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Spurious correlation and
probability increase

The first main qualification of the basic probability-increase
idea of probabilistic causation, explained in Chapter 1, is the
relativity of the causal relation to a given foken population,
considered to be of a given (appropriate) kind that the popula-
tion exemplifies.' The second main qualification of the basic
probability-increase idea, to be explored in this chapter, in-
volves the possibility of what has been called “spurious corre-
lation.” Of course, what is meant by saying that a factor X
raises the probability of a factor Y is that Pr(Y/X) > P( Y) -
equivalently, Pr(Y/X) > Pr(Y/~X).? Another way of express-
ing this relation is to say that Y is positively probabilistically
correlated with X. It is famous that “correlation is no proof of
causation,” and it is also true that causation does imply corre-
lation. The possibility of spurious correlation is one reason
why. A :

In this book, I will actually explore in detail three general

'As noted in Chapter 1 (note 18), the actual token population washes out, or disap-
pears, so to speak, when probability is analyzed in terms of hypothetical relative
frequencies involving infinitely many populations or individuals. The actual fre-
quencies in a finite token population have no mathematical effect on a hypothetical
infinite limit. All that is relevant, on this kind of interpretation of probability, is the
kind that the actual token population is considered to exemplify. But, of course,
there are other ways of understanding probability than hypothetical limiting-
frequency approaches. In any case, in what follows, I will often include (perhaps
needlessly) the actual token population (as well as its kind) as a relatum in the relations
of probability and of population level probabilistic causation.

2Pr(Y) = Pr(X)Pr(Y/X) + Pr(~X)Pr(Y/~X). So, assuming that Pr(X) # 0 and
Pr(~X) # 0, Pr(Y) is an average of Pr( Y/X) and Pr(Y/~X), and must therefore lie
strictly between these two values. Henceforth, I will for the most part use the letters
“X,” “Y,” “F,” “G,” and so on to refer to factors, rather than “C” and “E,” which
already suggest “Cause” and “Effect,” which can perhaps be misleading in some
cases.
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ways in which probability increase may fail to coincide with
causation, and I will show how the probability-increase idea
of causation should be adjusted to accommodate these three
possibilities. After briefly describing the three possibilities
below, this chapter will concentrate on one of them, the one
called “spurious correlation.” The other two will be dealt
with in subsequent chapters.

One simple way to see that probability increase does not
imply causation is to notice that the relation of positive corre-
lation is symmetric. If X raises the probability of Y, then Y
raises the probability of X.* So if probability increase implied
causation, then causation would be symmetric as well, at
least for probability-increasing causes. But clearly the rela-
tion of causation is not symmetric, and we do not want our
theory to imply that Y is a cause of X whenever X is identi-
fied as a cause of Y. In fact, most plausibly, the relation of
causation is asymmetric. If so, then if X causes Y, then Y does
not cause X. So if X is a probability-increasing cause of Y,
then Y is a probability-increasing noncause of X.

A natural approach to this kind of probability increase with-
out causation would be to include in the theory of probabilis-
tic causation, along with the probability increase idea, a condi-

tion requiring that a cause precede its effect in time. This

would handle this kind of probability increase without causa-
tion, because temporal precedence is not symmetric. In Chap-
ter 5, I argue that the temporal priority idea must be explicitly
incorporated into the probabilistic theory, in order to handle
what we may call this “problem of temporal priority of
causes to effects.” Until Chapter 5, let us adopt the conven-

-tion that the factor denoted by the letter “X” is temporally

prior to the factor denoted by the letter “Y.” In most cases
this will be obvious. But the idea of one factor (or property or
type, an abstract thing) preceding another in time is somewhat

*If Pr(Y/X) > Pr(Y), then, by the standard definition of conditional probability,
Pr(Y&X)/Pr(X) > Pr(Y). It follows that Pr(Y&X)/Pr(Y) > Pr(X), so that again by
the definition of conditional probability, Pr(X/Y) > Pr(X).
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subtle and puzzling. In Chapter 5, I suggest a way of under-
standing this idea that is very natural in light of the relativity
of probability and probabilistic causation to populations.

A second kind of probability increase without causation
involves the possibility of what has been called “causal inter-
action.” This kind of possibility, and its relevance to the
probability-increase theory of type-level causation, is easy
enough to explain. But in order to motivate the solution to
the problem adequately, it is necessary first to lay down some
of the rudiments of the theory, the relevant parts of which
will be given in this chapter. The following may provide a
general idea of the problem, which is addressed in detail in
Chapter 3.

It is possible for a causal factor X to interact with a factor F,
relative to the production of a factor Y, in the sense that the
causal significance of X for Y is different when F is present
from what it is when F is absent. To use an example of
Cartwright’s (1979), ingesting an acid poison (X) is causally
positive for death (Y) when no alkali poison has been ingested
(~F), but when an alkali poison has been ingested (F), the
ingestion of an acid poison is causally negative for death. I
will argue that in a case like this it is best to deny that X is a
positive causal factor for Y, even if, overall (for the popula-
tion as a whole), the probability of death when an acid poison
has been ingested is greater than the probability of death
when no acid poison has been ingested (that is, even if Pr(Y/
X) > Pr(Y/~X)). I will argue that it is best in this case to say
that X is causally mixed for Y, and despite the overall or aver-
. age probability increase, X is nevertheless not a positive
causal factor for Y in the population as a whole.

Chapter 3 shows that another problem that arises in think-
ing about causation, the problem of disjunctive causal factors,
1s an instance of this kind of problem. First, however, we
- must deal with a third kind of probability increase without
causation, which has been called “spurious correlation.” The
resolution of this problem will give us the framework, and
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part of the motivation, for the resolution of the problem of
probabilistic causal interaction.

2.1 SPURIOUS CORRELATION

On what seems to be the usual understanding of the term,
two factors are spuriously correlated when (roughly) neither
causes the other and the correlation disappears when a third
variable is introduced and “held fixed” — that is, the correla-
tion disappears both in the presence and in the absence of the
third factor.* This does not quite capture the kind of situation
I will explore in this chapter. As Simon (1954) is careful to
point out, if a correlation between factors X and Y disappears
both in the presence and in the absence of a third factor Z,
then the explanation may be either that the correlation results
from the joint causal effect of Z on X and Y (Z is a common
cause of X and Y) or that Z is an intermediate causal factor
between X and Y (X operates on Y through Z or Y operates
on X through Z). We shall not count the second possibility as
a case of spurious correlation. In the second case, one of X
and Y may in fact be a genuine positive causal factor for the
other (of course, given our convention that the factor repre-

~~..sented by the letter “X” temporarily precedes the factor repre-

sented by the letter “Y,” it cannot be that Y causes X). This
kind of case will be discussed in Chapter 4, on causal interme-
diaries and transitivity of causal chains.

So let us for now understand there to be a spurious correla-
tion between two factors X and Y if neither causes the other
and they are correlated effects of a common cause Z, where
the correlation of (the later) Y with (the earlier) X disappears
when Z is held fixed. Because we are excluding the case in
which Z is causally intermediate between X and Y, I some-
times refer to the common cause Z as a “separate cause” of
factor Y — that is, a cause of Y that is separate from X's causal

“See, for example, Simon (1954), Suppes (1970), and Skyrms (1980).
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role, if any, for Y. This understanding of spurious correlation
will have to be generalized in several ways below, but first
some explanation of the definition and some examples to
illustrate the idea.

Suppose a factor Z is a cause of both X and Y. See Figure
2.1. (In this figure, and in others that follow, the solid lines
with arrows represent causal connections, the broken lines
represent correlations, and the “+”’s and “—"’s indicate
whether the causal impact or the correlation is positive or
negative.) In the simplest kind of common cause case (others
will be considered later), the following relations hold:

() Pr(X/Z) > Pr(X/~2),
@) Pr(Y/Z) > Pr(Y/~2Z),

() Pr(Y/Z&X) = Pr(Y/Z&~X),

(4) Pr(Y/~Z&X) = Pr(Y/~Z&~X).

Propositions (1)—(4) imply Pr(Y/X) > Pr(Y/~X).> (1) and (2)
correspond to the assumption that Z is a common cause of X
and Y, on the probability increase idea. (3) and (4) say what it
means for the correlation between X and Y to disappear when
Z is held fixed (positively and negatively); and they corre-
spond roughly to the assumption that Z is the only factor
involved that has any causal influence on any of the others.
And the derivation of Pr(Y/X) > Pr(Y/~X) from (1)-(4) is
supposed to explain (in the simple kinds of cases I have in
mind now) the correlation of Y with X in terms of the
“screening off” common cause Z.°
SPr(Y!X) = PHZ/X)Pr(Y/Z&X) + Pr(~ZIX)Pr(Y/~Z&X). So, by (3) and (4),
Pr(Y/X) = PZIX)PKYIZ) + Pr(~Z/X)PrY/~Z2).

Also by (3) and (4),

Pr(Y/~X) = PHZI~X)Pr(YIZ) + Pr(~ZI~X)Pr(Y/~Z).
Let a = Pr(Z/~X) and b = Pr(Y/~Z). Then by (1) and (2), and symmetry of
correlation, there are positive numbers u and v such that P(Y/X) = (a + u)(b + v) +
(l—a—-wb=av+uv+b, and Pr(Y/~X) = a(b + v) + (1 — a)b = av + b. Since uv
> 0, Pr(Y/X) > PHY/~X).
6Thls is the idea articulated by Reichenbach (1956) in his prmcxple of the common
cause,” according to which correlated factors can be explained in terms of a com-

mon cause. (3) and (4) are what it means to say that Z and ~Z each screen off Y from
— the same as what it means to say that the correlation between X and Y disap-
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Figure 2.1

Here is a concrete example that is often used to illustrate
this: The British statistician Ronald Fisher (1959) once consid-
ered the possibility that lung cancer (Y) is positively corre-
lated with smoking (X) not because smoking causes cancer,
but because there is a genetic common cause (Z) of the two.
In this hypothetical example, X increases the probability of
Y, even though X in no way causes Y. The probability in-
crease is due to smoking’s increasing the probability of its
cause, the “smoking gene,” which in turn increases the proba-
bility of the gene’s effect, lung cancer. But if we hold fixed
whether or not the gene is present, smoking will not increase
the probability of lung cancer. A different example of this

~. . was discussed in Chapter 1. Rain (Y) is correlated with falling

barometers (X) that precede the rain. But falling barometers
do not cause rain. Again, the two factors are effects of a
common cause: approaching cold fronts (Z).

As I mentioned above, our understanding of spurious corre-
lation must be generalized; the characterization given above is
too narrow. For one thing, there is the possibility of a spuri-
ous correlation arising from the operation of multiple separate
causes of a factor Y, where these causes are causally indepen-

pears thn Z is held fixed. Salmon (1978) calls the kind of structure described by
(1)-(4) a “conjunctive fork,” which he distinguishes from “interactive forks,” in
Wthh one or both of (3) and (4) are false. I discuss interactive forks in Section 2.4.
For criticisms of the prmcxple of the common cause, and assessments of the pur-
poses to which it has been put, see also van Fraassen (1977b, 1980), Salmon (1984),
Sober (1984b) and (1987a), Torretti (1987), and Forster (1988).
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dent of each other and of the factor X whose causal role for Y
is in question. The analysis of this kind of case will be some-
what different from that of the single separate cause (Z) case.
I will turn to the multiple separate causes case at the end of
this section, and will for now restrict the analysis to the case
of the single separate cause. ‘

The more general phenomenon of spurious correlation that
I characterize below can arise in a number of ways, with
various possibilities for the true causal relation between X
and Y, including but not limited to causal neutrality. The
basic idea behind the more general understanding of spurious
correlation can be expressed, intuitively, like this: Because of
the operation of a factor commonly causally relevant to X
and Y, the magnitude of correlation of Y with X is different
from the magnitude of X’s causal significance for Y. The idea
is to include as cases of spurious correlation, not only cases in
which the direction of inequality between Pr(Y/X) and Pr(Y/
~X) fails to coincide in the natural way with the kind of
causal significance X has for Y, but also cases in which the
magnitude of the difference between Pr(Y/X) and Pr(Y/~X)
fails to coincide with the degree of causal significance of X for
Y. Before being more precise about this (in particular, about
how we should understand these magnitudes), I will illustrate
the idea with the help of a well-known example, and varia-
tions on it.

Nancy Cartwright (1979) cites a study by Bickel, Hammel,
and O’Connell (1977) on graduate admissions at Berkeley. It
was found that, in the population of all applicants, getting
admitted was positively correlated with being male. The
frequency of admission among male applicants was higher
than the frequency of admission among female applicants.
This naturally suggested discrimination against women, and
(as Cartwright puts it) “thus rais[es] the question ‘Does being
a woman cause one to be rejected at Berkeley?’ ” (Equivalently:
“Is being male a positive causal factor for getting admitted
at Berkeley?”) However, admissions decisions were made

62

within the academic départmcnts to which one applied. And
when the admissions histories of the departments were inves-
tigated separately, one by one, it was found that there was
no department within which there was a correlation be-
tween gender and getting admitted. This is consistent with
the fact that, on average, the frequency of admission was
lower among women than it was among men. The women
applicants tended to apply to departments into which it was
harder to gain admission.

The table below gives an example of how this can happen;
all the entries are the number of accepted applicants over the
number applying.

Department 1 Department 2 Total
Male 81/90 2/10 83/100
Female 9/10 18/90 27/100

In this example, Department 1 accepts 90 percent of all male
applicants as well as 90 percent of all female applicants, while
Department 2 accepts 20 percent of all male applicants as well
as 20 percent of all female applicants. Within each depart-

" ment, there is no correlation between gender and admission.

Overall, however, the probability of getting admitted is
more than three times greater for male applicants than it is for
female applicants. The department-by-department analysis
of admissions records was taken as exonerating the Berkeley
graduate school from the charge of discrimination: Being
male, it now seems, was not after all a positive causal factor
for getting admitted, in the population of all applicants to the
Berkeley graduate school.

If the question of discrimination against women in the ex-
ample is equivalent to the question “Is being male a positive
causal factor for getting admitted?,” and if the more careful
look at the data in fact shows that Berkeley is not guilty of
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discrimination, then we have to conclude that being male is
not, after all, a cause of getting admitted. However, there is
presumably no common cause of being a male and getting ad-
mitted. So this seems to be a case of a factor Y (getting
admitted) being positively correlated with a factor X (being a
male) where X does not cause Y (and of course Y does not
cause X), yet there is no common cause Z of X and Y. Is this a
new kind of correlation without causation, not of any of the
kinds described above?

If we look more carefully at the example, it turns out that it
really is of the common cause kind. First, let us ask what is
responsible for the correlation between being male and apply-
ing to a department that is relatively easy to get into. Of course, it
would be implausible to suppose that the latter causes the
former or that there is a common cause of the two. Most
plausibly, being male somehow causes one to apply to the
departments that are relatively easy to get into (possibly be-
cause of the way males tend to be brought up, getting them
interested in the subjects taught in the larger, better funded
departments, for example).

Second, I want to question the assumed equivalence be-
tween there being discrimination against women and being male’s
being a positive causal factor for admission. Although this is per-
haps a fine point, it actually does make a crucial difference in
the analysis of this example. If an institution is guilty of dis-
crimination against women, then it is not, strictly speaking,
being male that is necessarily a positive causal factor for admis-
sion, but rather the institution’s believing of an individual that he
(or she) is male that is the positive causal factor.

Suppose an institution in fact does have a policy of discrimi-

nating against women. Suppose also, as a thought experi- .

ment, that one year all the men were persuaded to check
“female” on their applications, and all the women “male.”
Then we would expect that being male could be a negative
causal factor for admission. Nevertheless, the charge of dis-
crimination against women holds up, because the institu-
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tion’s believing of an individual that he or she is male is a
positive causal factor for admission. As another thought ex-
periment, suppose that the institution does have a policy of
discrimination against women and that one year all the appli-
cants decided in some random way whether to check “male”
or “female” on their applications. Then it could be that actual
gender is causally neutral for admission, despite the policy of
discrimination against women.

In the Berkeley example, I think that being male is a posi-
tive causal factor for admission and that the graduate school is
not guilty of discrimination. Being male is causally positive
for admission; being male causes one to apply to departments
that are relatively lenient in their admissions policies, which
in turn is causally positive for admission — and transitivity of
causation is plausible in this case. But there is no discrimina-
tion: There is no correlation, within any department, be-
tween admission and the department’s believing of an appli-
cant that he (or she) is male. And it is this, strictly speaking,
that the department-by-department analysis of admissions
history must have turned up, in order for it to be correct to
conclude from the study that there is no discrimination
against women applicants at Berkeley. Also, strictly speak-
ing, the rows in the table earlier that describes the example

should correspond to being believed to be male and being be-

lieved to be female.

Now let X be the factor of the Berkeley graduate school (or
a department) believing of an applicant that he or she is male,
let Y be the factor of getting admitted, Z the factor of being
male, and W the factor of applying to one of the departments
that are relatively easy to get into. Then the rows in the table
should be relabeled X and ~X, and the causal structure of the
example is as diagrammed in Figure 2.2. Of course, Z is
causally positive for X. Now if the only way in which Z can
affect Y is by way of its influence on W (which seems plausi-
ble given the description of the example), then (as will be
shown in Section 4.3) probabilistic type causation from Z to
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Figure 2.2 \J

W to Y will be transitive: Z causes Y. Thus, Figure 2.2 depicts
a special case of the common cause structure shown in Figure
2.1. Here, being male really is a cause of getting admitted,
but getting admitted is only spuriously correlated with the
school’s believing of an applicant that he or she is male: X is
causally neutral for Y.

The idea of Y’s being spuriously correlated with X should
be consistent with the causal significance of X for Y being
other than neutrality. For example, X could be causally nega-
tive for Y, consistent with the more general idea of spurious
correlation mentioned above and formulated more precisely
below. To see this, consider this slight modification of the
example just described. Suppose that in each department
there is a lower frequency of admission among applicants
believed to be male than there is among those believed to be
female: suppose there is a certain amount of “reverse discrimi-
nation” in each department, so that X is causally negative for
Y. Still, if the tendency of women to apply to departments
that are harder to get into is sufficiently strong, then there
will remain a positive correlation between being believed to
be male and getting admitted. For an example, simply change
the entries in the top row of the table above that describes the
original Berkeley example to read, “45/90, 1/10, 46/100.” In
this example, being believed to be male increases the probabil-
ity, overall, of getting admitted, yet being believed to be male
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Figure 2.3

is a negative causal factor for getting admitted. This situation is

diagrammed in Figure 2.3. '
Brian Skyrms (1980) has described another example with
basically this same feature. Suppose that air pollution in the

cities got so bad that city-dwellers tended to refrain from

smoking, so as not to put their lungs in double jeopardy. And
suppose that people who lived in the country, where there is
little pollution, generally felt safe enough to indulge. If the air
in the cities is bad enough, and if the ratio of smokers in the -
cities to smokers in the country is low enough, then the
frequency of lung disease could turn out to be lower among
the smokers than it is among the nonsmokers. This is because

“the smokers tend to live in the country, where the air is clean,

and the nonsmokers tend to live in the cities, where they are
exposed to severe air pollution.

Nevertheless, of course, smoking (as well as exposure to air
pollution) is causally positive for lung disease. In this case, a
factor X (smoking) is a cause of a second factor Y (lung disease)
even though the former lowers the probability of the latter, on
average. This is a case of spurious correlation as characterized
above, since pulmonary health (~Y) is positively correlated
with, though not caused by, smoking. Also, if we identify
living in the country — call this factor Z — as a common cause
of pulmonary health and smoking, then we have the commeon
cause structure shown in Figure 2.4.
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Figure 2.4

Another possibility consistent with spurious correlation is
that X is in fact causally positive for Y. Here, it is not the fact
of positive correlation that is spurious (since X is a cause of
Y), but rather the magnitude of the correlation. By the magni-
tude of Y’s correlation with X, I mean simply the difference
between Pr(Y/X) and Pr(Y/~X). Below, I will be more pre-
cise about “spurious magnitudes” of correlation, but first, a
couple of examples will illustrate the possibility intuitively,
and show further the need to generalize the idea of spurious
correlation in a way that takes into account magnitudes of
correlation and causal significance.

Consider this modification of the Berkeley admissions ex-
ample. Suppose there is some discrimination against women
in each department, but only very little; within each depart-
ment there is a small correlation between X and Y. Still there
could be a large correlation between X and Y overall. For an
example, change the bottom row in the table above used to
describe the original Berkeley example to read, “8/10, 16/90,
24/100.” In this example, there is a slight tendency of X to
cause Y, but a large correlation between X and Y that the
causal significance of X for Y does not explain. Most of the
correlation is explained not by discrimination, but, again, by
the tendency of women to apply to the more stringent depart-
ments. See Figure 2.5,

All the examples so far are cases that show that correlation
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is no proof of causation. I mentioned above that it is also true
that causation does not imply correlation. This can be seen
easily enough by another modification of the Berkeley admis-
sions example. If the males still tended to apply to the easy
departments more frequently than the females did, but both
departments discriminated, to just the right degree, against
applicants believed to be male, then it could turn out that
there is no overall correlation between getting admitted and
being believed to be male. For an example of this, change the
top row of the table above describing the original Berkeley
example to read, “26/90, 1/10, 27/100.” In this case, there is
discrimination against those believed to be male, but exactly
27 percent each of males and females get admitted. So X is

“causally negative for Y (positive for ~Y), yet there is no

correlation, overall, between X and Y (or between X and
~Y). See Figure 2.6 (the 0 above the broken line between X
and Y represents probabilistic independence, no correlation of
Y with X). This we may call a case of “spurious indepen-
dence.”

The examples we have seen show that we need a more
general understanding of the idea of spurious correlation than
the one first given. One obvious generalization, to accommo-
date cases of spurious independence and some of the other
cases of spurious correlation in which X is causally relevant to
Y, is to say that Y is spuriously correlated with X if, because
of the action of a separate cause of Y, it is not true that X is
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causally positive, negative, or neutral for Y, according to
whether Pr(Y/X) is greater than, less than, or equal to, Pr(Y/
~X), respectively. Note that on this understanding, spurious
correlation includes, somewhat awkwardly, the possibility of
probabilistic independence combined with some kind of causal
relevance (spurious independence).

Note also that even though the relation of correlation itself
is symmetric, I have used conditional probabilities only in
one direction (from X and from ~X to Y, and’'not from Y or
~Y to X) in this characterization of spurious correlation.
That is because the problem of spurious correlation can only
be of real interest in one direction. Since at most one of any X
and Y can precede the other in time, it follows from the
requirement of temporal priority of causes (alluded to at the
beginning of this chapter and to be clarified in Chapter 5)
that, as far as the causal relation between X and Y is con-
cerned, there is just one question of interest, namely, “What
is the causal role of the earlier factor for the later?” And we
have already adopted the convention that X precedes Y. Be-
cause causes precede their effects, it seems needless to add to
the reason why the later Y is not causally relevant to the
earlier X any idea that X is only spuriously correlated with Y.

This characterization of spurious correlation is still not
fully satisfactory. We have seen a case, intuitively a case of
spurious correlation, that does not fit this description. In that
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example (Figure 2.5), we may say that there are two “compo-
nents” of the correlation of Y with X: a small component due
to X’s positive causal significance for Y, and a large compo-
nent due to the existence of a common cause of X and Y. The
fact of the second component makes the correlation of Y with
X “largely spurious,” or largely unrepresentative of the causal
significance of X for Y. In this example, Y is strongly posi-
tively correlated with X, yet X is only weakly causally positive
for Y, so that the degree of correlation of Y with X does not
match, intuitively, the“degree of causal significance of X for
Y.” Although we can at this point be precise about the mean-
ing of “degree of Y’s correlation with X (just the difference,
Pr(Y/X) — Pr(Y/~X)), we cannot yet be precise about “degree
of causal significance of X for Y.” Yet I wish henceforth to un-
derstand spurious correlation more generally as follows: Y is
spuriously correlated with X if, because of the fact of a separate
cause of Y, the degree to which Y'is correlated with Y does not
equal the degree to which X is causally significant for Y.
Not being precise at this point about degree of causal signifi-
cance is on a par with not having been precise about what
causation is in the characterization earlier of the narrower idea
of spurious correlation (as simply common cause correlation
without causation). Just as the simpler idea of spurious correla-

~-tion was characterized in terms of causation without being

precise about causation, so also the more generalidea is charac-
terized in terms of degree of causal significance without being
precise about degree of causal significance. After property-
level probabilistic causation itself has been sufficiently clarified
in the pages that follow, we will be in a position to be more
precise about the meaning of degree of property level causal
significance.’ :

The new, more general understanding of spurious correla-
"This will be done in the next section. It is perhaps worth noting that, as discussed
more fully in that section, there will be a kind of circularity in the definitions, given
there, of the various kinds of causal significance. The different kinds of causal signifi-

cance a factor X can have for a factor Y will be defined in terms of other causes of Y.
However, the definitions will not rely on the idea of degree of causal significance.

71




tion includes cases of spurious independence of Y of X, cases
in which only part of the correlation between X and Y can be
explained by X’s causal relevance to Y, as well as cases in
which negative causal relevance is accompanied by positive
correlation, cases in which positive causal relevance is accom-
panied by negative correlation, and cases in which positive or
negative correlation is accompanied by causal neutrality.
Note, incidentally, that the possibilities of positive correla-
tion with causal neutrality, and of positive correlation with

negative causal relevance, show that positive correlation is not -

sufficient for positive causal relevance; and the possibilities of
positive causal relevance with probabilistic independence, and
of positive causal relevance with negative correlation, show
that positive correlation is not necessary for positive causal rele-
vance. All four of these possibilities are illustrated either by an
example given above, or by the result of changing the Y of an
example given above to ~Y, or vice versa. The fact of these
possibilities (or, more formally, the fact that any kind of corre-
lation can be reversed or made to disappear in subpopu-
lations), is known as “Simpson’s paradox,” named for E. H.
Simpson (1951).® Each of the possibilities of positive correla-
tion, negative correlation, and probabilistic independence can
be consistently combined with each of the possibilities of posi-
tive causal factorhood, negative causal factorhood, causal neu-
trality, and (what I will describe in the next section) mixed
causal relevance. ‘" ‘

So much for examples of (single separate cause) spurious
correlation for now. It is time to see how they may be ex-
plained in general, so that the possibility of spurious correla-
tion may be appropriately accommodated in the theory of
probabilistic causation. Consider first the simple kind of spu-
rious correlation in which Y is positively correlated with X
and X is completely causally irrelevant to Y (such as in the

*Cartwright (1979) mentions that this is sometimes known as the Cohen—Nagel—

Simpson paradox, since it is presented as an exercise in Cohen and Nagel (1934).
She also says that Nagel suspects he learned about it from Yule’s (1911).
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Fisher smoking hypothesis example, the falling barometers
and rainy days example, and the first version of the Berkeley
admissions case discussed above). The crucial feature of this
kind of spurious correlation, a feature that fully explains this
kind of correlation, is that a genuine probability-increasing
cause (Z) of Y is correlated with the noncause (X) of Y.
Whether the correlation between the genuine cause and the
noncause is spurious or not is irrelevant to whether or not the
correlation between X and Y is spurious. The point is that
when the noncause (X) occurs, the genuine cause (Z) is simply
more likely to occur, thus increasing the probability of Y.

It is because X is correlated with a genuine, probability-
increasing cause of Y, that X increases the probability of Y.
And X’s correlation with a genuine, probability-increasing
cause of Y will result in a spurious correlation between X and
Y whether or not the correlation between X and the genuine
cause is spurious. And it is an entirely different question
whether or not there will always be, in cases in which X is
correlated with a genuine cause of Y, a genuine cause of Y
that is also a genuine cause of X.

In the first, simple common cause examples discussed
above, the genetic condition is a genuine cause of lung cancer
and it is correlated with (because it causes) the noncause,

 smoking; and the passing of a cold front is a genuine cause of

rain and it is correlated with (because it causes) falling barome-
ters. In the Berkeley admissions example, the spurious corre-
lation between being believed to be male and getting admit-
ted is explained by the correlation between applying to a
lenient department (a genuine cause of admission) and being
believed to be male (the noncause) — even though this latter
correlation is spurious. Of course, the spurious correlation is
also explained by the correlation between being believed to
be male and being male, where the latter factor is a genuine
cause of admission as well as of being believed to be a male.

Consider now other kinds of spurious correlation between
factors X and Y, cases in which X may be genuinely causally
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relevant to Y but in which the degree of (overall) correlation
between X and Y does not appropriately reflect X’s true causal
significance for Y. In these cases, it is incorrect to refer to X as a
“noncause” of Y, as in the diagnosis given above of the simpler
kind of spurious correlation. But the same diagnosis applies.
The fact that X is not a noncause of Y does not affect the fact
that the spurious correlation (the inequality between the corre-
lation of Y with X and the degree of causal significance of X for
Y) is explained by the existence of a factor Z that is correlated
with X and is a genuine probability-increasing cause of Y. It is
easy to see that this is the explanation for the spurious correla-
tions in the other versions of the Berkeley admissions case
considered above and in Skyrms’s example involving smok-
ing in the cities and in the country. In all these cases, there is a
“component” of the correlation of Y with X that is explained
not by X’s causal significance for Y, but rather by the correla-
tion, with X, of a separate genuine, probability-increasing
cause of Y. , .

It is important to note, however, that not all cases in which
a factor X is correlated with a genuine cause Z of a factor Y
are cases of spurious correlation of Y with X, For example, in
some cases of transitive causal chains from Xto Zto Y, X
will be correlated with Z. If X is a genuine cause of Z and Z
is a genuine cause of Y, then it can happen that Z, a genuine
cause of Y, is correlated with X. Yet Y’s correlation with X
need not be spurious in such a case: if causation is transitive in
this case, then X will be a genuine cause of Y.* And in such a
case, the degree to which Y is correlated with X may exactly
equal the degree of X’s causal significance for Y, so that the
correlation is not spurious. This, of course, is just a reitera-
tion of the reason, given earlier, for explicitly excluding,
from cases of spurious correlation, cases in which the reason
why a third factor Z screens off a correlation between factors
X and Y is that Z is causally intermediate between X and Y.

’Transivity of causal chains will be discussed in detail in Section 4.3.
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What allows for the possibility of a spurious correlation
between two factors X and Y is the existence of a third factor
Z that is causally relevant to Y independently of X’s causal role,
ifany, for Y. In all of our examples, the spurious correlation of
Y with X is explained by the existence of a factor Z such that
(i) Z is genuinely causally relevant to Y, (ii) Z is correlated
with X, and (iii) X is causally irrelevant to Z. It is exactly this
that made it possible, in the examples given above, for the
degree of correlation of Y with X to fail to reflect just the
causal significance of X for Y. In all the examples above, the
factors Z (and, where applicable, both Z and W) satisfy the
three conditions just laid down.

In cases of spurious correlation in which there is just one
separate cause of the later factor Y (or in which other causes
W trace back to a single separate cause Z), it seems that it is
exactly (i), (ii), and (iii) above that explain the spurious corre-
lation. These we may call cases of “single separate cause spuri-
ous correlation.” When there are multiple separate causes,
however, this diagnosis is not quite on the mark. It is possible
for a factor Y to be spuriously correlated with a factor X and
for this to be explained by the operation of, for example, two
separate causes, F and G, of Y, where neither F nor G is corre-
lated, overall, with X. In such a case, (i) and (iii) above hold of

“each of Fand G, but (11) fails of each of F and G. However, as

we shall see, a condition very much like (ii), but involving
conditional correlations will hold in such cases.

Examples of this are more complex and harder to grasp
intuitively than examples of single separate cause spurious
correlations. '® Figure 2.7 depicts a numerical example of this
kind; Figure 2.7a gives the probabilistic relations and Figure
2.7b gives the causal structure of the example. Although I
will not describe a “real life” example corresponding to Fig-
ure 2.7, I would encourage the reader, after finishing this

I note that Fisher and Patil (1974) give an example of this, and diagnosis it in terms
of conditional correlations. Compare also Miettinen (1970) and (1974).
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Pr(Y)
~X; =0.125
Pr(Y)=009 0.8
P(Y)=0.25
0.6 X
Pr(Y)
=0.375 X;
Pr(¥) |
X; =012 4
Pr(Y) =
0.2 o
' X; Pr(Y)=0.25
Pr(Y) ‘
=0.375
F&G F&~G ~F&G ~F&~G
<
Pr(tF8&zxG) =0.375 0.125 0.375 0.125
(3/8) (1/8) (3/8) (1/8)
Pr(X) = 0.6 0.2 0.4 0.8
Pr(Y/X) =
Pr(Y/~X) = 0.9 0.375 0.25 0.125
(3/8) (2/8) (1/8)
OVERALL: Pr(F/X) = Pr(F/~X) = 0.5; Pr(G/X) = Pr(G/~X) = 0.75; s0
that each of F and G is uncorrelated with X - and each of
Fand G fail to satisfy (ii) above, though of course they can
still satisfy (1i7) (see Figure 7b below).
OVERALL: Pr(Y/F)=0.70625 > Pr(Y/~F) = 0.10625, and Pr(Y/G) =
0.575> Pr(¥/~G) = 0.25 (and the same tnequalities hold
when G and F, respectively, arc held fixed, positively and
negatively), so that cach of F and G is a cause of Y - each
of Fand G do satisfy (i) above.
OVERALL: Pr(Y/X)=0.52375 > Pr(Y) = 0.49375 > Pr(Y/~X) =

- 0.46375; so that there is a (spurious) correlation of Y with X,

Figure 2.7a
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Figure 2.7b

section, to try to think of one. (I should add that there would
not be a great loss of continuity if the reader were to skip to
the end of this section at this point.)

Here, what explains the spurious correlation of Y with X
is not the existence of any indeipendent (of X) cause of Y that
is, overall, correlated with X.'! One way of explaining the
correlation of Y with X in this example would be to note
that, when the cause G is operating (which has probability
0.75), there is a correlation of the stronger cause F with X: A

Jittle calculation (or contemplation of Figure 2.7a) shows

that Pr(F/G&X) = 0.6 > Pr(F/G&~X) = 0.4. There is this
conditional correlation of F with X, When G is present, which
is more probable than its being absent, X is correlated with
the stronger cause, F, of Y. The overall independence of F
from X is then explained by the fact that, when G is absent,
there is a stronger negative correlation of F with X: Pr(F/
~G&X) = 0.2 << Pr(F/~G&~X) = 0.8. These two condi-
tional correlations, in opposite directions, are consistent
with X’s raising the probability of Y, overall, because G,
within which there is a positive correlation between X and
F, is so much more probable than ~G, within which there

"'The idea that there may be a conjunctive factor, such as F&G or ~F"&~G, that is an
independent cause of ¥, and indeed correlated with X, will be discussed below,
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is strong negative correlation between X and F, and because
F is a stronger cause of Y than G is.

This suggests that spurious correlations should be ex-
plained, in general, in terms not only of correlated independent
causes, but also of conditionally correlated independent causes, con-
ditional on other causes — where, as we have seen, these con-
ditional correlations are consistent with overall indepen-
dence. That is, we could explain a spurious correlation of a
factor Y with a factor X as arising from the existence of
factors Fy, . . ., F,, such that (i) the F;’s are causes (positive or
negative) of Y, (ii) each F, is either correlated (positively or
negatively) with X overall or correlated (positively or nega~
tively) with X conditionally on some way of holding fixed other
F/s, and, of course, (iii) the F;’s are causally independent of X.
Without trying to prove this diagnosis rigorously here, I con-
jecture that this is the form of the most general kind of expla-
nation of spurious correlation, where there may be multiple
independent causes of Y.'2

Before closing this section, there are two points I should
make, both of which relate what has been discussed in this

section to ideas that will be addressed later. First, about the

example depicted in Figure 2.7, it might be suggested that, if
we are clever enough, we could characterize, in terms of F and
G, items that are causes of Y, independent of X, and that are
correlated with X. For example, it might be suggested that
some of the conjunctive factors, F&G, F&~G, ~F&G, and
~F&~G, may be independent causes of Y that are correlated
with X. Or it might be suggested that we adopt a more
general framework in which we consider partitions of factors
(such as the four-element partition of consistent conjunctions

2 However, it is easy to demonstrate this: If (1) there is no overall or conditional
correlation between X and independent causes of Y (conditional on ways of hold-
ing other such causes fixed), and (2) maximal ways of holding fixed the indepen-
dent causes screen off Y from X (which we would expect if X is not a cause of Y),
then there can be no correlation of Y with X.
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of F, G and their negations),13 rather than simple “On/Off”
(or two-valued) factors (such as F and G), as the relevant items
that enter into causal relations. Note that the conditional
probabilities of F&G, F&~G, ~F&G, and ~F&~G, all con-
ditional on X, are all different in the example above, so that
there is a kind of “correlation of the partition with X.” These
are approaches to spurious correlation that I would like to
avoid.

As to the first suggestion, the absence of a conjunctive fac-
tor is disjunctive; for example, the negation of F&G is
(F&~G) \/ (~F&G) \/ (~F&~G). And often the different
disjuncts of a disjunctive causal factor confer different caus-
ally significant probabilities on the effect factor in question.
So the question arises of how to average or otherwise com-
bine these probabilities to come up with a single probability of
the effect factor in the absence of the conjunctive factor, to
compare with the probability of the effect factor in the pres-
ence of the conjunctive factor. Disjunctive causal factors are
discussed in Chapter 3; the question just posed will be an-
swered there in a way that makes the first suggestion ill suited
as an approach to spurious correlation.'

As to the second suggestion, involving partitions, I think
this would be just fine as an alternative approach to structur-

"ing our understanding of probabilistic causation. This makes

the form of probabilistic causal claims quite different from the

B A partition is a set of factors (or propositions or sentences) that are “mutually
exclusive” and “collectively exhaustive.” That is, the conjunction of any two of its
elements is impossible and the disjunction of them all is necessary. Appendix 1
explains the idea of a partition.

"“Saying this, however, may help at this point. It may be argued that, in the exam-
ple, F&G and ~F&~G are both correlated with X and causes (positive and nega-
tive, respectively) of Y. They are causes of Y because no matter how we average
the conditional probabilities of Y, conditional on the disjuncts comprising the
absence of these conjunctive factors, the inequality between the probability of Y in
the presence of one of the conjunctions and the probability of Y in its absence
cannot change in direction. The problem, to be addressed in Chapter 3, is that the

. same is not true of F&~G and ~F&G. This is because these factors confer neither
the highest nor the lowest probability on Y.
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way I have been supposing we may fruitfully understand it. I
have been supposing that we may understand the form of
such claims to be (roughly), “X is a causal factor for Y in
population P (considered to be of a kind Q),” where Xand Y
‘are “On/Off” (or two-valued) variables, or factors. I see no
compelling reason to abandon this natural approach, and it is
the approach I will continue to pursue.

Finally, it is worth emphasizing that the topic of this chap-
ter is just spurious correlation, a phenomenon that involves
separate causes of the candidate effect factor in question. As
- mentioned at the beginning of this chapter, there are other
reasons, besides spurious correlation (that is, besides the con-
founding effects of separate causes), for why (degree of) cor-
relation may not coincide with (degree of ) causation. These
involve symmetry of correlation and asymmetry of causation (to be
discussed in Chapter 5) and causal interaction (to be discussed
in Chapter 3). It should be emphasized that the discussion in
this chapter is not intended to handle all the reasons why
probability change does not coincide with causation, but only
the reason of separate causes.

Based on the understanding of spurious correlation given
above, the second main qualification of the basic probability-
increase idea of probabilistic causation will be intended to
deal with this phenomenon. We must “control” for correla-
tions (both conditional and unconditional) that may exist be-
tween a factor X, whose causal role we want to characterize,
and other causes, Z, of the effect factor Y in question’ This is
the topic of the next section.

2.2 CAUSAL BACKGROUND CONTEXTS

Recall the example about falling barometers (X) and rainy
days (Y). Falling barometers do not cause rainy days, though
rainy days are correlated with falling barometers: Pr(Y/X) >
Pr(Y/~X). Also, the factor of an approaching cold front (call
it factor F here) is causally positive for rain, and it is corre-
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lated with (since it is a cause of) falling barometers. As we
saw in the previous section, it is the existence of such factors
as F here that explains the spurious correlation of Y with X.

Let us suppose that we know that F is the only factor that is
causally relevant to Y, so that we have a case of what I called, in
the previous section, “single separate cause spurious correla-
tion.” (This means, of course, that we know also that X is
causally neutral for Y.) If we observe the probabilistic impact
of X on Y first in the presence of F, and then separately in the
absence of F, then we should expect, in each case, that Y will
be probabilistically independent of X:

Pr(Y/F&X) = Pr(Y/F&~X)
and
Pr(Y/~F&X).= Pr(Y/~F&~X).

This is because we know that the only reason for a correlation of
Y with X could be a correlation of F, a genuine cause of Y, with
X; we know that X itself is causally neutral for Y." And in the
above two probability comparisons, F is “held fixed,” posi--
tively and then negatively; and given each way of holding F
fixed, the correlation of F with X disappears. When F is held

-~ fixed positively, the probability of Fis 1, both conditional on

X and conditional on ~X; and when Fis held fixed negatively,
the probability of Fis 0, both conditional on X and conditional
on ~X. Since we know that the only reason for a correlation of
Y with X is the correlation of F, a genuine cause of Y, with X,
we should expect any correlation of Y with X to disappear
when the correlation of F with X disappears.

Suppose, on the other hand, that all we know, besides the
correlation of Y with X, were the two probabilistic equalities dis-

- played above, and that aside from the possibility of X, F is the only

Jactor causally relevant to Y. Then I claim we should be in a
position to conclude that X is causally neutral for Y. We

¥ am, as always, following the convention that X precedes Y in time, as explained
earlier.
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should be able to conclude that Y’s positive overall correla-
tion with X is explained entirely by a correlation of X with F, the

- “single separate cause” of Y. In fact, in this example, we shall
be in a position to apply Reichenbach’s principle of the com-
mon cause involving conjunctive forks, as discussed at the
beginning of the previous section. The problem is to explain
the correlation of Y with X, The equalities above, which [
have just assumed we know to hold, are parts (3) and (4) of a
conjunctive fork (substituting “F” for “Z” in the description
of conjunctive forks earlier). Explaining why we would ob-
serve inequalities (1) (Pr(X/F) > Pr(X/~F)) and (2) (Pr(Y/F)
> Pr(Y/~F)) in this example is a little more intricate.

First, why should we observe inequality (2) to hold? I am
assuming that it is true that (and that we know that) aside
from the possibility of X, F is the only factor that is causally
relevant to Y. Now in fact, X is not causally relevant to Y
(though this is what we will be reasoning to, and not from).
Given this, and the fact that aside from the possibility of X, F
is the only cause of Y, it follows that F in fact is the only cause
of Y (though we cannot reason to this conclusion, just from
the equalities above and the rest of what I have assumed, two
paragraphs back, that we know). And this implies, I assume,
that in fact, F raises the probability of Y overall. F cannot be
correlated with negative causes of Y, resulting in a spurious
independence of Y from F, or a spurious negative correlation be-
tween Y and F, for example: given what we know to be true,
and given the fact that X actually is not a cause of Y, there
cannot be any such negative causes of Y. That is why we
should observe inequality (2) to hold (though we cannot reason
to it just from what I have assumed, two paragraphs back,
that we know). As to inequality (1), it mathematically follows
Jrom (2), (3), (4), and the overall correlation of Y with X.!¢
*From the two equalities above, it follows that: o
o Pr(Y/X) = P(F/X)Pr(Y/F) + Pr(~F/X)Pr(Y/~F).

-';?imd' Pr(Y/~X) = Pr(F/~X)Pr(Y/F) + Pr(~F/~X)Pr(Y/~F).
Let x = Pr(F/X) and y = Pr(F/~X). We want to show that x > y. Leta = Pr(Y/
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Thus, F, X, and Y form a conjunctive fork. This means
that the correlation of Y with X is explained entirely by the
existence of the genuine cause, F, of Y, and by F’s correlation
with X (and by the fact that there are no other separate causes
of Y). Thus, we should conclude that the correlation of Y
with X does not correspond to causal relevance, and in fact
the disappearance of the correlation, when the single corre-
lated cause is held fixed, indicates causal neutrality. From the
equalities, and the assumption that, aside from the possibility
of X, F is the only factor causally relevant to Y, we conclude
that none of X’s positive probabilistic relevance to Y could be
explained by any causal relevance of X to Y. That is, given the
assumption that we have held fixed all the causes of Y (aside
from the possibility of X), we can conclude from X’s probabi-
listic neutrality for Y that X is causally neutral for Y.

It is worth noting that all that is crucial in the reasoning,
above, first, from X’s causal neutrality for Y to the two dis-
played probabilistic equalities, and second, from the two
equalities to causal neutrality, is this: The assumption that we
know that, aside from the possibility of X, F is the only factor that is
causally relevant to Y. It is not crucial that we know in addition
that there is a correlation of Y with X, This is already more or

~...less explicit for the first line of reasoning, from causal neutral-

ity to the two equalities. For the second line of reasoning, from
the two equalities to causal neutrality, it is easy to see that the
reasoning can easily be modified so that the crucial assumpiton
gives this conclusion: If the two equalities hold, then any corre-
lation that there may be between X and Y would be fully
explained by a correlation of F with X, Thatis, no component
of any correlation between X and Y is explainable by any
causal relevance of X to Y. Given the basic probability-

~F). By the assumption that Fis the only cause of Y, and hence that Y is positively
correlated with F, there is a positive number e such that Pr(Y/F) = a + e. Then the
correlation of Y with X can be expressed as follows:

x(a+e) + (1 —x)a>y@a+e+ (1~ ya
which reduces to xa + xe + a — xa > ya + ye + a — ya, and then to xe > ye, and
then, since e > 0, to x > y.
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increase idea for probabilistic causation, this means that we can
conclude, from the inequalities, that X is causally neutral for
Y. (Note also that, given the two equalities and Y’s correlation
with F, Y will be correlated with Xif and only if Fis correlated
with X.)

Thus, the main point is this: In evaluating the causal role of
a factor X for a factor Y, if a factor F is the only factor that,
aside from the possible causal role of X, is causally relevant to
Y, then, when we hold F fixed positively and negatively,
probabilistic independence of ¥ from X coincides with causal
neutrality of X for Y — whether or not Y is, overall, corre-
lated with X. After explaining how this idea deals with spuri-
ous correlation more generally (including spurious indepen-
dence and spurious degrees of correlation, as well as cases of
multiple separate causes), I will show how the resulting
theory deals with some of the other examples discussed in the
previous section.

The basic idea behind this refinement of the theory is that
in order for positive, negative, and neutral causal relevance to
coincide with positive, negative, and neutral probabilistic rele-
vance, we have to control for all factors that are, indepen-
dently of the candidate causal factor in question, causally
relevant to the effect factor in question. In order for X to
count as a positive causal factor for Y, for example, X must
have a positive probabilistic impact on Y beyond that which
is explainable by other, independent, causes of Y that may be
" correlated with X (where, as noted at the end of the previous
section, this correlation may be either unconditional or condi-
tional on other causes of Y). The general strategy for control-
ling for independent causes goes back a long way; Skyrms
(1980) reports that the basic idea was already explicitly formu-
lated by F. Y. Edgeworth (1892, 1910), was anticipated half a
century earlier by Bravais, and was used by the English statis-
tical school of Edgeworth, K. Pearson (1897), and G. U. Yule
(1910). See also, for example, Reichenbach (1956), H. Simon
(1957), C. Granger (1969), Suppes (1970, 1984), Salmon

84 -

i
b4

(1971), Cartwright (1979), Skyrms (1980, 1984a), Eells and
Sober (1983), and, for a review, Skyrms (1988).

Suppose we want to assess the causal significance of a fac-
tor X for a factor Y. And suppose there are exactly # factors,
F,, ..., F, distinct from X, that are causally relevant to Yin
a way that is independent of X’s causal relevance, if any, to Y.
That is, the F/'s are all the factors, other than X and effects of
X, that are causally relevant to Y." We saw in the previous
section that it is the existence of such factors F, that are corre-
lated with X (either overall or conditional on other such fac-
tors) that makes possible a spurious correlation between X
and Y. However, in the theory described below, causes of Y
that are uncorrelated with X (either overall or conditional on
other such causes) will be controlled for in the same way as
causes of Y that are correlated with X (either overall or condi-
tional on other such causes). As explained below, first, it
cannot hurt to do so, in that whether or not we control for
uncorrelated causes, we get the same answers about both
direction and magnitude of causal influence; and second, this
approach will give “causal background contexts” within
which it can only be exactly the causal impact of X on Y (as
opposed to the causal impact of other causes as well) that is
measured by the probabilistic impact of X on Y (the magni-

“tude of probabilistic impact within contexts will not be

skewed in ways in which it could be if we did not control for
uncorrelated causes).'®

Since the F/’s are all the factors that are (independently of
X) causally relevant to Y, if we “control” for the presence or
absence of each F,, we can observe the probabilistic impact
that X makes upon Y beyond that made by other factors that

Y7 Again, I will postpone a detailed discussion of the important independence require-
ment until Chapter 4. The idea is that the F’s should not include factors to which X
is causally relevant — and that, as explained below, we should not “hold fixed”
causally intermediate factors when assessing the causal role of X for Y.

*®] am hedging here: We will see in Chapter 3 that there are sometimes factors that
are not causes of the candidate effect factor, but which nevertheless must be con-
trolled for, namely, “interactive” factors.
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are causally relevant to Y (independently of X). If we observe
that X increases the probability of Y no matter what other

- independently causally relevant factors are present, then
(pending further refinements of the theory that do not in-
volve spurious correlation) we can conclude that X is causally
positive for Y.

In assessing X’s causal relevance to Y, we have to hold
fixed all the other factors, Fy, . .., F,, that are causally rele-
vant to Y, independently of X, and then observe the probabi-
listic impact of X on Y given each of these ways. With n such
other factors, there are 2» ways of holding each fixed, posi-
tively or negatively. That is, there are 2" conjunctions in
which each of these  factors occurs exactly once, either posi-
tively (unnegated) or negatively (negated). Of these 2" “maxi-

mal conjunctions,” let K;, . . . , K, be exactly those that have
nonzero probability both in conjunction with X and in con-
Junction with ~X. (Thus, fori =1, ... m, Pr(K&X) > 0

and Pr(K&~X) > 0.) These K;s are called “causal back-
ground contexts,” relative to the assessment of X’s causal role
for Y.
Then we say that X is a positive causal factor for Y if and only
if, for each i, Pr(Y/K&X) > Pr(Y/K&~X). Negative causal
Jactorhood and causal neutrality are defined by changing the
“always raises” (>) idea to “always lowers” (<) and “always
leaves unchanged” (=), respectively. The idea that the inequal-
ity or equality must hold for each of the background contexts
K; is sometimes called the condition of contextual unanimity, or
context unanimity.20 This condition, and some alternatives to
it, are discussed in the next section. Note that these three
relations of positive, negative, and neutral causal factorhood
®If the F/'s already contain conjunctions of some of the F/’s and their negations, then
it could turn out that m is less than n. Whether or not the F;’s do contain conjunc-
tions of Fs and their negations turns on the questions of the causal roles of
disjunctive causal factors, which will be discussed in Chapter 3.

®The term “contextual unanimity” was introduced by John Dupré (1984) to distin-
guish this kind of “unanimity” from what Elliott Sober and I (1983) called “una-

nimity,” by which we meant what Dupré calls “unanimity of intermediaries.” 1
will discuss the latter idea in Chapter 4.
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are not exhaustive of the possible causal significance that a
factor X can have for a factor Y: There remains the possibility
of various kinds of mixed causal relevance, corresponding to
various ways in which unanimity can fail. This possibility is
discussed further in the next section and in Chapter 3.%'
Note further that the definition is circular in that it charac-
terizes X's causal role for Y in terms of other causally relevant
factors. However, the circularity is not as bad as it could be.
As Skyrms (1988) has pointed out in connection with this
kind of definition of causation, X’s causal role for Y is charac-
terized in terms of the causal roles of factors other than X for
Y. The idea of X’s being causally positive for Y, for example,
is noncircularly defined in terms of the causal roles of other
factors for Y. However, the definition of positive causal rele-
vance in general is circular. Thus, what we have is a theory
about the relation between probability and causation.?
Before applying these definitions to some of the examples of
the previous section, four further points about the definitions
are in order here. First, as stressed in Section 1.1, these defini-
tions must be understood as relative to a particular population,
as well as to a kind that the token population exemplifies. This
relativity to a population and a kind is already explicit in the

-~ assumption that we have a definite probability function to

work with: as explained in Section 1.1, probabilistic, as well as
causal, relations can differ from population to population, and
from kind of population to kind of population.

Second, it is worth reiterating here the important point
briefly motivated in the previous section, and alluded to from
time to time in this section, that we only hold fixed factors

?In particular, I will show in the next section that, among the factors Fy, . . . , F,
that are causally relevant to Y independently of X, and that must be held fixed in
background contexts, we must include not only all factors that are causally positive
or negative for Y independently of X, but also factors that are causally mixed for Y
independently of X. Mixed causal relevance is a kind of causal relevance.

ZIn Chapter 5, I will consider a natural suggestion for removing the circularity (the
idea is to hold fixed all factors simultaneous to or earlier than the causal factor in
question). I will give an example that strongly suggests that we should reject this
suggestion, :
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that are causally relevant to Y independently of X. As explained
in the previous section, these are factors that are causally
relevant to Y but to which X is not causally relevant. A simple
rationale for this independence condition was, in effect,
briefly explained in the previous section: X’s correlation with
factors that are causally relevant to Y, but intermediate in a
causal chain from X to Y, may fail to make the correlation
between X and Y spurious. However, the condition has been
the subject of some controversy in recent literature on proba-
bilistic causality. In Chapter 4, I discuss the condition in de-
tail, explain various parts of the controversy, and defend and
generalize the condition.

Third, as promised in the previous section, we can now be
more precise about the idea of degree of causal significance
that was used in characterizing spurious correlation. A natu-
ral definition, suggested by the definition above, is this: The
average degree of causal significance of a factor X for a factor Yis
given by

ADCS(X,Y) = 3, Pr(K)[Pr(Y/K&X) — Pr(Y/K&~X)],

where the K}’s are the causal background contexts appropri-
ates for assessing X’s causal role for Y (in the relevant popula-
tion considered to be of the relevant kind).® The difference
between this and magnitude of correlation, Pr(Y/X) — Pr(Y/
~X), is that Pr(K,), enters into the formula for average degree
of causal significance unconditional on X, which is appropriate
since X is causally irrelevant to the K;’s, which specify factors
causally relevant to Y independently of X. Note, of course, that
this is an average, and that while positive, negative, and neu-
tral causal relevance imply that the average is positive, nega-
tive, and zero, respectively, the converse is not true. This is
because of the possibility of mixed causal significance, for

B1 note that I. J. Good (1961-2, 1983,1985) offers a quite different kind of definition
of (what he calls) “the tendency of [X] to cause [Y].” This is discussed briefly in
Section 5.3 below.
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which the average could be any value strictly between —1 and
+1.

Finally, as mentioned above, the F/s in the definitions
above are all the factors, other than X, that are, independently
of X, causally relevant to Y — and not just those that are also
correlated with X, either unconditionally or conditional on
other such causes. But spurious correlation between factors X
and Y was diagnosed in the previous section as resulting from
there being factors that are both independently causally rele-
vant to Y and correlated with X, either unconditionally or
conditional on other such causes. So the question naturally
arises of why it should be required that we hold fixed, in the
background contexts, all factors independently causally rele-
vant to Y, and not just those of the kind that have been
implicated in the possibility of spurious correlation.

The first thing to note is that even if it were not required to
hold fixed uncorrelated causes of Y, it cannot hurt to do so.
Suppose, for example, that a factor X is a positive cause of Y,
and that "X raises the probability of Y for each way, J, of
holding fixed independent causes of Y that are correlated with
X, either unconditionally or conditional on other causes of Y.
Now suppose that Z is an independent cause of Y that is
uncorrelated with X, either unconditionally or conditional on

™ other independent causes of Y. I first show that the average

degree of causal significance of X for Y is the same, whether
or not Z is held fixed in addition to the other independent

causes.
Not holding Z fixed, we have

ADCS(X,Y) = Z, Pr(J)[Pr(Y/]J&X) — Pr(Y/]&~X)].
Factoring in Z, this is the same as

ADCS(X,Y) = S, Pr(J)
{{PHZIT&X)PH(Y ] & Z&X) + Pr(~Z]]&X)Pr(Y/
J&~Z&X)] — [PHZ/]&~X)Pr(Y]] & Z&~X) + Pr(~Z/
J&~X)Pr(Y/] &~ Z&~X)]}.
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Since Z is uncorrelated with X, conditional on the J's, we
have

ADCS(X,Y) = =, Pr(J)
{{PH(ZI])Pr(Y/]&Z&X) + Pr(~Z/])Pr(Y/]&~Z&X)]
— (PH(ZI])Pr(Y/] & Z&~X) + Pr(~Z/])Pr(Y/] &~ Z&~X)]}.

Then rearranging and simplifying, we have

ADCS(X,Y) = =, Pr(J)Pr(Z/])[Pr(Y/] & Z&X)
— Pr(Y/J&Z&~X)] + =, Pr(J)Pr(~Z/J)[Pr(Y/
J&~Z&X) — Pr(Y/]&~Z&~X)]
=3, Pr(J&Z)[Pr(Y/]& Z&X) — Pr(Y/
J&Z&~X)] + =, Pr(J&~Z)[Pr(Y/ -
J&~Z8&X) = Pr(Y/]&~Z&~X)].

And this is ADCS(X,Y) calculated in terms of background
contexts J&Z and J&~Z, which are obtained from the J’s by
holding fixed, in addition to the other independent causes of
Y, Z as well. Thus, holding fixed factors like Z (causes of Y
that are causally independent of X and uncorrelated with X
overall and conditional on other independent causes of Y)
does not affect the value of ADCS(X,Y).

This agreement about average degree of causal significance
does not by itself imply agreement on the qualitative question
of kind of causal significance. However, if it suffices, for
getting the right answer, to hold fixed just the causally inde-
pendent (of X) causes of Y that are conditionally or uncondi-
tionally correlated with X (and the main point of previous
section is that this does suffice, at least for dealing with spuri-
ous correlation), then, I claim, we should expect the same
answer when we hold fixed such factors that are condition-
ally and unconditionally uncorrelated with X. That is, for
contexts J; and factors X, Y, and Z, as above, we should
expect

Pr(Y/J&X) > Pr(Y/J&~X)
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if and only if both
Pr(Y/J&Z&X) > Pr(Y/Y&Z&~X)
and
Pr(Y/J&~Z&X) > Pr(Y/]&~Z&~X);

and the same when we substitute “<” or “=" for “>"
throughout. In fact, holding fixed all independent causes of Y
(those held fixed in the J’s as well as factors like Z above)
gives us contexts within which causal impact is approximated
by probabilistic impact more closely than if we only held
fixed independent causes that are correlated, conditionally or
unconditionally, with X, as I will now explain.

To simplify this discussion, let us suppose that there are no
causes of Y that are correlated with X, conditionally or uncon~
ditionally, and that, aside from the possibility of X, Z is the
only cause of Y; so Z is uncorrelated with X. (For cases in
which there are causes of Y that are correlated with X, the
possibility I describe below could arise within contexts J9)
And let us suppose that X is a positive causal factor for Y. It is
possible that X can make only either a very large difference
for Y or a very small difference — and never a moderate, or

-intermediate, difference. And this feature of the causal signifi-

cance of X for Y may not show up unless factors like Z are
held fixed. For example, the relevant probabilities may be as
follows:

Pr(Y/Z&X) = 0.9 > Pr(Y/Z&~X) = 0.2;
Pr(Y/~Z&X) = 0.4 > Pr(Y/~Z&~X) = 0.3;
Pr(Y/X) = 0.65 > Pr(Y/~X) = 0.25.

Here, Pr(Z) = Pr(Z/X) = Pr(Z/~X) = 0.5, so that the proba-
bility values in the last line displayed are 50-50 averages of the
values in the first two lines.

In this example, X can either make a huge difference in the
probability of Y, or only a tiny difference. When Z holds, the
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difference is huge: 0.9 — 0.2 = 0.7. When ~Z holds, the
difference is tiny: 0.4 — 0.3 = 0.1. And there is no kind of
individual (or no kind of concrete situation) in which X can
make a moderate, or intermediate, difference in the probabil-
ity of Y. Nevertheless, on average (that is, not holding Z
fixed), X does make a moderate, or intermediate, difference
in the probability of Y: as the last line displayed above shows,
this average difference is 0.65 — 0.25 = 0.4, However, this
average difference in probabilities does not correspond to a degree
of causal influence that X can have on Y for any kind of individ-
ual, or in any concrete situation. For in any individual or
concrete situation, Z will either be present or absent, so that
the causal significance of X for Y will be either very large
(0.7) or very small (0.1), and never intermediate (0.4).

By holding fixed all independent causes of Y, and not just
those causes that are conditionally or unconditionally corre-
lated with X, we can more accurately observe, in terms of
probability comparisons, the causal impact that just X has on
Y. By doing this, we control for the probabilistic significance
that causes other than X can have for Y, even though these
causes may not be correlated with X. This yields causal back-
ground contexts in which the causal significance of just X for Y
is more precisely isolated. It is for this reason that the defini-
tions above require holding fixed all independent causes of Y.

Let us now see how the definitions given above give the
right answers in the examples of the previous section dia-
grammed in Figures 2.2-2.6. In the first, simple, version of
the Berkeley admissions example, we have to hold fixed the
factors Z (being male) and W (applying to a stringent depart-
ment) in assessing the causal role of X (being believed by the
school to be male) for Y (admission). It was part of the exam-
ple that in stringent departments, as well as in departments
that are not stringent, the frequency of admission is the same
among those believed to be male as it is among those not
believed to be male. So, holding fixed W (and holding fixed

92

e

Z as well should not affect this) makes Y probabilistically
independent of X. So the definitions tell us that being be-
lieved to be male is causally neutral for admission, which is
the right answer.

Figure 2.3 depicts the example in which being believed to
be male is slightly causally negative for admission despite the
positive correlation: Both stringent departments and depart-
ments that are not stringent tend to discriminate against appli-
cants believed to be male. Again, the definitions tell us that
we must hold fixed both Z and W, since they are causally
relevant to Y independently of whatever causal relevance X
has for Y. And the description of the example tells us that
given each way of holding these factors fixed, the frequency
of Y is less given X than it is given ~X. So we get the right
answer that being believed to be male is causally negative for
admission. The reader is invited to apply the definition of
average degree of causal significance to this example.

In Skyrms’s example, diagrammed in Figure 2.4, we have
to hold fixed the factor of living in the country (Z). And it is
part of the example that both among the country dwellers
and among the city dwellers, smoking decreases the probabil-
ity of healthy lungs, so that the definitions give us the right
answer that smoking is causally negative for pulmonary

" health.

Figure 2.5 diagrams the version of the Berkeley admissions
example in which there is a little discrimination in favor of
males both in the stringent and in the not so stringent depart-
ments, but a big correlation between getting admitted and
being believed to be male, which is explained mainly by the
common cause Z (being a male). Of course again we must
hold fixed the factors Z and W, so that, in the relevant proba-
bility comparisons, the component of the overall correlation
due to the common cause will disappear. That is,

Pr(Y/X)>>Pr(Y/~X),
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but

Pr(Y/Z& W& X) > Pr(Y/Z&W&~X) (by alittle),
Pr(Y/Z&~W&X) > Pr(Y/Z&~W&~X) (by alittle),
Pr(Y/~Z&W&X) > Pr(Y/~Z&W&~X) (by a little),

and
PH(Y/~Z8&~W&X) > Pr(Y/~Z&~W&~X) (by a little).

The last four probability comparisons are the ones relevant to
assessing the degree of X’s causal significance for Y; and the
differences in these are smaller than in the first comparison.

In the “causation without correlation” example of Figure
2.6, we again must hold fixed Z and W. And again the effect
of holding fixed W reveals the policies of the stringent and the
not so stringent departments: Within each kind of depart-
ment, there is negative probabilistic relevance of being be-
lieved to be male and getting admitted, and therefore, accord-
ing to the definitions, negative causal relevance of the former
for the latter.

Thus, the definitions of the different kinds of causal fac-
torhood given above provide plausible analyses of the exam-
ples of spurious correlation given in the previous section. Of
course there are other ways in which we can have correlation
without causation, aside from what we have been calling
spurious correlation. There is still the problem of temporal
asymmetry of causation and the problem of probabilistic
causal interaction, both briefly described at the beginning of
this chapter. In the next section, in the course of further
evaluating the definitions given in this section, the problem
of causal interaction will emerge. This will be dealt with by
further refinements of the theory in Chapter 3. In Chapter 5,
the problem of temporal priority of causes will be handled.

2.3 CONTEXT UNANIMITY

It has been questioned whether a genuine cause really must

raise the probability of a genuine effect of it in every causal’
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backgrdund context. That is, the condition of context una-
nimity has been questioned. Skyrms (1980), for example, has
suggested a weaker condition, which he calls a “Pareto-
dominance condition”: X raises the probability of Y in a least
one causal background context (Pr(Y/K&X) > Pr(Y/K&~X)
for at least one i) and X lowers the probability of Y in no
causal background context (Pr(Y/K&X) = Pr(Y/K&~X) for
every i). This can be called “Pareto-positive causal fac-
torhood.” The corresponding definition of negative causal
factorhood, which can be called “Pareto-negative causal fac-
torhood,” would be parallel (in effect, X is Pareto causally
negative for Y if it is Pareto-positive for ~Y); and the defini-~
tion of causal neutrality would remain the same. John Dupré
(1984) has argued for a more radical departure from context
unanimity. He proposes that the condition should be dropped
altogether and replaced with an idea he calls “statistical corre-
lation in a fair sample.”

In this section, I will examine Skyrms’ suggestion and
Dupré’s argument for rejecting context unanimity. I believe
that neither revision is necessary, and that there are advantages
in not revising the definitions in either of these ways. I will also
argue that, while Skyrms’s suggestion is fairly “harmless,”
Dupré’s more radical departure from context unanimity is a

' step backward, one that must ultimately either make causation

tantamount to mere correlation or, in order to avoid vague-
ness, involve arbitrary, unmotivated distinctions.

Skyrms offers no rationale for his suggested Pareto weaken-
ing of the original definition, simply calling it a “plausible

_interesting weakening” of the stronger condition. However,

Elliott Sober (1984a) offers the following interesting rationale
for the suggestion:

Suppose some other physical condition, apart from smoking, guar-

antees the occurrence of a coronary. If an individual has that physical

condition, smoking cannot boost the probability of a heart attack

any higher that it already is. Yet it would be overly restrictive to

conclude that smoking is not a positive causal factor for heart at-
‘\\,
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tacks in a population that happens to include some individuals with
the condition. To take account of this sort of case, we should relax

_ the requirement in the following way: The causal factor must raise
the probability of the effect in at least one background context and
must not lower it in any. (pp. 293-4)

Although I can sympathize with the intuitions that motivate
the weakening for Sober, and although I think the revision
does not lead to any serious difficulties, it seems to me that
there is a better way to account for cases like the one Sober
describes.?*

In this example, we can describe, using the non-Pareto (or
strict) version of probabilistic causation, all the causal facts in
the general population ~ by considering subpopulations. There
are three relevant populations involved: (i) the general popula-
tion, (ii) the subpopulation of individuals who lack that physi-
cal condition, and (iii) the small subpopulation of individuals
who have that condition. According to the original defini-
tions, smoking has a mixed causal role for heart attacks in the
first population, a positive causal role for heart attacks in the
second population, and a neutral causal role for heart attacks
in the third.

An advantage to this approach is that it allows for a group
of statements about causal relevance in particular populations
to have greater descriptive power. Even when considering
particular subpopulations, the Pareto-revision approach does
not allow for expression of the idea that a causal factor is
“unanimously positive” for the effect. Of course subpopu-
lations can be found for which the Pareto-revision approach
can express the truth that, within them, the causal factor is
neutral for the effect factor. But if all we say about the rest of

#I should add that an important reason for Sober’s using the Pareto formulation has
to do with the strategy of his critique of genic and group selectionism in evolution-
ary theory (1984a). The Pareto version is weaker than the strict version in such a
way as to give genic and group selectionism, characterized in terms of probabilistic
causality, a “better chance” of being true; and if genic and group selectionism are
fa]sltl: on the Pareto interpretation, then they must be false on the strict version as
well.
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the subpopulation is that the causal factor is Pareto-positive

“for the effect factor, then, consistent with this statement of

Pareto-positive causal significance, the possibility remains
that, in a subpogulation of it, the causal factor is neutral for
the effect factor.”

In statements of positive or negative causal significance, it
seems that we should want our concepts of positive, nega-
tive, and neutral causal factors to be just as sensitive to the
possibility of causal neutrality within some contexts or sub-
populations as they are to the possibility of the reverse kind of
causal significance within some contexts or subpopulations.
Intuitively, there are three “pure” (non-Pareto and unmixed)
possible causal roles one factor can have for another: positive
significance, negative significance, and causal neutrality. The
Pareto condition allows mixtures of the first and the last to
count as positive causal relevance. But a mixture of the first
and the last is just as mixed a causal factor as a mixture of any
other two of the three kinds of unmixed causal significance.
Indeed, as will become clearer in Chapter 3, it seems best to
think of cases of (nontrivial) Pareto probabilistic causation as
examples of causal interaction (briefly explained at the begin-
ning of this chapter), in which, due to the interaction, we

have correlation without (strict) positive causal factorhood.

On the other hand, of course, one may carve up all the
possibilities however one wants, and if I do it differently
from the way you do it, then we simply arrive at different
concepts. One set of concepts may be more versatile or descrip-
tive than the other for one purpose, and vice versa for another
purpose; and each set of concepts may be just as “legitimate”
and coherent as the other. I do not think there is anything

BOf course if one adds the information that the first subpopulation is the largest
subpopulation of the general population for which the causal factor is neutral for
the effect factor, then we have as much causal truth described as is possible using
the strict definitions. But a statement providing this kind of information goes
beyond statements of the form “X is causally positive (or negative or neutral or
mixed) for Y in populaiton P”: such a statement quantifies over subpopulations.
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conceptually wrong or incoherent with the Pareto-revision, of
course. However, for the reasons given, I will stick with the
strict understanding of positive and negative causal relevance,
given in the original definitions of the previous section.

Let us now turn to the reasons advanced by Dupré (1984)
for abandoning context unanimity altogether. The main con-
sideration Dupré advances in support of abandoning the re-
quirement is the possibility of the following kind of case:

Suppose that scientists employed by the tobacco industry were to
discover some rare physiological condition the beneficiaries of
which were less likely to get lung cancer if they smoked than if they
didn’t. Contrary to what the orthodox [context unanimity] analysis
implies, I do not think that they would thereby have discovered
that smoking did not, after all, cause lung cancer. . . . If this is
correct it seems to suggest that causes should be assessed in terms of
average effect not only across different causal routes, but also across
varying causal contexts. (p. 72)

There are three points I would like to make about cases of this
kind, the first having to do with our understanding of “causal
background contexts,” the second having to do with how the
definitions of the different kinds of probabilistic causal rele-
vance can deal with examples of this kind (given a proper
understanding of contexts), and the third with Dupré’s sug-
gestion of assessing causes in terms of their “average effect.”

First, if we follow the understanding of contexts explained
in the previous section, it is not at all clear that the theory
requires us to hold fixed in the background contexts the rare
physiological condition in Dupré’s example. In the explana-
tion of contexts given in the previous section as well as in, for
example, Cartwright (1979), we are required to hold fixed all
and only those factors (other than the causal factor in ques-
tion and its effects) that are themselves causally relevant to the
effect factor in question. But is having that rare physiological
condition a cause — positive, negative, or even mixed — of
lung cancer? It need not be, given the way Dupré has formu-
lated his example.
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Consistent with the description of the example, that physio-
logical condition could be positive, negative, mixed, or neu-
tral for lung cancer. (In Chapter 3, I explain in more detail
these possibilities for factors like the rare physiological condi-
tion in Dupré’s example.) The condition could be a strong
positive cause of lung cancer; but for those with the condi-
tion, smoking helps a little. (The situation could be as de-
picted in Figure 3.3 of Chapter 3, where X is smoking, F is
the physiological condition, and Y is lung cancer.) The condi-
tion could also be a strong negative cause of lung cancer,
where the combination of the condition with smoking gives
the best possible protection. (See Figure 3.2 with X, F, and Y
interpreted as just explained.) Also, the condition could be
mixed for lung cancer, where among those with the condi-
tion, whether or not one smokes makes a big difference, and
among those without the condition, smoking makes little
difference. In this case, the condition could be negative for
lung cancer among smokers, and positive among nonsmok-
ers. (See Figure 3.4 with X, F, and Y again interpreted as
explained above.)

Finally, and most importantly, the condition could be caus-
ally neutral for lung cancer, if it is causally relevant to smok-
ing in just the right way, so that smoking is causally interme-

. diate between the condition and lung cancer. (Figure 3.5,

discussed in Chapter 3, shows how this can happen.) In this
case, the definitions given above say we should not hold fixed
that rare physiological condition when assessing smoking’s
causal role for lung cancer.

Having said this, Inevertheless think that on a proper under-
standing of causal background contexts, the rare physiological
condition in this example should be held fixed, in assessing
smoking’s role for lung cancer. This means that our under-
standing of contexts has to be revised, since on the current
understanding we do not hold fixed any factors that are caus-
ally neutral for the effect factor in question. In Chapter 3, on
interaction, we will see why we have to hold fixed some fac-
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tors, like the physiological condition in Dupré’s example, that
may be causally neutral for the effect factor in question. (By the
end of this section it will be apparent why it is necessary to
hold fixed independent mixed causes of the effect factor in
question.) Henceforth in this section, let us suppose, with
Dupré, for the sake of discussion of his example, that the
context unanimity theory does require us to hold the rare phys-
iological condition fixed.

My second point about Dupré’s example is simply to show
how the strict context unanimity theory succeeds in captur-
ing all the causal truth in the example. As in the discussion
Skyrms’s suggested Pareto weakening of the theory, we ex-
ploit the relativity of probabilistic causality to populations. In
the subpopulation of individuals without that rare physiologi-
‘cal condition, smoking is causally positive for lung cancer. In
the subpopulation of individuals with the condition, smoking
is a negative causal factor for lung cancer. And in the com-
bined population, smoking has a mixed causal role for lung
cancer. :

Given the definitions of the previous section, the fact that
smoking has mixed causal relevance for lung cancer in the
combined population implies that, in the combined popula-
tion, smoking is not a positive causal factor for lung cancer.
(The definitions imply that positive, negative, neutral, and
mixed causal relevance are mutually exclusive, as well as ex-

" haustive, of the kinds of causal significance one factor can
have for another in one population.) I agree that the claim
that smoking is not a positive causal factor for smoking in the
combined population can be misleading — especially if we put
it, as Dupré does, as the claim that “smoking did not, after
all, cause lung cancer.” But I think it is misleading only to the
extent that we lose sight of the population-relativity of proba-
bilistic causation, and perhaps slip back into interpreting the
causal claim in terms of the concept of token causation. The
claim that smoking is not a positive causal factor for lung cancer in
population P does not imply that there are no subpopulations of
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P within which smoking is a positive causal factor for lung
cancer, nor does it imply that there are no individuals in P for
whom smoking is a token cause, or would be a token cause,
of lung cancer.

When it is clearly seen that a claim of positive causal
factorhood in a population P is quite a strong claim (involv-
ing context unanimity), so that the denial of positive causal
relevance in the same population is a correspondingly weak
claim, and when the question of population-level causal sig-
nificance is properly untangled from questions about token
level causal significance, then the denial of positive causal
factorhood should no longer be misleading. Indeed, when
all this is borne clearly in mind, it seems best to say that this
is another example of the problem of probabilistic causal in-
teraction, of probability increase due to interaction rather
than to positive causal factorhood, as briefly described at the
beginning of this chapter and discussed more fully in Chap-
ter 3.

Perhaps many of us would still not wish to deny that smok-
Ing is a positive causal factor for lung cancer in Dupré’s exam-
ple. We may even wish to say that, in this example, smoking
is a positive causal factor for lung cancer in the (overall)
human population. And some may wish to say this even after

“the distinctions of the previous paragraph have been thor-

oughly digested. Perhaps our intuitive concepts are such that
“X causes Y in population P” is Judged to be true if in a
significant subpopulation of P, X is a (context unanimous)
positive causal factor for Y. Suppose (just to have an exam-
ple) that this understanding pertectly matches our intuitions,
that it is a perfectly coherent (though vague) concept, and
that it is perfectly serviceable in all contexts in which we may
ever actually wish to characterize population-level causal rela-
tions. This may all be so, but it does not mean that this way
of describing the causal facts cannot be improved on. For
example, the understanding of population causation in ques-
tion is vague, involving the idea of a “significant” subpopu-
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lation of P. In this respect at least, the context unanimity
theory is an improvement.

In general, I think there are the following two kinds of
criteria for the evaluation of philosophical theories - in par-
ticular, theories of probabilistic causation. First, a theory
should be appropriately sensitive the ways in which we use
the words denoting the concepts the theory is about (for
example, the words, “positive causal factor,” or “is a cause
of ). Before the development of a philosophically adequate
theory about something can begin, we must first obtain,
from common or scientific usage of the relevant terminology
or concepts, at least a rough idea or impression of the thing
the theory is supposed to be a theory about. This is at least a
typical starting point. But second, the theory should be sensi-
tive also to philosophical standards such as: avoiding vague-
ness, securing logical consistency, simplicity, non-“ad hoc-ness,” ex-
pressive power (the degree to which a variety of possibilities
are describable in terms of ideas described and developed in
the theory), and so on. My intention is to weigh heavily this
second kind of criterion. In any case, in particular, the vague-
ness of the idea, mentioned in the previous paragraph, of a
“significant” subpopulation, brings me to my third point
about Dupré’s argument.

That point is that there is the following problem for those
who would reject the requirement of context unanimity, and
would say, for example, that a factor X is causally positive for
a factor Y when X raises the probability of Y in all but a rare
causal context or subpopulation within which the probabilis-
tic significance of X for Y may be reversed. In Dupré’s exam-
ple, that physiological condition is supposed to be “rare.” Say
that in the relevant combined population, 1 percent of all
individuals have the condition, and that this counts as rare.
But what if the condition were not so rare? What if 5 percent
had it - or 15 or 25 percent, or 55, or 95, or 99 percent? If, for
such possible populations, we continue to relax the condition
~of context unanimity, then it is clear that we would be revert-
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ing to a “mere positive correlation” theory of probabilistic
causation, which we have already seen ample reason to reject.

On the other hand, it seems that part of the intuitive ratio-
nale for not holding that condition fixed in the original exam-
ple was that the condition was so rare. No reason for not
holding fixed such a condition that is not rare was given.
Indeed, it seems that our intuitions tell us that if that condi-
tion were not rare, but rather intermediate in frequency, then
smoking would have a mixed causal role for lung cancer. So it
seems that at some point in the progression of possible popu-
lations in which the condition becomes more and more fre-
quent, we must begin to hold the condition fixed, so that
smoking then becomes causally mixed for lung cancer. In
addition, it seems that Dupré must also say that, if 99 percent
of the relevant individuals have that condition, then smoking
is causally negative for lung cancer, since this case is entirely
symmetrical with the original case. Thus, later on in the
progression, we must again relax the requirement of context
unanimity and once again not hold the condition fixed. So
the problem arises of specifying, and motivating, “cut-off”
frequencies for the condition at which points we should begin
and then cease to hold that physiological condition fixed. I
cannot see how this can be done in a way that would not be

~-arbitrary.?

On this kind of approach, the question of whether smoking
is a population-level cause of lung cancer will turn on the
population frequency of that physiological condition, and in
an unacceptable way. Indeed, it seems that in this example, this
question should turn not at all on the frequency of individuals
with that condition. For example, a person contemplating be-

% Actually, Dupré does not advocate any such “cut-off” frequency approach, but
rather an idea that probabilistic causation is correlation in a “fair sample” of the
original population, a sample in which other causal factors are “fairly represented.”
His approach would seem not even to allow for the category of “mixed” causal
significance in a population, which itself seems to be a step backward. Also, his
conception of a “fair sample” is vague and problematic. [ will not discuss this idea
here; see Eells (1987a) for criticisms.
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coming a smoker, and trying to assess the health risks, should
not be so concerned with the population frequency of that
condition, but with whether or not he has the condition. That
is, the person should be concerned with which subpopulation he
is a member of, the subpopulation of individuals with the
condition (a population in which smoking is causally negative
for lung cancer) or the subpopulation of individuals without
the condition (a population in which smoking is causally posi-
tive for lung cancer). The population frequency of the condi-
tion can provide the decision maker with evidence about
whether he is in a subpopulation in which smoking is causally
positive, or in one in which it is causally negative, for lung
cancer, but (except for the extreme frequencies of 0 and 1) it
cannot settle the question, and hence cannot be definitive of
whether he is in a population in which smoking is positive, or
one in which it is negative, for lung cancer.

Even if cut-off frequencies could be properly motivated,
and even if some other approach could be developed that is
both in harmony with Dupré’s intuitions and not tantamount
to identifying causation with correlation, there still remains a
further problem. If, in Dupré’s example, a theory says that
smoking is simply causally positive for lung cancer in the
combined population, then statements of probabilistic causal
connection, interpreted on that theory, would in many cases
mask a significant causal truth: the fact that there is an “inter-
action” between the causal factor (smoking, in the example)
and other causal factors (the rare physiological condition, in
the example). Just as for the suggested Pareto weakening dis-
cussed before, statements of probabilistic causal connection
interpreted on such a theory could not settle the question of
whether or not there is such an interaction, of whether or not
the causal significance of one factor for another varies from
subpopulation to subpopulation. In Chapter 3, we will see
how the definitions of the previous section must be revised in
order to properly and generally accommodate the possibility
of causal interaction. :
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There is another lesson to-be learned from Dupré’s exam-
ple. So far, we have only seen examples that show why, when
assessing the causal significance of a factor X for a factor Y,
we must hold fixed factors that are, independently of X,
either positive or negative causes of Y. Dupré’s example sug-
gests another example, one that shows why we must also
hold fixed factors that are, independently of X, causally mixed
for Y.

Suppose things are the way Dupré describes them in his
example, and suppose we are interested in the causal signifi-
cance of tobacco-stained fingers, X, for lung cancer, Y, in the
general population. Of course the truth is that the factor of
tobacco-stained fingers is causally neutral for lung cancer. We
saw above that smoking, in the example, is not a positive or
negative cause of lung cancer, but rather mixed. And, as
pointed out above, that rare physiological condition also need
not be a positive or negative cause of lung cancer. But if we
hold neither of them fixed, we can expect the probability of
lung cancer given stained fingers to be greater than the proba-
bility of lung cancer given clean fingers: Pr(Y/X) > Pr(Y/
~X). This is because people who have stained fingers tend to
be smokers and because that physiological condition is so rare
in the general population. So if the theory told us to hold

“neither fixed, it would give the wrong answer that tobacco-

stained fingers is a positive causal factor for lung cancer.
Now suppose we hold fixed the factor of that rare physio-
logical condition, F (as already mentioned, the theory will be
revised in Chapter 3 to require this). Then we can expect that
stained fingers would decrease the probability of lung cancer
among those with the condition and increase that probability
among those without the condition: Pr(Y/F&X) < Pr(Y/
F&~X) and Pr(Y/~F&X) > Pr(Y/~F&~X). This is because,
among those who have the condition, stained fingers in-
creases the probability that one is a smoker, which, among
those with the condition, decreases the probability of lung
cancer; and among those without the condition, stained fin-
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gers again raises the probability that one is a smoker, which,
among those lacking the condition, increases the probability
of lung cancer. So if we hold fixed the physiological condi-
tion but not the factor of smoking, we get the wrong answer
that stained fingers is causally mixed for lung cancer.

Recall, however, that the definitions given in the previous
section say we should hold fixed all factors that are, indepen-
dently of X, causally relevant to Y. If we interpret this as
meaning, “all factors that have either positive, negative, or
mixed, causal relevance to Y independently of X,” then we
must hold fixed the factor of smoking — call this factor G.
This is because smoking has mixed causal relevance to lung
cancer, independently of stained fingers. And, of course,
given each of the four ways of holding fixed both the physio-
logical condition and smoking, the correlation between stained
fingers and lung cancer disappears: '

Pr(Y/F&G&X) = PHY/F&G&~X),
Pr(Y/F&~G&X) = Pr(Y/F&~G&~X),
Pr(Y/~F&G&X) = Pr(Y/~F&G8&~X),

and,
Pr(Y/~F&~G&X) = Pr(Y/~F&~G&~X).

And this, of course, is simply because the only reason for the
correlations (overall and conditional on F and on ~F) between
stained fingers and lung cancer is the correlation between
stained fingers and smoking, and the causal roles of smoking
for lung cancer among the F’s and among the non-F’s; so
holding fixed, in addition to that physiological condition, the
factor of smoking — which has mixed causal relevance to lung
cancer independently of stained fingers — makes the correla-
tion between stained fingers and lung cancer disappear.
Hence, we must interpret “causally relevant” — in the part
- of the definitions of positive, negative, mixed, and neutral
causal factorhood that tells us what to hold fixed — as mean-
ing “causally positive, negative, or mixed.” Also, incidentally,
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the example just described is a case of a kind of spurious
correlation we have not yet encountered. In this example, Y
is spuriously correlated with X because X is correlated with
(because caused by) a factor G that is, independently of X, a
mixed cause of Y; and G is a genuine, probability increasing,
common cause of both X and Y, positive for X and mixed for
Y.

2.4 INTERACTIVE FORKS

According to our simplest understanding of spurious correla-
tion, explained at the beginning of Section 2.1, two factors
were spuriously correlated if neither causes the other, they are
correlated effects of a common cause, and their correlation
disappears when the common cause is held fixed. And recall
that the probabilistic structure of such cases is given by

() Pr(X/Z) > Pr(X/~2Z),

@) Pr(Y/Z)> PrY/~Z),

() PrY/Z&X) = Pr(Y/Z&~X),

(4) Pr(Y/~Z&X) = Pr(Y/~Z&~X).

Propositions (1)—(4) characterize common causes Z of factors
X and Y in Reichenbach’s (1956) sense, in which the pres-

-~..ence, as well as the absence, of the common cause screens off

the correlated effects from each other. Salmon (1978) calls
this kind of probabilistic structure a “conjunctive fork.”

However, there is another kind of probabilistic structure
that has been recognized as a possibility for common cause
situations. This is the kind of structure that Salmon (1978,
1984) has called an “interactive fork.”? It is the same as a
conjunctive fork except that one or both of (3) and (4) are
changed to inequalities:

(3*%) Pr(Y/Z&X) > Pr(Y/Z&~X),
(4*) PrY/~Z&X) > PrY/~Z&~X),

7 See also van Fraassen (1977b, 1980).
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respectively. If a common cause situation has the probabilistic
structure of an interactive fork, then holding fixed the com-
mon cause, Z, either positively or negatively, will fail to
make its joint effects, X and Y, probabilistically independent

each other. That is, one or both of Z and ~Z will fail to-

screen off Y from X.

Of course, this kind of possibility must be addressed in the
theory of probabilistic causation; for according to the theory
as developed so far, holding fixed independent (of X) causes
Z of Y should render X probabilistically neutral for Y, if X is
causally neutral for Y. There are several ways in which situa-
tions can exhibit the probabilistic structure of an interactive
fork; that is, there are various causal patterns consistent with
this kind of probabilistic structure. In order to properly assess
the bearing of the possibility of interactive forks on the
theory of probabilistic causation, we must be careful to distin-
guish among these.

We have actually already encountered several examples in
which holding fixed a common cause fails to screen off its
Jjoint effects from each other. Figure 2.5, of Section 2.1, de-
picts one such example, an example that exactly fits condi-
tions (1), (2), (3*%), and (4*) for interactive forks. (Let us
assume transitivity of the chain from Z to Wto Y, so that Z is
a probability-increasing cause of Y.) Recall that in the varia-
tion of the Berkeley admissions case depicted in Figure 2.5, Z
(being male) is a probability-increasing cause of both X (be-
ing believed to be male) and Y (admission); and there is some
discrimination in admissions policies in favor of males, so
that X is, both in the presence and in the absence of Z, a
probability-increasing cause of Y. So this example satisfies
the conditions for interactive forks. But, of course, we have
seen that the theory of probabilistic causation, as laid down
so far, handles this case just fine. Since X is a cause of Y in the
example (even though both are effects of a common cause), X
should, according to the theory, increase the probability of Y,
when we hold fixed the independent cause, Z, of Y.
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' Another example having the probabilistic structure of an
interactive fork is depicted in Figure 2.8. Here, Z, X and Y
will form an interactive fork if these three conditions are met:

(5 W, X, and Y form a conjunctive fork, both conditional
on Z and conditional on ~Z,

(6) Pr(W/Z) > Pr(W/~2Z) (Z causes w),
~.(7) W screens off each of X and Y from Z, as does ~W.

These three conditions imply that each of (1), (2), (3*), and
(4*) will be satisfied by Z, X, and Y. %

2'3Essentia]]y this was demonstrated in Eells and Sober (1986). Here is a somewhat

different proof. For (1), note first that
Pr(X/Z) = Pr(WIZ)Pr(XI Z&W) + Pr(~W]Z)Pr(X/Z&~ W) .

and
Pr(X/~Z) = P{WI~Z)Pr(XI~Z&W) + Pr(~W/~Z)Pr(X/~ Z&~W).

By (6), there are positive numbers a and & such thata = Pr(W/~2Z)and a + u =

Pr(W/Z). By (5), there are positive numbers b and v such that b = Pr(X/Z&~W)

o andb+ v =Pr(X/Z&W). By (7), PHX/~Z&W) = b + v and Pr(X/~ Z&~W) = b.

So, Pr(X/Z) = (a + u)(b + v) + (1-a—wb=av+uv+b, and Pr(X/~2Z) = a(b +
v) + (1 — a)b = av + b, from which (1) follows, since uv > 0. The proof of (2) is
completely parallel. For (3*%), note first that

p(;( Y/Z&X) = Pr(W/Z&X)Pr(Y/ Z&X&W) + Pr(~W/Z&X)Pr(Y/ Z&X&~W)
an
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Here is an intuitive example of this, a variation of the
example given earlier about cold fronts, falling barometers,
and rainy days.® Let X be barometers falling, Y be rainy
days, and W be approaching cold fronts. And suppose that
W, X, and Y form a conjunctive fork as before (only now we
are using “W,” instead of “Z,” for approaching cold fronts).
Now suppose that a cause of approaching cold fronts, in this
part of the world, is westerly winds; call this factor Z. Then
Z is a probabilistic cause of W, which in turn is a probabilistic
cause of each of X and Y. By transitivity, which is plausible in
this case, westerly winds is a probability-increasing cause of
both falling barometers and rainy days, with approaching
cold fronts as the intermediate causal factor. So (1) and (2)
should hold in this example.

Now suppose that there is a westerly wind; that is, let us
hold Z fixed positively. This does not necessitate the ap-
proach of a cold front. If we now add the information that
barometers are falling, this should increase the probability
that a cold front is approaching, which in turn increases the
probability of rain. And if we instead added the information
that the barometers are not falling, then this should decrease
the probability that a cold front is approaching, which in turn
decreases the probability that it will rain. So (3*) should hold.
Now suppose that there is no westerly wind; that is, now
hold Z fixed negatively. This does not necessitate there being
no cold front approaching. So additional information to the
effect that the barometers are or are not falling, increases and
decreases, respectively, the probability that a cold front is

Pr(Y/Z&~X) = Pr(W/Z&~X)Pr(Y/Z&~X&W) + Pr(~W/Z&~X)Pr(Y!
Z&~X&~W).

By (6) and symmetry of correlation, there are positive numbers a and « such that a

= Pr(W/Z&~X) and a + u = Pr(W/Z&X). Also by (6), Pr(Y/Z&X&W) = Pr(Y/

Z&~X&W) = Pr(Y/Z&W), and Pr(Y/Z&X&~W) = Pr(Y/Z&~X&~W) = Pr(Y/

Z&~W). And by (6) again, there are positive numbers b and v such thatb + v =

Pr(Y/Z&W) and b = Pr(Y/Z&~W). So, PAY/Z&X) = (@ + u)b + v) + (1 —a -

« #b=av+uv + b, and Pr(Y/Z&~X) = a(b + v) + (1 - a)b = av + b, from which

(3*) follows. The proof of (4*) is completely parallel.
ZFor another example, see Section 4.2 (the indeterministic version of the example

depicted in Figure 4.5).
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approaching, which in turn increases and decreases, respec-
tively, the probability of rain. And this is (4%).

In this example, Z is a common cause of Xand Y, Xand Y
are causally neutral for each other; yet the common cause Z
fails to screen off the correlation between X and Y. However,
this kind of situation poses no problem for the theory of
probabilistic causation laid down so far. It is not presupposed
by the theory that in all cases in which joint effects of a
common cause are causally neutral for each other, the com-
mon cause must screen off the effects from each other. It is
only presupposed, so far, that, in such cases, when all inde-
pendent causes of one of the joint effects are held fixed in one
way, the other effect must be probabilistically neutral for the
first. The joint effects must be independent conditional on
specifications of all the causes of one of them (that are caus-
ally independent of the other).

In our example, each of Wand Z is causally relevant (inde-
pendently of each of X and Y) to each of X and Y. So,
according to the theory, to assess the causal role of X for Y (or
of Y for X) we must compare the probability of Y given X to
the probability of Y given ~X (or X given Y and X given
~Y) conditional on each of the four ways of holding fixed
both Wand Z. And condition (5) of the example implies that

X and Y are independent conditional on each of the four

ways, W&Z, W&~Z, ~W&Z, and ~W&~Z, of holding
fixed Wand Z.

This example shows that in at least some cases of interactive
forks in which the joint effects are causally neutral for each
other, when a finer description of the case is made, a conjunc-
tive fork, and a screening off common cause, can be recov-
ered. It is this feature of such cases that allows the probabilis-
tic theory of causation to deliver the correct answers about
what causes what in these cases. Also, in the example just
discussed, the screening off common cause, W, is a factor that
occurs daffer the time of the nonscreening common cause, Z
(and, of course, before the time of the joint effects). These
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two features of this example are shared by examples of inter-
active forks that have been discussed recently in the philo-
sophical literature, with one important exception that will be
discussed below. To illustrate this, and to demonstrate the
versatility of the probabilistic theory, I will now turn to some
recently discussed examples, and finally to the exception.

Salmon (1984) describes the following example. There are
two balls on a pool table, the cue ball and the 8-ball. They are
so situated that if a certain novice player attempts to put the
8-ball into a far corner pocket by shooting the cue ball di-
rectly at the 8-ball (no banking), and succeeds in doing so,
then it is almost certain that the cue ball will fall into the other
far corner pocket. Suppose, in fact, that under these circum-
stances it is almost certain that either both balls will fall into
pockets or neither will. Keeping the distinction between to-
ken and population causation clearly in mind, let us consider
the population of attempts in which this novice player shoots
the cue ball at the 8-ball without first banking. Let X be the
event of the 8-ball dropping into one of the far corner pock-
ets, Y the event of the cue ball dropping into the other far
corner pocket, and Z the event of the cue ball colliding with
the 8-ball. Suppose also that the probability of the 8-ball’s
falling into one of the corner pockets, given the player suc-
ceeds in striking the 8-ball with the cue ball, is about 0.5, so
that the probability of the cue ball’s falling into the other
corner pocket, given that the player succeeds in striking the
8-ball with the cue ball, is also about 0.5.

The factors Z, X, and Y in this example clearly form an
interactive fork: plausibly, they satisfy, (1), (2), (3%), and (4)
of the definition, above, of interactive forks. Most perti-
nently, Pr(Y/Z&X) = 1 > Pr(Y/Z&~X) = O, which is (3%).
Also, of course, neither of X and Y is a cause of the other. So
we have another example of an interactive fork in which the
joint effects are causally neutral for each other.

Let us suppose that, between X and Y, X is the “earlier”
factor (that we limit the population to cases in which one of X
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and ~X occurs before one of Y and ~Y).® Then the issue is
the probabilistic theory’s verdict concerning the causal role of
Xfor Y. Since X is causally neutral for Y, the problem for the
probabilistic theory of causation is to find, and justify, a set of
background contexts, for evaluating X’s causal role for Y,
that screen off Y from X. The question is: Can we find factors
causally relevant to Y, independently of X, that, when all are
held fixed in any given way, screen off Y from X?

Clearly the answer is yes. For one thing, in macroscopic
examples such as this one, classical physics assures us that if
we describe the collision of the cue ball with the 8-ball in
enough detail — specifying the exact relative positions of the
balls, the exact direction of motion and momentum of the
cue ball, the exact points of contact, and so on — then we can
predict with certainty whether or not the balls will fall into
the corner pockets. Let Z; range over these finer descriptions
of the collision. Then, holding fixed, positively, any of the
Z;s will confer probabilities of O or 1 on X, Y, and X&Y, and
Y is screened off from X. This illustrates the fact that we
sometimes have to formulate a common cause partition of Z/'s
in order to recover a conjunctive forklike structure.®® This
also illustrates what Salmon (1984) calls a “perfect fork,” a
common cause structure in which the probabilities of the
joint effects, conditional on the presence or absence of the
common cause, are all either 0 or 1. In perfect forks, the
common cause always screens its joint effects off from each
other, in that there is no correlation between them condition-
ally on the presence or on the absence of the common cause.

However, in order for the analysis of this example to apply
also to examples in which determinism is false, a different

* Again, a clarification of the idea of one factor’s being earlier in time than another
will be given in Chapter 5.

3 Recall that a partition is set of mutually exclusive and collectively exhaustive factors
(as noted above and also explained in Appendix 1). The conjunctive fork like
structure recovered here is actually a more general kind of conjunctive fork than
characterized in (1)—(4) above, where (3) and (4) are replaced by: Pr(Y/Z&X) =
Pr(Y/Z&~X), for each Z, in the partition.
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Figure 2.9

kind of approach is needed. Suppose Z occurs, or does not, at
a time £y, and that Y occurs, or does not, at time ¢,. Clearly the
possible states of the cue ball (including, say, its velocity and
direction of motion) at times between t, and t, are causally rele-
vant to whether or not Y occurs at ¢, (to whether or not the
cue ball falls into a corner pocket at ;). And these states are
causally independent of whether or not X occurs (of whether
or not the 8-ball falls into a corner pocket). Let us suppose,
for simplicity, that there are just two relevant possible states
of the cue ball at a time ¢,,, between times £, and ¢: ball rolling
toward the pocket with enough momentum to almost cer-
tainly carry it into the pocket (W,), and ball rolling in such a
way that it is almost certain not to fall into the pocket

(~W,).” Then Figure 2.9 (ignoring Wy for the moment) de- »

%2 A more detailed specification of the intermediate states of the cue ball would
specify the possible momenta of the ball, including direction of motion, and so on.
In this case, we would have a partition of intermediate factors, or possible interme-
‘diate states. Then Z has different kinds of causal significance for the different
intermediate factors, and these states have different kinds of causal significances for
Y. The simpler analysis given in the text can easily be transformed into such a
more detailed analysis.

114

picts the case in more detail than the first description of it
above did.

Since Wy specifies everything that is, at t,,,, causally rele-
vant to whether or not Y will occur at ¢;, and since the process
from W at t,,,to Y (or to ~Y) at ¢, does not interact with (or
“intersect”) the process from Z to X (or to ~X) — they are
now independent processes — Wy should screen off Y from X.
And the same goes for ~W,. And since W, is causally rele-
vant to Y, and is causally independent of X, it should be held
fixed in background contexts in assessing X’s causal role for
Y. In this example, an appropriate set of background contexts
would be the four ways of holding fixed, positively and nega-
tively, Z and W,. And within each of these contexts, Y is
probabilistically independent of X; so the probabilistic theory
gives the right answer that X is causally neutral for Y.

This example shares a feature noted about the example
discussed just before. There is a factor affer the time of the
nonscreening common cause that does screen the joint effects
off from each other. However, unlike the previous example,
this intermediate causal factor does not, in this example, form
a conjunctive fork with the joint effects of the nonscreening
common cause. Although this is irrelevant to the adequacy of
the theory of probabilistic causation to such cases, it is inter-

esting to note that if we define Wy analogously to the way W,

was defined (Wy is causally intermediate between Z and X as
shown in Figure 2.9), and if we set W = Wx&WX’ then,
plausibly, W, X and Y do form a conjunctive fork.™ In this
case, this example has the structure depicted in Figure 2.8,
and is analogous in all formal respects.

Salmon (1978, 1984) also gives a microscopic, and indeter-
ministic, example of an interactive fork. The example in-
volves the role of a conservation law in a phenomenon called

If the correlation between Wy and W, is not perfect,then the partition of the four
ways of holding these two factors fixed will, with X and Y, form a conjunctive
fork, in the more general way of understanding conjunctive forks, noted above.
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Compton scattering. Suppose we can consider a given elec-
tron to be at rest, and suppose an energetic photon, with
energy E, collides with this electron. Call the event of this
collision Z. There is a certain probability that a photon will
emerge from the collision with energy Ej; call this event X.
And there is a certain probability that an electron will emerge
from the collision with energy E,; call this event Y. Suppose
E, and E, add up to E, as the law of conservation of energy
demands. Because of this conservation law, there will be a
correlation between events X and Y, conditional on Z. For
example (as Salmon illustrates the point), if the probability of
X given Z is 0.1 and the probability of Y given Zis 0.1, then
the probability of X&Y given Z is not 0.01, the product of
the two probabilities, but rather 0.1. This is because the law
of conservation of energy (and the fact that E, E;, and E, are
related as the law demands) implies that X will occur if and
only if Y does. '

So Pr(X&Y/Z) > Pr(X/Z)Pr(Y/Z), which implies (3*) of
the characterization of interactive forks above; plausibly (1)
and (2) are also satisfied. And Salmon points out that this
example, unlike the one involving billiard balls analyzed
above, is not susceptible to analysis as a perfect conjunctive
fork. The example, Salmon says, is “irreducibly statistical.”
No more refined or detailed description of the collision will
_ necessitate the emergence of a photon and electron with given
energies. However, if this is the only relevant difference be-
tween the Compton scattering example and the billiard ball
example (which it actually is not, as noted below), then the
probabilistic theory of causation can avoid the conclusion
that X is a cause of Y, or Y a cause of X, in the same way as
explained above for the billiard ball example. Whether or not
an interactive fork is analyzable as a perfect conjunctive fork
does not, by itself, control whether or not the probabilistic
theory can correctly analyze the causal relations among the
components of an interactive fork.
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Let us focus on what the probabilistic theory has to say
about the causal role of X for Y; exactly parallel consider-
ations will apply to the question of the role of Y for X. Factor
Z is a cause of factors X and Y. So, again, in order for the
temporal priority requirement (Chapter 5) to be met, Z must
be temporally prior to each of X and Y.** Let us say again that
Z occurs at ty and Y occurs at ¢,. Z is the event of the collision
at fyand Y'is the event of the electron having energy E, at time
4. Let Wy, range overstates of the electron atatimet, ,, between
times f; and ¢,. These will specify the energy of the electron at
the intermediate time.* Each such state is, of course, causally
relevant to Y, independently of X; so they must be held fixed
in assessing X’s causal role for Y. And, of course, conditional
on any of these intermediate states, Y'is probabilistically inde-
pendent of X; so again, the probabilistic theory gives the cor-
rect answer that X is causally neutral for Y.

Also, if we let Wy/'s range over intermediate states of the
photon, then the partition of Wy&W,,’s forms a conjunctive
fork like structure with X and Y, in the sense that each ele-
ment of the partition screens X and Y off from each other.
Further, a coarser partition of intermediate states would make
this example formally equivalent, in terms of factors and
probabilities, to the billiard ball example, as depicted in Fig-
ures 2.8 and 2.9. The coarser partition would simply disjoin

*In discussing this microscopic example involving fast particles, we are coming

close to having to take account of relativity of simultaneity and of temporal prior-
ity, described in the theory of special relativity. This will be especially pressing
when discussing the Einstein—Podolsky—Rosen paradox, below. For now, we may
Jjust note that in this example, X and Y each fall in the future light cone of Z, so that
each is absolutely future to Z.
So in this example the two particles have definite energies at intermediate times,
and | am assuming (falsely) that the example is not of the “Einstein—Podolsky—
Rosen” type, which will be discussed below. Whether or not, physically, the
Compton scattering phenomenon is of the EPR type is beside the point I want to
make here, which is simply that the difference between determinism and indeter-
minisin (or whether or not an interactive fork can be analyzed as a perfect conjunc-
tive fork) does not by itself control whether or not the probabilistic theory will give
the right-answers in an interactive fork situation.
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those possible intermediate states that are positively causally
relevant to each of X and Y into one factor, and disjoin the
others into a second factor, the negation of the first.

The billiard ball example and the Compton scattering ex-
ample are disanalogous in that one is analyzable as a perfect
fork and the other is not. However, they are analogous in that
they share enough structure for the second analysis given of
the billiard ball example to apply also to the Compton scatter-
ing example. In each case, the probabilistic theory delivers
the correct answers about what causes what.

However, there is another kind of interactive fork possibil-
ity for which the analysis is not so clear. These are examples of
the “Einstein—Podolsky—Rosen” (EPR) kind. In these exam-
ples, roughly, factors Z, X, and Y are described that form an
interactive fork, where the joint effects X and Y are spacelike
separated, and yet there is no factor (or partition of factors)
that describes the state of the system at times before the occur-
rence of the joint effects and that screens the effects off from
each other.* This seems especially troublesome for the proba-
bilistic theory of causation, since it seems that we cannot say
that either of X or Y is causally relevant to the other, given the
“locality” requirement of special relativity theory, understood
as meaning that causal processes cannot exceed the speed of
light. In the remainder of this section, I will briefly explain
some of the issues and some of the bearing of the EPR paradox
on the probabilistic theory of causation.

Here is one schematic version of the EPR paradox.” Some

¥ Two events are spacelike separated if they are outside each other’s light cones — that
is, if they are so spatially and temporally situated that no subluminal, or luminal,
process could originate at the time and place of either of the two events and arrive
at the time and place of the other. In this case, neither is absolutely future or
absolutely past to the other, according to special relativity theory. If, on the other
hand, a subluminal process could connect two events, then the two events are said
to be timelike separated, in which case the two events stand in a definite temporal
priority order in all reference frames, according to special relativity theory.

FFor other discussions from a philosophical point of view, see, for example, the
following (on which the discussion of the EPR paradox here is mainly based):
Skyrms (1980, 1984b), van Fraassen (1982), Jarrett (1984), Salmon (1984).
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Figure 2.10

event creates two particles that shoot out in opposite direc-
tions. At a later time, after the particles are well separated,
measurements are made on the two particles. The results of
the measurements are called “up” and “down,” relative to the
spatial orientations of the measuring devices. Let X be that
the measuring apparatus on the left gets result “up” (~X is
“down” on the left), and let Y be that the measuring appara-

“'tus on the right gets result “up” at (~Y is “down” on the

right). Let Z; range over states of the two-particle system,
where the Z’s can say what the system is like at any time up
to, but not including, the time of the two measurements.
Finally, let V; and W, range over states of the left and right
measuring devices, respectively; that is, the Vs and W,’s
range over the different possible spatial orientations of the
devices. This much of the causal structure of the example is
depicted in Figure 2.10.

Quantum mechanics implies that, given any state of the
two-particle system, if the two detectors make measurements
in the same direction (that is, with the same spatial orienta-
tion), then X and Y will be perfectly anticorrelated, and each
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will have probability 0.5. For all i and j, Pr(Y/Z& V& W &X)
=0<1=Pr(Y/Z&V&W&~X), and Pr(X) = Pr(Y) = 0.5.
Experimental evidence confirms this. The “paradox” of the
EPR paradox is that, according to quantum theory, there is
this anticorrelation between factors X and Y (or correlation
between ~X and Y), where it seems that neither factor can be
causally relevant to the other (since spacelike separated), and
where the correlation does not disappear when all factors
causally relevant to the events X and Y are specified. Bell
(1964, 1971) showed that no theory — no matter what caus-
ally relevant factors (or “hidden variables”) are admitted into
the states Z; of the system (as long as the hidden variables do
not depend on the settings of the detectors) — could both give
independence of the two measurement results, conditional on
the state of the system and detector settings, and predict the
actual experimental and quantum mechanical statistics. Let
me now briefly clarify these ideas.

One kind of “locality” condition, inspired by special relativ-
ity theory, is that the result on the right-hand measurement
device should be probabilistically independent of both the
setting and the result on the left, conditional on a state of the
two-particle system and on the state of the measurement de-
vice on the right — and the same in the other direction, from

right to left. The state of the two-particle system, together

with the orientation of the right-hand measurement device,
should screen off the result on the right both from the setting
on the left and from result on the left, and the same in the
other direction, according to this understanding of locality.
Roughly following Jon Jarrett (1984), let us call this the condi-
tion of strong locality (the notation here differs from Jarrett’s):

For all i, j, and k&,

Pr(Y/Z&W,) = Pr(Y/Z& W&V &X)
= Pr(Y/Z&W,&V&~X)
= Pr(Y/Z&W,&V))
= Pr(Y/Z& W &X)
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"= Pr(Y/Z& W, &~X), and
PrX/Z&V)) = PrX/Z&V&W,&Y)
= Pr(X/Z& V& W &~Y)
= Pr(X/Z&V&W,)
= Pr(X/Z&V&Y)
= Pr(X/Z&V,&~Y).

(Of course, there is some redundancy, on the right-hand sides,
in this formulation of strong locality; for example, the first,
second, sixth, and seventh lines alone would be sufficient to
characterize the idea.) Quantum mechanical predictions vio-
late strong locality. Einstein, Podolsky, and Rosen (1935) con-
cluded that quantum theory must be incomplete - that there
must be factors that the theory has failed to take account of
(“hidden variables”) that, if included in the Z/'s, would yield
the independence embodied in the strong locality condition.

However, experimental data is in harmony with the predic-
tions of quantum mechanics. And Bell’'s theorem (1964,
1971), mentioned above, implies that, as long as any new
hidden variables do not depend on the Vs and W}’s, there can
be no probability function describing the experiment de-
scribed above that both satisfies strong locality and predicts
the quantum mechanical and experimental statistics. Given
special relativity, it is very plausible that the hidden variables,

~ included in the Z’s, should not depend on the settings of the

measuring devices, the Vs and W,’s. This is because the
devices can be set, each in a random manner, and each at “the
last moment,” at space-time points that are spacelike separated,
both from each other and from the particles. As Skyrms
(1984b) points out, the choices of settings can be made by
separate indeterministic quantum mechanical devices whose
operations we have every theoretical reason to believe are
independent of the state of the two particle system.

Strictly speaking, however, what special relativity pre-

~ ¢ludes is superluminal transmission of information-carrying

signals — that is, the transfer of such signals between spacelike
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separated space-times. The idea of a “signal” has what has been
called a “broad” and a “narrow” connotation. In the broad
sense, a signal can be transmitted if there is some kind of
correlation between the outcome on one apparatus and the out-
come on another. In the narrow sense, a signal is transmitted if
there is a transfer of information from one apparatus to another.
This distinction between the broad and narrow senses of signal
has a precise formulation, which I will explain below. Special
relativity only precludes superluminal signals in the narrow,
information-carrying sense of signal. Because of this, quan-
tum mechanic’s violation of strong locality is compatible with
special relativity, as I shall now explain.

Suppose two experimenters are stationed at the spacelike
separated space-times of the left- and right-hand measure-
ments in the experiment described above, one experimenter
on the left and the other on the right. The two experimenters
can decide the orientations of their respective detectors, but
(according to quantum theory) they cannot control the out-
comes on their detectors. If, given a state Z; of the two particle
system and a state W, of the right-hand detector, there were a
correlation between the state, v, of the left-hand detector and
the outcome, Y or ~Y, on the right-hand side, then the experi-
menter on the left could transmit (at least in a probabilistically
reliable way) a superluminal signal about the state of his detec-
tor to the experimenter on the right. (The state Z; of the two-
particle system and the state W, of the right-hand detector
could, theoretically, be prearranged.) This would be an infor-
mation-carrying signal, and thus a signal in the narrow sense
of signal. Special relativity rules out this kind of signal.

In addition to ruling out this kind of correlation, between
state on one side and outcome on the other (conditional on any
state of the two-particle system and any state of the detector
on the other side), strong locality also rules out correlation
between outcome on one side and outcome on the other (condi-
tional on any state of the system and any state of the detector
on the other side). While the first kind of correlation is ruled
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out by special relativity, the second is not. This is because
although an experimenter on one side can decide the state of
his detector, he cannot control the measurement outcome, and
thus cannot use the outcome to send a signal to the other experi-
menter, in the “narrow” sense of “signal” that means “transfer
of information. "

In light of special relativity, this suggests a locality require-
ment that is weaker than strong locality, and, in light of the
success of quantum mechanics, more plausible: Given any
state Z; of the two-particle system and any setting W, of the
right-hand measuring device, the measurement result on the
right, Y or ~Y, is independent of the setting V; on the left-
hand device — and the same in the other direction, from right
to left. This means that, conditional on any state of the two-
particle system and any state of one of the detectors, the result
of the measurement on the one detector is independent of the
state of the other detector, but not necessarily of the result of
the other measurement.

Again roughly following Jarrett (1984), let us call this the
condition of weak locality:

For all {, f, and k,
Pr(Y/Z&W,) = Pr(Y/ Z&W,&V)),and
Pr(X/Z&V) = Pr(X/Z&V&W,).

The difference between strong and weak locality is that
strong locality requires independence of the outcome on one
side from bhoth settings and outcomes on the other side, while
weak locality only requires independence of the result on one
side from the setting on the other - all conditional on a state of
the two-particle system and a setting on the one side.

The predictions of quantum mechanics are in harmony not
only with experiment, but also with weak locality. But as
mentioned above, these predictions violate strong locality.
Jarrett (1984) shows that strong locality is logically equivalent

®Jarrett (1984) reports a proof by Ghirardi, Rimini, and Weber (1980) that no su-
perluminal signal can be produced by quantum mechanical measurements.
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to the conjunction of weak locality and a condition he calls
“completeness”:

For all {, j, and k, ,
Pr(Y/Z& W &V) = Pr(Y/Z&W &V &X)

= Pr(Y/Z&W &V &~X),and
Pr(X/Z&V&W,)= Pr( X/ Z&V&W&Y)

= Pr(X/Z&V&W &~Y).

(Of course, there is some redundancy, on the right-hand
sides, in this formulation of completeness; for example, the
first and third lines alone would suffice to characterize the
idea.”®) Quantum mechanical predictions violate complete-
ness. If we hold fixed the state of the two-particle system,
and set both detectors in the same direction, then X and Y are
perfectly anticorrelated, though this correlation does not
make signaling possible.

What is the bearing of this on the probabilistic theory of
causation? If we consider a population of experiments in
which the state of the two-particle system does not vary, and
the orientations of the two detectors are the same and do not
vary, then the probabilistic theory tells us that X is a negative
causal factor for Y in this population, since in this population
Pr(Y/X) = 0 < 1 = Pr(Y/~X) (note that this population is
homogeneous with respect to all factors causally relevant to
Y independently of X).* There are several possibilities open
Pt is easy to see that strong locality is equivalent to the conjunction of weak locality

and completeness, given the way in which strong locality and completeness have
been redundantly formulated here. Suppose strong locality. Weak locality is just the

equalities, for i, j, and k, between the first and fourth probabilities and between the
fifth and eighth probabilities given in the formulation of strong locality above,

which equalities follow by transitivity of equality. And completeness is just the .

equalities, for all i, j, and k, among the probabilities in the first triple, and among the
probabilities in the second triple, of right hand sides in the formulation of strong
locality above. Now suppose weak locality and completeness. Let i, j, and k be arbitrary,
for the proof of strong locality. Pr(Y/Z&W,) = Pr(Y/Z&W,& V), by weak locality;
and Pr(Y/Z&W,& V) = Pr(Y/Z&W,& V& X), by completeness. This gives us that
Pr(Y/Z&W,) = P Y/ ZE&W &V &X), the first line of the formulation of strong
locality above. The rest of this part of the proof follows the same pattern.

“It is perhaps worth noting that, given quantum mechanical statistics, when the
independent causally relevant factors (the Z/’s, the Vs, and the W,’s) are allowed to
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as to how assess, or adjust, the probabilistic theory in light of
this.

If we wish to deny that X is causally relevant to Y in the
example, then we could include in the theory, by fiat, the
condition that one event can only be causally relevant to
events that lie in the first event’s future light cone, a possibil-
ity noted by Skyrms (1984b). However, it seems that this
approach cannot really get to the heart of the matter, that it
cannot make contact with the reasons why one would wish
to deny that X is causally relevant to Y in the example. When
X occurs, so does ~Y. Now suppose ~Y is, in a noncontro-
versial way, positively causally relevant to a third event, U,
that is within the future light cone of X; and suppose that X is
otherwise irrelevant to U (for example, Y and ~Y each screen
off U from X). The requirement that effects must lie within
the future light cones of causes will not prevent us from
saying that X is a cause of U. But it seems that the idea that X
causes U in this example should be just as unsatisfactory as
the idea that X is causally relevant to Y, for those who wish
to deny that X is causally relevant to Y.

Another possibility is to deny that causation must be
local — in the strong sense of locality, of course, whose denial
is consistent with weak locality, does not imply the possibil-
ity of superluminal, information-carrying signals, and is thus
not in conflict with special relativity. In this case, the probabi-
listic theory would give what may be the right answer, namely,
that X is causally relevant to Y: In the population described
above, X is causally negative for Y. Note that if we adopt this
position, then we are forced to say also that Y is causally
negative for X, violating asymmetry of causation. This is
because (1) the population is homogeneous with respect to all
factors that have to be held fixed in assessing the causal role of
either of X or Y for the other, (2) correlation is symmetric,

vary (specifically, when the orientations of the detectors with respect to each other
differ from each other in different ways), then X’s probabilistic (or “nonlocal
causal”) role for Y will vary as well.
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and (3) neither event is (in special relativity theory) “abso-
lutely” temporally prior to the other, the two events being
spacelike separated. This third fact means that, if we agree
that X is causally relevant to Y, then we cannot rule out the
idea that Y is causally relevant to X on the basis of consider-
ations involving the temporal order of events. This follows
unless we say (implausibly, it would seem) that causal rele-
vance is relative to frame of reference.

A denial of strong locality requires a little care in the formu-
lation of a temporal priority requirement. In Chapter 5, the
requirement will read roughly like this: If X and Y are timelike
separated (so that they are within each other’s light cones),
then X can be causally relevant to Y only if X is before (and
thus absolutely before) Y. This formulation does not rule out
symmetry of causation between spacelike separated events,
but it does rule out “absolutely backwards” causation.”' Of
course, a denial of (strong) locality does not come with an
account of a mechanism of nonlocal causation (and the idea of
physical mechanisms does not explicitly enter into the theory
of type level probabilistic causation anyway). But this would
nevertheless seem to be one consistent and coherent way of
developing one concept of cause.*

Clearly, all this cannot be settled here, since the question of
the possibility of physical mechanisms behind nonlocal “connec-
tions” is so highly relevant, and since only physical theory
can address this question.* I have nothing more to say about
the bearing of EPR phenomena on the probabilistic theory of
causation — except that it also seems clear that it would be
premature to conclude that the probabilistic theory of causa-
tion must exclude EPR phenomena, or to conclude that it
simply does not apply to these cases.

“1t is perhaps worth reiterating here that the delicate idea of ordering event fypes in
time wil] be clarified in one way in Chapter 5.

“2 Compare Skyrms (1984b).

“ Compare Salmon (1984, pp. 258-9).
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3

Causal interaction and probability
increase

For the examples of spurious correlation discussed in Chapter
2, it sufficed to hold fixed all (independent) positive, nega-
tive, and mixed causes of the candidate effect factor, in order
for the probability-increase idea to deliver the right answers
about what caused what. For these examples, only factors
that were causally relevant to the candidate effect factor needed
to be held fixed. In this chapter, I will argue that other kinds
of factors, which may be causally irrelevant to (neutral for) the
effect factor in question, must be held fixed as well, if the
probability-increase theory is to deliver the right answers in
other kinds of cases.

For example, if the right answer in Dupré’s example, dis-
cussed in Chapter 2, is that smoking has a mixed causal role
(not positive, negative, or neutral) for lung cancer, then it
will be necessary to hold fixed the factor of that rare physio-
logical condition. Otherwise, causal relevance would go by
average probabilistic impact of smoking on lung cancer,
across the presence and absence of that condition, and this
cannot give the correct answer of mixed causal relevance.
However, as noted in Chapter 2 and explained more fully in
this chapter, that physiological condition need not itself be a
positive, negative, or mixed cause of lung cancer. '

At the beginning of Chapter 2, the possibility of there
being such factors as that physiological condition in Dupré’s
example was called the problem of causal interaction. In Section
3.1, I give a simple formulation of the idea of interaction that
characterizes such cases, and I argue that interacting causal
factors must be held fixed in assessing causal roles.
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