresponding PAG i converted to a mj y ‘
the G i & mixed ancestral pr;

(MAG), which is a compl.e(ely oriented PAG. The MAG js then cvalﬁ;ruls:;

usin ian i iteri
Viewge : af?ayesxan mfon'nanon criterion (BIC) Scoring metric, which can be
$ an asymptotic approximation to g Bayesian scoring metric. The

leads 9 .
Fadmg PAG is returned, Preliminary simulation experiments, while very
. : s, Richardson, and Meek 1997). T
‘l:;::r ](()f a l;alyesmn sconing metric to search an abstraction space of cauca)l. nch:
models (e.g., PAGs) appears to be a promising direction of reseu;ch.

10. A Selected Summary of Prior Results

Causal d]scoVely remains an Opell pl()l)lelll NO”C[“C’(.-\S. l"(\(.n”) we d()
g the C()"dl ons [hd n k Causa dl\(()\(.l\
ha‘e Some USelul u"dels(a“d“l ()1 t L ma [ HTAN '
p E l " »
p €
Ogslb € »Vhlle 1t 1s bCyOIld ”le SCcope Ol tl"g Chdpl rto pl()\ ldL d Lﬂmpk te
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10.1. Convergence Resuits

The p . .
o Sisii(:;ltl::t?:sur:ej the Marl.<ov condition, the faithfulness condition,
S ti,e ]g, o latent va.na.bles, and.no selection bias, Under these
hipe oa can b arge sample limit, PC will recover all causal relation-
shown that g covered from observal'mnal data. Bouckaert (1995) has
the sammo coer . ose assumptlons'Bayesxan learning methods will recover

usal relationships as PC ip the large sample limit. This resuly gs.
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sumes that the Bayesian method does not include Qrior probgbilities ofOor 1
on structures or parameters, and that model search is exhaustive. '

The FCI constraint-based discovery method models latent variables and
selection bias. In the large sample limit, FCI has bee.n proved to converge to
a model that contains no incorrect causal statements if .the modeling assump-
tions it makes are correct (Spirtes, Glymour, and Schemes 1993). Within the
FCI language for representing causal constraints, it als.o has been shov:;n that
- the algorithm is complete (Spirtes, Glymour, and Sc'hemes 1993). The egree:

to which the FCI language itself is complete, relative to all Possnble causa
constraints that can be expressed, remains an open questhn. The.re are
known examples in which independence constraints alone are msufﬁcnent to
discover a causal constraint that can be discovered from observational data
" (Verma and Pearl 1990). As a simple example, since FCI does not model the
number of values of latent variables, it clearly is unable to learn what may be
learnable about that number. Bayesian methods, conve.rsely, are :flble t.o mod-
el and learn about the number of values of hidden vaflables (Chlc‘kermg and
Heckerman 1996; Cooper 1995; Cooper and Herskovits 1992; Gelger,' Heck-
erman, and Meek 1996). Bayesian methods, however, are _computatlonally
demanding, although as mentioned in section'S, approximation methods flg-

pear promising (see chapter 4). Current Bayesian methods evaluate a ipecx 1(,:

causal Bayesian network, or somewhat more generally, an essentia bgrapt

that represents an equivalence class of Bayesian networks. More a slracd
causal constraints (e.g., X either causes ¥ or causes Z) can be 'constructe

from the evaluation of a set of causal Bayesian networks. It remains an open
problem, however, to investigate the extent to which abstract constraints can

be evaluated (scored) directly using Bayesian methods.

10.2. Simulation Studies
In this section, I describe the results of studies in v&'/hich a databas.e of cases
was generated from a Bayesian network by simulation anq ther} g_lee.n as :}:1
put to an algorithm that attempted to discover causal felanoflshxps. 'mce; ) e
ALARM Bayesian network has been widely used for simulation studies, I fo-
cus on experiments that have used data generated from that network. e
Beinlich constructed the ALARM network as a research prqtotype to mode
potential anesthesia problems in the operating room (Beinlich, Suem'10ndt6.
Chavez, and Cooper 1989; Cooper and Herskovits 1992). ALARM con.tams 4l
arcs and thirty-seven nodes, and each node has from two to four possible val-
s i lo simulation tech-
Cases were generated from ALARM using a Montfa Carlo simulati et
nique (Henrion 1988). Although all the studies mentioned her‘elhave used the
same network structure for ALARM, variations of the probability parameters
have been applied. Each ALARM case corresponds to a value assignment to

el s

e eee—————— e — e e
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each of the thirty-seven variables. The simulation technique is an unbiased
generator of cases, in the sense that the probability that a particular case is
generated is equal to the probability of the case according to the Bayesian
network.

Cooper and Herskovits applied K2 with a database of 3,000 ALARM cases
(Cooper and Herskovits 1992). K2 ailso was given an ordering on the thirty-
seven nodes that is consistent with the partial order of the nodes as specified
by the ALARM network. From the 3,000 cases, K2 constructed a network
identical to ALARM, €xcept that one arc was missing and one arc was added.
A subsequent analysis revealed that the missing arc is not strongly supported
by the 3,000 cases. The extra arc was added because of the greedy nature of
the search algorithm. Total search time was approximately five minutes when
using a circa 1990 personal computer.

Heckerman, Geiger, and Chickering (1995) developed and investigated a
greedy search algorithm that generalized K2 by removing the assumption of
a node ordering. A Bayesian scoring metric similar to that used by K2 was
applied as well. Although the algorithm was able to estimate the ALARM joint
distribution accurately, as measured by cross entropy, the estimated structural
model had on average forty-five arc differences from the ALARM network; arc
difference is defined as

Z,n:l 5"

where §, is the symmetric difference of the parents of node x; in ALARM and
the parents of X%; in the learned network. This difference is conservative be-
cause it counts arcs that are reversed from ALARM, even when those arc ori-
entations are statistically indistinguishable. When gz much slower simulated
annealing search algorithm was applied to the same data set, only about
twenty differences existed on average.

Algorithms that perform a greedy search over a space of essential graphs
have been applied to ALARM data sets (Chickering 1996; Meck 1998: Spirtes
and Meek 1995). The best results to date of any search algorithm on A1.arM
data has been achieved by Meek’s greedy equivalence search (GES) algo-
rithm (Meek 1998). The GES algorithm first performs a forward stepping
greedy search followed by a backward stepping greedy search. When given a
data set containing 10,000 aLARM cases, and run on a uNix workstation, the
algorithm returns in about § hours a network that contains only one error.
namely, a missing edge between two variables that are only very weakly sta-
tistically associated in ALARM. When an arc and jis reversal are statistically
indistinguishable in the generating ALARM network, and one of those arc ori-
entations is in ALARM, the evaluation of GES counted the presence of either
orientation as acceptable (no error). These results are impressive and suggest
that the GES algorithm deserves considerably more study,

Chapter 6 describes a preliminary experiment in which 10.000 cases gen-

TIPS
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erated from ALARM were used to evaluate the FCI algorithm when there are
latent variables. Selection bias also was examined, but those results are not
-summarized here. The primary metrics of evaluation were the percentage of
ancestor and nonancestor relationships correctly predicted, according to the
ALARM network. A node X is an ancestor of node Y if there is a directed path
from X to Y. When there were no latent variables, FCI correctly predicted all
of the ancestor relationships (pairs) and 97 percent of the nonancestor rela-

 tionships. When node 29 was considered a latent variable, FCI correctly pre-
dicted all ancestor relationships and 91 percent of the nonancestor relation-
ships. When both nodes 29 and 22 were considered as latent variables, FCI
still correctly predicted all the ancestor relationships and 92 percent of the
_nonancestor relationships. Although these results provide useful insight into
the performance. of FCI, we have much more to learn about how causal dis-
covery algorithms perform when there are latent variables,

In this section, I have given only a sampling of simulation results that have
been reported. Other simulation studies include an extensive set of experi-
ments using constraint-based methods that are described in Spirtes, Glymour,

~and Scheines (1993), and experiments applying K2 to random graphs, as de-
scribed by Aliferis and Cooper (1994). I conclude this section with a summa-
ry of the latter results.

Aliferis and Cooper generated sixty-seven Bayesian networks in a ran-
domized fashion (see Aliferis and Cooper 1994 for details), such that each
network contained from two to fifty nodes, two or three values per node, and
Zero to ten parents per node. For each network, the number of cases generat-
ed was randomly (uniformly) selected to be in the range from 0 to 2,000. The
probability parameters for each network also were randomly generated. The
K2 search algorithm and metric were applied to each of the sixty-seven
datasets, where K2 was given a node ordering consistent with the generating
Bayesian network. In brief, on average K2 found 92 percent of all the arcs in
the generating network and erroneously added 5 percent more arcs than ex-
isted in the generating network. .

In experiments based on simulated databases, we know the causal network
that generated the data, and thus, we know the underlying causal reality. We
therefore can judge the causal discovery performance of an algorithm rela-

tive to that generating causal network. There are, however, two major weak-
nesses of such studies. First, we assume the existence of a causal process that
can be modeled by a Bayesian network. Thus, we evaluate the internal valid-
ity of discovery methods relative to an assumed model of causality. We are
not testing external validity relative to the real world. Second, assuming a
Bayesian network model, we still need to parameterize the network with a
set of probabilities that are used to stochastically generate a database. It can
be difficult to know what these probabilities should be, particularly in the
presence of latent variables. One strategy is to choose random probabilities
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to parameterize a given Bayesian network structure. As a form of sensitivity

analysis, we can generate multiple random parameterizations, and for each

causal process, which may be incomplete or incorrect,
A rFlated, and relatively unexplored approach. would be to use causal

cation algorithms. The difficulty stems from being unable to simply use a test
s.et of reserved cases for evaluation. Since manipulation is intrinsic to the no.

RCEs, which I now discuss in tumn.

Sever'al studies have examined causal discovery that is evaluated based on
human judgment, which often is rendered in an original paper in the litera-
t,.lr.e. Examples include causal discovery in the areas of publication produc-
tivity, education and fertility, American occupational structure, the influences
on college plans, and abortion opinions (Spirtes, Glymour, and Schcinc;
1993). Although an account of these studies is beyond the scope of this chzlp;
ter, on the whole the causal relationships discovered often (hut not always)
are consistent with human Judgment. Where there is deviation, we gencrally
do not know whether it is due to incorrect algorithmic output, inadequate hu-
man knowledge, or both.

i -
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Ideally we would have available the results of large, well-performed RCEs
to validate causal relationships that are suggested from observational data by
causal discovery algorithms. Conducting RCEs can be problematic for the
reasons outlined in section 2. More feasibly, we might look for prior studies
in which observational data was obtained on a set of variables in a given do-
main and RCE data was obtained on the same or a similar set of variables in
the domain. Preferably, the context and entity population sample would be
exactly the same, but an informative study could certainly occur in the ab-
_ sence of such an ideal. If the causal relationships suggested using an obser-

vational database coincide closely with the causal relationships suggested by
the corresponding RCE, then we have positive support for methods for
causal discovery from observational data. If such comparisons were carried
out over many databases and domains, we would begin to get a clear picture
of the strengths and weaknesses of present methods for causal discovery
from observational data.

Spirtes, Glymour, and Scheines ( 1993) use the discovery methods de-
scribed in this book to analyze observational biological data of Spartina
biomass. They applied the PC algorithm to field data collected by Linthurst
(1979). Linthurst collected observational data on 14 possible factors that in-
fluence the growth of Spartina biomass, as well as the actual biomass. At
each of nine sites in the Cape Fear Estuary five data samples were measured.
Using this data, the PC algorithm output only pH as a cause of biomass.
Original laboratory experiments performed by Linthurst showed pH to be a
causal factor influencing biomass. The experiments also showed salinity to
be a causal factor at fairly neutral pH levels that were sparsely represented in
the field data. Aeration did not significantly influence biomass in the labora-
tory. Linthurst did not experimentally examine all the other 11 possible fac-
tors, so we do not know whether any of them would show a causal effect on
biomass. Overall, the known experimental results support the output of the
PC algorithm as being essentially correct for the Spartina biomass domain.

As another example, chapter 15 describes a study that involves causal mod-
els found by a constraint-based discovery algorithm that are compared to cur-
rent knowledge and theory of gas exchange in plant leaves. The results reveal
some strengths and weaknesses of the discovery method for this domain.

Clearly, more studies are needed that compare the causal relationships de-
rived from observational investigations with those derived from experimental
investigations. As researchers locate parallel observational and experimental

databases, additional studies will be possible.
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ParT ONE

Causation, Representation
and Prediction

Directed graphs and associated parameters can encode probability distribu-
tions, but what makes these representations about causal relations is that they
also contain information about how the influence of interventions or manipu'-
lations of some variables propagates to other variables.

The first of the two chapters in this section was written in 1991 but has not
been previously published. The chapter introduces the basic ideas used to
compute the propagation of influence by means of causal graphs, and relates
the representation, assumptions and procedures to a formalism—the “Rubin
framework”— sometimes used in statistics for similar purposes. This chapter
led to published work on procedures for calculating the propagation of influ-
ence when the causal and probabilistic structure is only partially known.

The second chapter in this section, by Judea Pearl. offers a diagnosis of the
many conceptual confusions about causal prediction in the literature of social
statistics, and also offers a solution. The diagnosis is that there is no standard
language, no formal notation, to distinguish conditioning on a variable from
intervening to fix its value. Of course. a notation is only good if the distine-
tions it allows can be used to good purpose, and Pearl uses the notation to
formulate rules for causal prediction, which are illustrated in a varicty of
clear and striking examples. )
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