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V ious limitations imposed by
We therefore find that the only obvious i 0s¢
virtue of the physical nature of predictive activities on the prediction of
by Bare due to:
A ():) tlirc finite operating speed of the computer and of measurement
iring t, — t; > At,+ At,+ 4t), . . ’
(req(lilil)r Agnzot bcling sufficiently large to interact with some B, A
(iii) the physical impossibility of B learmng of the construction (;) A
Neither (i) nor (iii) are the case if A is 1tse-lf a predlctmidanf isa
finite prediction task, and (i) is a physical requirement devoid of any
logical significance. S .
ogl:;/c c%)nclude that predictors are in principle Predmtablc, ami
so that there is therefore no logical reason why in a dcterm\lms
universe any system should not be predlctable.i
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X Introduction

TH1s paper contains a suggested quantitative explication of probabilistic
causality in terms of physical probability.  The main result is to show
that, starting from very reasonable desiderata, there is a unique mean-
ing, up to a continuous increasing transformation, that can be attached
to * the tendency of one event to cause another one’. A reasonable
explicatum will also be suggested for the degree to which one event
caused another one, It may be possible to find other reasonable expli-
cata for tendency to cause, but, if s0, the assumptions made here will
have to be changed.

I believe that the first clear—cut application in science will be to the
foundations of statistics, such as to an improved understanding of the
function of randomisation, but I am content for the present to regard
the work as contributing to the philosophy of science, and especially to
what may be called the * mathematics of philosophy*. Light may also
be shed on problems of allocating blame and credit, I hope to con-
sider applications to statistics on another occasion.?

Ina previous note® I have tried to give an interpretation of ‘an event
F caused another event E * without making reference to time. It was

presumably clear from the last three paragraphs, which were added in

* Received 19. 1. 1960

1 Compare : (i) Hans Reichenbach, * Die Kausalstruktur der Wele und der Unter-
schied von Vergangenheit und Zukunft ', Ber. d. Bayer. Akad. d. Wissensch., math.-nat.
Abt., 1925, PP- 133-175; or Chapter 3 of his book Modern Philosophy of Science,
London and New York, 1959; (i) Norbert ‘Wiener, ‘ The theory of prediction ’,in
Modern Mathematics for the Engineer (ed. by E. F. Beckenbach), New York, 1956, pp-
165-190. The present work goes further than Reichenbach’s in offering a definite
explicatum. It bears liedle resemblance to Wiener'’s work, which is mathematically
much more advanced,

* The present paper owes much to correspondence and discussion with Mr E. M. I..
Beale, Professor Bruno de Finetti, Professor K. R. Popper, Professor L. J. Savage,
Mr Christopher Scott, and especially to Dr Oliver Penrose, The Referees and Editor
have also been helpful.

3 This Journal, 1959, 9, 307-310
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proof,! that I was not satisfied with my attempt.? I shall describe the
note as the * previous paper ’ but it will not be necessary for the reader
to refer back.

The present paper is more ambitious in that it is quantitative, but
less so in that it assumes, at least at first, that F is earlier than E. (It may
be possible to interpret the explicatum more generally.) As in the
previous paper I shall take for granted the notion of physical (= mater-
ial) probability. In order to avoid misunderstanding I must mention
my opinion that in so far as physical probability can be measured it can
be done only in terms of subjective probability, but this opinion will
not affect the arguments below. Likewise the notion of an ‘ event’
will be taken for granted. In some earlier drafts I included material
dealing with the meanings of * event ’, * probability ’, and ‘ definition ’,
and with the modifications of the analysis required in order to cope

with the possibility that the future may affect the past. I have omitted
this material here for the sake of brevity.

2 Notation and General Outline

Propositions and events will be understood in a very general sense,
and will be denoted by the symbols E, F, G, H, and U. These will be
combined by means of the logical connectives ‘.’ meaning ‘and’,
‘=’ meaning ‘not’, and ‘ v’ meaning ‘ or’. A vertical stroke, ‘|,
will mean * given’, as in the expression P(E | H), the probability of E
given H.  Similarly O(E | H) will mean that the odds of E given H,
ie. P(E| H)/P(E| H). Sometimes some or all of what is * given ’ is
omitted from the notation for the sake of brevity. A colon will be
used to mean ‘ provided by’ or * by’ or ‘ from’, as in

I(E : F| G) = log(P(E| F. G)[P(E | G)),
which can be read from left to right as the amount of information
concerning E provided by F given G.  Another example of the colon
notation is
W(H:E|G)=log(P(E| H. G)/P(E| H. G))
— log(O(H | E.. G)/O(H| G)

=IH:E|G)— IH:E|G),

1'The words “added in proof’ were omitted in error, and the effect was

peculiar.
21 find that Reichenbach made a similar error when defining the expression

See Appendix L.
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- The general plan of the paper is to suggest explicata for:
(}11) Q(E : F), or Q for short, the * causal support for E provided by F
?r the tendency of Fto cause E’. The explicatum that the argumen;
orces upon us is the weight of evidence against Fif E does not happen
;)Vfgi : fl))’ 1or more explicitly, W(F :E| U . H), where U and H are
clined below. In order to formulate enough desiderata it is neces
to gtroduce some auxiliary notions. -
(u))’l';}‘f strength of a causal chain Jjoining F to E
1) The strength of a cau joini ' i
nets will be defm%d in Sectiosr:;lsl l;e:r{zullf.l)g o (Cavalchns and
(1v) x(E: P), or x for short, the contribution to the causation of E
gr?i:(ifd by F, ie. the degree to which F caused E. This will be
fc_ he as the strength of a causal net Joining F to E, when the details
of the net are co'mplctely filled in, so that there are no relevant events
l(;Ilrutl;:ed. (I avoid the use of the letter C for either Q or x, because it
s been used to mean corroboration.t) An example is given in
Apl;fndl}:ll g to slll)ow that Q and x cannot be identified.
would not be appropriate to define y as the limit of
lt‘no.n? and more.detailed nets ; for, if space and time are coniit;il:)g\:sh Stl(l)i
miting operation could be done in a biased manner so as to, et
‘eritlre‘ly the wrong result ; like a lawyer making a case by specf:;ial
:lee ;uc;on pf th.e eYldence. We must have the whole truth in order to
o p% u} 11llarmmple. (Comparc the first Appendix.) If, however,
: events fill the relevant parts of space and time, and we let the events
ec:(I)nme smz}ller and smaller, then the limit should be unique.
o frrezizscal uses (:i' the notion _°f causality, judgments of approxi-
ot ey ;1111:. are always made in order to reduce the complication
_Itis possible to draw an analo
-trlc':al resistance network, with a refiz,tfxf: iflc:azhc :liilrlfl:.l nirtx i}nu(i ::aflec-
1t 1s necessary to imagine a rectifier placed in each link in orde;) gty
prevent a flow of causal influence backward in time. It is then tem to
ing to define the degree of causality between the input and outputpo;'

1 See, for example, ¢ We; i
3 ple, * Weight of Evidence, Corroboration. E
Information, and the Utility of Experiments’, J- Roy. Stat ;;'ocx
319;312 r,l where there are further references. o
arl R. Popper, The Logic of Scientific Di
' per, iscovery,
mostly published in this Journal, 1954, 1957, and 1958}'.
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the causal net as the effective resistance of the corresponding causal
network. This analogy suggests that the causal resistances should be
defined in such a2 manner that they are additive for chains in ‘ series’,
and such that their reciprocals are additive for chains in ‘ parallel *. Tt
turns out that the analogy cannot be pressed as far as this, but it is one
of the themes of the paper.

The main part of the paper consists of a list of assumptions, and
deductions from them, leading up to the above explicatum for Q.
Afterwards a general explicatum will be suggested for x, but this will
not be deduced in the same formal manner. It is fairly convincingly
unique for causal nets of the ‘ series-parallel * type, and has a certain
cogency in the general case.

3 Small Events
Until near the end of the paper all events will be assumed to occupy

small volumes of space (more precisely : have small diameters) and
occupy small epochs of time. For the most part ‘space’ could be
interpreted in a more general sense than as ordinary three-dimensional
space ; for example, it could be phase space or Hilbert space. On the
other hand time will be assumed to be well-ordered and one-dimen-
sional. There must be some sort of metric in both space and time, in
order that smallness and contiguity should have a meaning. If the
metrics of space and time have been mixed up, as in the theory of
relativity, then they will be assumed to be unmixed by the use of a
fixed frame of reference. (Dr O. Penrose has pointed out that the
present work is consistent with the theory of relativity provided that
causal influence does not travel faster than light.)

4 Causal Support, or Tendency to Cause

Let H denote all true laws of nature, whether known or unknown,
and let U denote the ‘ essential physical circumstances * just before F
started. When we talk about * essential physical circumstances’ we
imply that the exact state has a probability distribution. An equi-
valent description is to say that a system is one of an ‘ ensemble . (I
must admit that there is more than meets the eye in this description,
since in quantum mechanics the word ‘state’ can be given at least
eight interpretations, seven of which may be relevant here. See
Appendix 3.) ‘
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In order to arrive at explicata for Q and x I have found it necessary
to discuss them in an interconnected manner ; i.c. there do not appear
to bf: enough desiderata for Q, considered by itself, to circumscribe its
possible explicata to a satisfactory extent.

In the present section the ground will be cleared by discussing what
Q and x depend upon. It is convenjent to think of this dependence
In terms of notation, which seems to bring out the main points better
than a purFIY verbal discussion. For example, the symbols Q and x
are abbreviations for Q(E : F), and x (E: F), and these expressions are
themselves abbreviations for QE:F|U.H)and x(E : F |U.H). To
takc.: U and H for granted, and omit them from the notation, is p;raﬂel
to hn-gulstlc usage. If we say that it is bad for eggs to throw them in
the air, we take it for granted that there is 2 law of gravitation, and
that there is a large gravitational body nearby. ’

Events later .than F and earlier than E may be relevant to y but not
to Q. Accordingly I shall assume that Q(E : F) depends only on
P(E| F), P(E| F), P(E), and P(F). It is natural to define Q(E:H G)
:; tl(l;c same function of these four probabilities, but made conditional

Even Q(E:F|U.H)is an incomplete notation. If the subjective

element is to be removed from the expression “F caused E’, then it
must be expan ¢ inst Fi ;
‘ panded to  F, as aganst Fp, caused E rather than E’ ’, where

the. suffix, D, to F.(the negation of F), represents a complete specifi-
cation of the relative probabilities of the mutually exclusive events

whose disjunction is F. (D represents a probability distribue
could use a notation like P proba tYdlstnbuuon.) We

Q(E/E": FfFp| U. H)
or
QE :F/fp| U.H.(EVE)),
the degree. of causation of E rather than E’ by F rather than Fp,.
The failure to recognise all the variables on which tendency to

cause is based was for me one of the stumbling blocks in capturing the

notion of probabilistic causality, if indeed I have fully succeeded even
now.

It should be held in mind that EvE’ js regarded as taken for
granted in the four probabilities on which Q is assumed to depend
when we are concemed with the causation of E rather than E', When
we take E VE’ for granted we may write E instead of E.
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s Assumptions and Deductions Leading to the Explicatum Jor Q

In order to make my assumptions clear I shall list them in the form
of axioms, A1, A2, . ..: and the deductions from them will be
called theorems T1, T2, . . ., for ease of reference. On a first quick
reading the justifications and proofs should quite definitely be skipped,
but I have not postponed them to a later section. (I did so in an
earlier draft, but the cross-referencing made the paper more difficult
to read.) The justifications of the most easily acceptable axioms, and
the proofs of the easily proved theorems will be omitted.

Let P(F) = x, P(E| F) = p, P(E| F) = ¢, P(E) = r, so that

r=axp+ (1~ g, x=(r— g/(p—9g).
Unless p =g (in which case r = p=q), x is a function of p, ¢, and r.
Therefore by an assumption of the previous section we have :

AL QE:F|G) is a function of p, g, 1, unless perhaps p= q=r.
We call this function Q(p, g, 1) so that the symbol Q has two slightly
different meanings. The symbol G will usually be taken for granted and
omitted.

A2. Q isa real number or 0 or — oo ; but it may be indeterminate for
special values of p, q, and r, such as when two of them are equal or one of
them is o or 1. (It seems sensible to look for a scalar explicatum rather
than a ‘ vector ’.)

The next two axioms deal with monotonicity and continuity.

A3. (i) Q increases with p if q and r are held constant.

(i) Q decreases when q increases if p and r are held constant.

-

A4. Q is continuous except when it becomes infinite or indeterminate,
if there are such points.

As. IfP(F) # 1, meaning, as usual, P(F | U.H) # 1, then Q has the
same sign as p — r, and therefore also the same signas p— q,and asr — q9;
and if these expressions vanish we may say that F has no tendency to cause E,
and we put Q= o. (This axiom removes a gloss from A1.)

AG. Any causal net joining F to E, as defined below in Section I1, has a
causal strength, S, and a causal resistance, R.  These are positive numbers,
except that if p= q= 1, orif p or g is 0 or 1, we may get zero or infinite
resistance or strength. (An important part of the definition of a causal
net is that it consists only of events that actually occurred or will have
occurred.)

A7. Thereis a functional relationship between R and S, S=f(R),
R = g(S), where f and g are absolute functions inverse to one another.
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- A8. fand g are continyoys decreasing functions.

A9. x(E : F) is the strength of the complete causal et JjoiningFtoE. More

precisely, it is the limit, as the sizes of the events tend uniformly to zero, of the

strengths of nets ; where each net of the sequepice join§ E to E, consists of a

ﬁn'ite numbe.r of events, and omits 1o events temprny y“between F and E
{)t is not claimed that thjs axiom is formulated with complete rigour,
. il
ut it is used'u% only a weak form for the explication of Q (in the proof

(If we assume that the de i
ctio \ ! gree to which F caused
E has an objectlvc.meanmg, with a precise numerical value, we are
comnuttefl to the @ea that there is 2 complete world, uninfluenced
from outmfle. Outside influence could be allowed for by assuming that
the numerical values are not absolutely precise.

Aro. The strength of the causal net consisting of F and E alone is equal to

(We shall clearly

The strength and resistance of a net, w, joini
» #, Jomning F to E
byS(E:F,n)andR(E:F]n). jomng o
Ar1. Let n be 4 ‘chain’, F= Fob—>F — ..
S(E : F| n)is some function, $(s,, s,,
Sn-1, of the links. “Here
d:" = S(FH-I : Fi l Ui . I'I),
¢ essential physical circumstances just befc
began. (Causal chains are formally defined in Section 8J) eore B
s (Proof from Ato and Arr)
12. ¢ is a symmetrical function, i.e. the arguments of th ]
permuted withoyt changing its valye. et o th funcion can be
A13. $ isq non-decreasing function of each of its a i
rguments. (A chain
cannot be weakened by strengthening any of its links wi i
the strength of any of the others.) s »ithoutchanging

w T2. ¢ vanishe{ if the chain is cut, i.c. if any of the links is of zero strength.
¢ may alternatively say in this case that there was no causal chain.

- >E =E. Then
- Snsq), qfthestrengths, L

where U, represents

Av4. If two consecutive links are replaced ] i
Placed by a single link of equival
strength, then the strength of the chain is unchanged, Ffrmally, Y equivaens
b(s0> 51, . . ., Sney
= ¢(S0’ S15 Sia ¢(5 it ) S,
LIS B ¥ © 9i+1)s dit e, » Sn—1).
ATs. A chain is not weakened by * omitting one+of its lmles',l i.lz
¢(So» Sty LT 51‘—1: 3!01, L s §, —1)

> &(50s 51, -
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T3. A chain is no stronger than its weakest link. (From Aro and
Ais.

D)eﬁnition. Let the maximum possible causal strength beo.  This is
either a positive finite number or + .

A16. S(E : F|n) <o, for any net,n. (This axiom is a mere restate-
ment of the definition.)

T4 Qp, ¢, 1) <o. (From Aroand A16))

A17. If any of the links of a chain is of strength o, then it can be ‘omitted’
in the sense of A1s, without strengthening the chain.

Ts. $(s05 515 -+«

= ¢(So5 S15 - +
(From A1s and A17.) .

T6. If every link of a chain is © cast-iron’, then the chain is cast-iron, i.e.
¢(c,0, . . ,0)=0. (From T1and Ts.)

A18. A chain of n links all of the same fixed strength, =, where r < o,
is as weak as you like if n is large enough. Formally ¢(r,r, . . .,7) >0
as the number of arguments tends to infinity.

A19. ¢ is a continwous function of all its arguments when they are all less
than o ; and, if s, —> o, then the value of the function tends to the value it
would have with s; = o. The reason for the clumsy expression of this
axiom is that ¢ may be + oo.

T7. If a chain has n links, all of the same strength,, wherer < o, then the
chain is as strong as you like if n is fixed andr is close enough tow.  Formally,

if n is fixed, then

¢(r, 7, ..
(From T6 and A19.)
T8. There is a function, g, such that, identically,

Bor 5t - - ) = 2elo0) + 2) - - -+ glina))

The function, g, is defined for all non-negative arguments not exceeding
o, and is itself non-negative, continuous and strictly decreasing, and
g(0)= oo, g(o) = o. We may define g as + o when its argument
is negative.

Proof. Consider the function (s, t) of just two variables. By A1y,
A13, A1z, and A1y, this function may be said to be continuous, mono-
tonic, commutative, and associative. It follows that it is of the form
g7(g(s) + g(t)), where g is a strictly monotonic continuous function.
The use of the symbol g is justified since A7 and A8 can be satisfied with
this function. i

.y Sﬂ—l)
. oy Sn—l)'

o5 $i-10,y Sig1s -

os Si—1y Sit1y o

2 T) >0 whent > o.
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lished by Abel.t

theorel.n Just invoked was apparently first pub-
ey It was rediscovered several times, such as by Aczél.2

at it a i i .
SIide-mle.mounts to is that ¢ can be calculated on a suitably calibrated

The results g(o) = o, (o) = o, follow from A18 and Axg.

Q. E D.
that involve

o AL estriction on
a consequence of this identification we have

We may satisfy A6, A7, and A8, which are th i

: isty A6, A7,a , e only axioms
R, by 1d_ent1fymg &(S) with R.  This identification is no r
the explication of Q.
the following theorem.

To. The resist . )
links. esistance of a chain is equal to the sum of the resistances of its

Azo. Consider the causal net shown in the diagram below, in which
P(F) = x,P(G, | F) = p,, P(G, | F) = 9 PGr) = 1= xp, + (1 — x1q,;
PE|G,vG,vG,) = 1,P(E|G, ., -G)) =0, P(B)=r,j— ; 2%
and where G,, G,, Gs are independent given F and also given I% Th’ ’/3 ’
strength of the net is a Sunction of the strengths of the three sepz;rate cZZifzse

and i . . L
nd t]?ls Junction is continuous, monotonic thereasing in each variable, com-
mutative (cf. A12), and associative (cf. A1g). ’

Fic. 1

Tr10. The strength

is of the form of the net of Azo, generalised to m chains in parallel,

B (hs) + hs) + . . .+ h(s)),

1y .
Neils Henrick Abel, Oeuvres Complétes, tome 1, 1881,

first publication.
2. Aczél, Bull. Soc. Math. France, 1948, 76,

Sci. Hungar., 1955, 4, 351-362; L. Janossy,
10, 685, and 16, 1127-1128,

Y

The paper was Abel’s

59764. See also Aczél, Acta Phys. Acad,
loc. cit. pp. 333-349. O sec Math. Rev.,
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where sy, s3, . . ., Sm are the strengths of the individual chains. The
Sunction h is defined for all non-negative arguments not exceeding o, and is
itself non-negative, continuous and strictly increasing, and h(0) = o, h(c) = o.
(The theorem of the generalised slide-rule implies this theorem, just
as it implied T8 above.)

We are now at liberty to call h(S) the strength of a causal net, in
place of S, provided we are content to determine the explicatum of S
and Q only up to a continuous increasing transformation. It might be
thought for a moment that this change of notation would invalidate
To. But since T8 is now true with g(x) replaced by g(h(x)), we can
simply rename this function ‘ g(x) * in order to validate T9. With these
conventions we have:

T11. The strength of the net of A20, generalised to m chains in parallel
is the sum of the strengths of the individual chains. When applying this
theorem the independence condition mentioned in A20 should not be
overlooked. .

It appears that the analogy with electric networksisnot bad, although
the function f(x) turns out later not to be 1/x, but another self-inverse

ction.

A21. In the net of A20, with G omitted, i.e. with only two chains in
parallel, we may regard G = G, . G, as a single event, without changing the
causal strength of the net. Note that it would be unreasonable to assume
this coalescence property for dependent events, for if we did so we
could collapse any net into a single event.

It may be objected that G, . G, is not necessarily a small event. But
the strength of a causal net should depend only on its topology, with
time-order preserved, and on the various probabilities and conditional
probabilities. Hence G; . G, could be a small event in an equivalent
network. _

Although I think A2r is eminently reasonable, especially in view of
later developments, as in Section 9, I believe it to be the weakest part of
my argument, and I conjecture that the replacement of this axiom by
other assumptions would be the most fruitful method of finding other
explicata of tendency to cause, if they exist.

T12. Hdentically, if p; > gy, ps > q5, 0 < x < 1, then
S(pr+ p2— prpes @1+ 98— Qe X(pr+ pa— pupe) + (1 — %)

(41 + 92 — 914a))
= S(p1> 41> ¥p1 + (1 — %)q1) + S(p2, 9o xpa + (1 — %)qa)-
This follows at once from T11 by making the identification mentioned
in A2r, ‘
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Az22. Q(p, q, 1) is an ana

o< r< i, P #q
! The only purpose of this

Iytic function when o < P<Lo<g<1
’

axiom is to enable us to extend a formul
proved for a large set of values of (2, 4, 1) to all values except thorsr:Foerl

which Q may be infinite or jnd i i
: . eterminate. I think onl
Slunst vsrould. object to A22. It could be avoided by assu}x,xﬁaz e}i{::m;
at Q is anti-symmetric in the sense 8 e

] - Qp, ¢ 2+ (1 — x)g) = — Qe p» xq+ (1 — x)p).

) k=5 )1
. — P —_— I . ]
Whe';"‘ehli‘ (3213 a non-negative analytic function of x ! P
$ theorem, and the next . : )
Proof. By A10 and Azz, we one, will be supersedéd by Tis.

. . ma 1 ;
the incqualities P1 =41, pa > q,. {ertcP e by QinTrz, and drop

M) =Qr—ef, 1~ e, x(1— e

) + (1 — x)(x — en)),
Th;n

1= exp§,, 1= €xp n,, etc.

solution is easily seen to be of the form

P(¢, o, xX)=¢. #(x)
where u(x) is a function of x onl ,

. (Th i i
fact non-measurable.l) Likewise Z(O, 17( , x)e-——(-m;y Z:(}Sf ws;\(r)lllunons D isa
function of x only. Therefore .  Where wx) is 2

HEm X) = g(E+ 0,04 7, )

{
!
.Therefore N ¢(E’ > x) * ¢(0, 1]’ x) B f“(x) " ’7“’(")'
- m?vs,p’ffﬁ X+ (1= %)) = ux) . log (1 — )+ wix) . log (1 —g).
!

ows from As combined with the equation
r=xp+ (1— x)q.
T Q. E D.
radtoaftwe. particle in a certain state, which I shall call
In any time interval, ¢, it has probability e
roughout the interval if it starts the interval

! G. Hamel, * Eine Basis aller Zahlen und

g:i;l;t’mgcnf(x + 1) =f=)+f(y) ", Marh.

A23. Consider a
€ .
the * white * state.
in the white state 1} ‘?f r;maming
In that state.

die unstetigen Lésungen der Funktional-

Annalen, 1905, 60, 459462,
Inequalities,
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If it does not remain in the white state, then it proceeds to another state called
here the ‘ black’ state, from which there is no return. Now let F be the event
that the particle is in the white state at the start of an interval of duration T
and let B be the event that it is in the white state at the end of this interval.
Then we assume that, if F and E both occurred, x(E : F) does not depend on
the unit in terms of which time is measured.
A24. IfF .E implies G, and F — G — E is a chain, then this chain is of
the same strength as F — E.
Ti4. R(p,0,7)= v(r/p) — k.log p,
where v(x) is a non-negative analytic function of x, and k is a positive constant.
Proof. Consider the radioactive particle described in A23. Let
P(F) = x. The degree to which F caused E is the limit of the strengths
of finite chains obtained by breaking up the time interval (0,T) into a
‘ Riemann dissection ’ (see Ag). Since g is a continuous function (A8)
the resistances of these finite chains must also tend to a limit, which we
may call the causal resistance from F to E.  This must be some function
of x, a, and T, say R¥(x, «, T). By A23 we see that for any positive
constant, k, the resistance must be equal to R*(x, kx, T/k). Since this
is independent of k it must be of the form of R¥*(x, «T).

Now, by a continuity argument, we may generalise T9 to con-
tinuous chains, and hence deduce that, for any positive T and U we have
R¥(x, «T) + R¥(1, aU) = R*(x, «T + «U).

By giving x the value 1 and subtracting from the equation with
arbitrary x, we see that R*(x, «T) is of the form
‘ R¥(x, aT) = v(x) + R¥(«T),
where, identically,
R¥(T, + oTy) = R¥«T,) + R*(@T,),
so that R¥(«T) is of the form
R¥(«T) = kyT.
Now, by repeated use of A24, we see that
R(p, 0, xp) = R¥*(x, o« T),
where p = e™T. Thus
R(p, 0, 1) = v(r[p) — k .log p.
Q. E. D.
Tis. Q(p, 4, 1) = log (1 — ¢) — log (1 — p),
R(p, 0, r)= — log p,
where the base of the logarithms may be taken ase. Q(p, g, 1) is mathem-
atically independent of r, and may be abbreviated to Q(p, q). It can be written
in other ways : !
316

- JPeasurement of strength and resistance

A CAUSAL CALCULUS

QE:F|G)=1og PEIF.G)_ |  OF[E .q)
PE|F.G) ° OF|g)

| | =W{F:E|G)=— W(E:E|g
:};iqut:z';gh;et:f ev.ta'e;zce against F if E does not happen.  More prf‘cisel | Q);s
Among}; 1[ ;ane I‘only uptoa a'mtinuous analytic increasing transﬁ)rr);l,ation
ity e e i;ch icata there is just one apart from a scale factor (choice oj
it ;ve ohich eolrier'ns Tg and TI.I are true.  'We lose no real generali

o gain simplicity, by choosing this explicatum. tY»

oof. By T13, T14, and A7, we have the identity

Jlrlp) — log p) = — u(rjp) . log (x ~p)-

Iﬁtt’(x): )‘1 ==
iSOfthcforym og p z,logf(}'+z)=p(y+z). Then p(y + 2)

If v(x) is 1
If v(x) is not a constant, we can differentiate and deduce that p(y) is a

hence also that 4(x) is a constant.

The theorem now follows from the remark tha

base of the logarithms is equivalent merel ! the choice of the

Y to the choice of units of

[
hessurement trength a We may call the unj
» " binary *, or * decimal ’, according as the base js ¢ 2, or I;S

advance, nor was it obv; !
ously be satisfied. obvious that all the desiderata could simultane-

Roand S is symmetrical, namely
R>0,8> 0,

e‘R —S =
or equivalently, e N

R =—Jog1 —e€3), S =
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Further,
R(p, ¢, r) = log (1 — ¢) — log (p — 9).
This is an immediate corollary of A7 and Tts.

Thus the function fis its own inverse, g. It is tempting to permit
negative and imaginary values because some of the formalism is faintly
reminiscent of Feynmann’s formulation of quantum mechanics, but I
shall not pursue this matter here.

T17. If a chain consists of n links whose p’s and q's are (p;, 4:), where
Pi > qi, then its causal strength is

— log {1 — ﬂﬁl‘f—'} .
i 11— ¢q;
This follows from T16 and To. : .
Before reading the proofs in the present section the reader will
probably prefer to read the next two sections, in which some examples
are given. '

Appendix.  Holmes, Moriarty, and Watson (see section 2)

Sherlock Holmes is at the foot of a cliff. At the top of the cliff, directly
overhead, are Dr Watson, Professor Moriarty, and a loose boulder. Watson,
knowing Moriarty’s intentions, realises that the best chance of saving Holmes’s
life is to push the boulder over the edge of the cliff, doing his best to give it
enough horizontal momentum to miss Holmes. If he does not push the
boulder, Moriarty will do so in such a way that it will be nearly certain to
kill Holmes. 'Watson then makes the decision (event F) to push the boulder,
but his skill fails him and the boulder falls on Holmes and kills him {event E).

This example shows that Q(E: F) and x(E: F) cannot be identified, since
F had a tendency to prevent E and yet caused it. We say that F was a cause
of E because there was a chain of events connecting F to E, each of which
was strongly caused by the preceding one.

(to be concluded)

Admiralty Research Laboratory
Teddington, Middlesex
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sense of emergence, or the appearance of genuine novelty at a higher
Jevel of richness or complexity.  But this is also a kind of improvement
which ncither statistical genetics nor selectionist biology can handle,
since it is neither quantitative nor adaptive. It is best for selectionists
to ignore it, as Darwin warned himself to do when he wrote in his
copy of the Vestiges * Never speak of higher or lower in evolution .
Yet the great outlines of the fossil record are there, and demand to be
spoken of, especially since the fact that we can speak of them is one of
the surprising results of the process they record. But evolution as
macro-evolution, as the emergence of life and of higher forms of life,
outruns both the concept of gene-substitution, and of improvement in
relation to environment. It makes sense only as an achievement—an
achievement for which statistical methods can measure the necessary,
but not the sufficient conditions.

15

One brief concluding remark. I have side-stepped here altogether
the question of prediction and retrospect, of the historical nature of
evolutionary explanation: a question which is very close to the phil-
osophical difficulties raised by Fisher’s theory. Evolutionary theory is
essentially an assessment of the past.  Fisher treats it in terms of present
and future. Just how closely the philosophical confusions of this kind
of argument are related to the attempt to think unhistorically about an
historical subject matter, I should not at the moment venture to say.

Department of Philosophy
The Queen’s University, Belfast
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6 Two-state Markov Processes

The radioactive process described in Axiom 23 can be slightly
generalised by permitting return from the black to the white state, with
a parameter 8 corresponding to the « of the white-to-black transition.
We have a two-state Markov process with continuous time. The
parameters « and 8 are of course both non-negative. In the special
case of the radioactive particle we have 8 = o.

It can be shown that

QUE : F) = log ({x + fe-e"PM)(a — oe-te'aT))

If the particle ever entered the black state during the time interval,
T, the chain would be cut and the degree of causality would be zero.
Assuming that this doesnot happen, we can calculate x(E : F) by applying
a Riemann dissection to the interval, so as to obtain a causal chain con-
sisting of a finite number of events, and then proceed to the limit as
the fineness of the dissection tends to zero. By applying T17 and Ag
we find that

X(E :F) = — log (1 — e™T),
which is mathematically independent of 8.

For large T, both Q and x are exponentially small, but Q is smaller
than y, and is much smaller if B is large. This is reasonable since, if 8 is
large, the initial state makes little difference to the probability of being
in the white state at the end of the interval.

Note that x is the degree to which being in the white state rather
than in the black state at the end of the interval was caused by being in
the white state rather than in the black state at the start of the interval.
A similar explicit description can of course be given for Q. '

5

7 Partially Spurious Correlation

A well known pitfall in statistics is to imagine that a statistically
significant correlation or association is necessarily indicative of a causal
relationship. The seeing of lightning is not a cause of the hearing of

* The first part of this article appeared in the previous Number.
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thunder, though the two are strongly associated. Such associations and
correlations are often described as ‘ spurious ’, a better description than
“illusory’. They may also be partially spurious, and the explicata for Q
and y should help with the analysis of such things. Smoke and dust
might be a strong cause of lung cancer, but smoking only a weak cause.
Even so, the correlation between smoking and lung cancer may be
high if there is more smoking per head in smoky districts. I mention
this only as an example, and have not made a special study of this
problem.
Note that
QE :F.G[F.G)= QE : GJF) + Q(E : FG),

so that the tendency to cause can be split into components, somewhat
in the manner of an analysis of variance. For example, the tendency
for lung cancer to be caused by smoking and living in a smoky district
as against not smoking and living in a clean district is equal to the
tendency through living in a smoky district, given no smoking, plus
the tendency through smoking, given that the district is smoky. It is
also equal to the causal tendency through living in a smoky district,
given that one smokes, plus the tendency through smoking, given that
the district is clean. This approach to the analysis of spurious correla-

tion is entirely different from, and more quantitative, than the approach
used by Simon.!

Let

K(E:F)= —I(E:F), ‘
the intrinsic causal tendency of E by F. It is related to Q in essentially
the same way that I is related to W, since
Q(E : F)= K(E: F) — K(E : F),
Q(E :F/F)=K(E:F) — K(E: F).

K does not depend on the negation of F, so its use enables us to avoid
the distribution, D, of Section 4. We have '
K(E:F.G)=K(E:F)+ K(E:G|F),
so that K can be split up into contributions from various sources in a
simpler manner than Q. In my opinion both K and Q will probably

have useful applications in statistics and physics.

The remainder of this paper is primarily concerned with the exten-
sion of the explication of causal strength to general nets, in order that
degree of causality should be generally explicated. The next section
however contains a formal definition of a causal chain, which strictly

1 Herbert A. Simon, Models of Man, New York and London 1957
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was required in what has already been discussed. I postponed it in
order not to interrupt the thread of the argument.

8 Causal Chains?

Let F=Fy, Fy, ... ,E_;, F.=E, be n+ 1 events such that (for
i=o1,...,n—1):

(i) F: and F;,, are contiguous in space and time, or approximately
so.

(i) No two of the events overlap much in space and time.

(1i) All the events occurred (or will have occurred, i.e. they ‘obtain’
but I prefer to write simply ‘ occurred *).

(iv) Fiyq started later than F, did.

(v) F had a positive tendency to cause Fi, .

(vi) IfF, is given, then the probability of F;,  is unchanged if one or
more of the earlier events did not occur, i.e. we have 2 Markov chain.

(vii) If the chain is embedded in a completely detailed chain con-

- taining intermediate events, then condition (v) will remain true for the

more detailed chain.

Then we say that F,, Fy, .. . ,F, or F,—>F, —> . . . —F, isa
causal chain connecting Fto E.  Perhaps it should be called a ¢ putative
causal chain * if condition (vii) has not been established. In practice all
causal chains are putative, but there are degrees of putativity.

The failure of condition (v) may be said to * cut the chain ’.

A causal net will be formally defined in Section 11. A chain is a
special case of a net.

9 Independent Causal Tendencies

Let G,, G,,_ - « -» Gy be independent given H, and also indepen-
ent given H. E.  Then it is easily proved, with the help of T1s, that
the tendencies to cause E are additive in the sense of the theorem below.
It therefore seems reasonable to say in these circumstances that the G’s
have independent tendencies to cause E given H. The events G, Gy, and
G; of A20 exemplify this definition, with H — F,and also withH= F;

that they are independent given E is trivial since their probabilities are
then all zero.

Y Cf. Hans Reichenbach, The Direction of Time, Betkeley and Los Angeles 1946,
Index reference under ‘ Causal chain’, and The Philosophy of Space and Time, New
York and London 1956, Index reference under * Casual chain * [sic] ‘
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T18. If Gy, . . ., G,, have independent tendencies to cause E given H,
then
QE:G,.G,. . ... G |H)= 2:QE: G| H).

The nets of A20 and T1o0 also exemplify the following definition :

A bundle of parallel independent causal chains from F to E is a class of
chains from F to E such that, apart from F and E, each event on each
chain is, given F and given F, probabilistically independent of any
collection of events on other chains, and also such that the penultimate
events have independent tendencies to cause E, given their pasts.

10 Series-parallel Networks N

As an extension of Ti1 it is natural to define the strength of a

bundle of independent causal chains as the sum of the strengths of the ~

individual chains.

For a * chain of bundles’, in a self-explanatory sense, we can first
calculate the resistance by summing the resistances of the individual
bundles, and then obtain the strength from T16. We can extend the
process to bundles of chains of bundles and so on. In other wofds we
can construct natural rules for evaluating the causal strength of any
* series-parallel * net. Topologically these are the same as the two-
terminal series-parallel networks whose enumeration was considered by
MacMahon.! Not all networks are of this type.

15 Causal nets * Having Independence ’ !

Let n be a class of events all of which occurred. For each event, G,
in 7, there is a subclass of earlier events, G,, G,, . . ., Gk, which so to
speak, ‘leadin ’ to G. By ‘lead in ’ is meant that the probability of G,
given which of G,, G,, . . ., Gt occurred and which did not, is
independent of any further assumptions of which other events in p,
earlier than G, occurred. (Note that not all the events in 1 are re-
garded as * given ’ even though they all actually occurred.  This should
cause neither surprise nor confusion to those who are familiar with the
idea of a conditional probability.) We may think of k oriented links
joining Gy, Gy, . . ., Gr to G. If the whole class, w, is connected
together by means of such links we describe nas a causal net. If E is the

1P. A. MacMahon, * The combination of resistances ', The Electrician, 1892, 28, .

601-602.  Or sec John Riordan, An Introduction to Combinatorial Analysis, New York
and London 1958, pp. 139-143.
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latest of the events in the net, and can be reached from each other event
by passing through a succession of links in the right direction, then the
causal net will be said to lead to E. If F is the earliest of the events in n,
and each other event can be reached from F by passing through a
succession of links in the right direction, then the causal net will be
said to lead from F.  If both conditions are satisfied, the net will be said
to lead from F to E.  For example, a net leading to E could have the
form of a * trec ’, but a net leading from F to E could be a tree only ifit
were a chain.

In this definition we may call G,, Gy, ... G the immediate
predecessors of G. A causal net will be said to have independence if, for

each G in the net, the immediate predecessors have independent
tendencies to cause G given the past.

ForeachlinkG,—»G,havinga‘p'anda‘q’,

P=pi= P(Gl G g=q= P(GI (—;‘), ‘
let the quasiprobability, =, be defined as

==l

in which the *square’ brackets indicate that = = o if q>p. The
quasiprobability reduces to p when ¢= 0. We know from T17 that
the quasiprobabilities are multiplicative for a chain, and the strength of
the chain is the same as if the quasiprobabilities were ordinary proba-
bilities and the q’s were all zero. Also, from Tt s, we have

S(p: ) = — log (1 — =),

so that for a bundle of the type occurring in T1o the quasiprobabilities

again behave like probabilities, in view of the additivity of the strengths
of the chains.?

Let us now consider an arbitrary finite causal net having independ-
ence and leading from F to E.  We should like a general procedure

for defining the strength of such a net that will include the results for

the nets already considered, and which is simple, and which does not
lead to a contradiction. I believe that the procedure illustrated in the
following example satisfies these conditions. It would of course be

more satisfactory if some convincing axioms could be laid down that
would uniquely determine the procedure.

1The term * pseudoprobabilities * would conveniently refer (by analogy with
the pseudo-random numbers that are often used in Monte Carlo calculations) to the
apparent probabilities that occur in a deterministic, but pseudo-indeterministic, set-up.
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In the diagram, the quasiprobabilities 7y, my, . . ., mg are assigned,
and pertain to the links of the net. It will be easier to appreciate the

example if the #’s are at first thought of as ordinary probabilities (with
all the ¢s equal to o).

The ¢’s may be thought of as quasiprobabilities of the events.
They are defined successively as follows :

bo=1. ¢y =m,.

o= 1— (1 — mp)(1 — Pymy). |

$3=1— (I - ¢1‘"’4)(I - 4’2‘”5)-

b= 1— (1— dyme)(1 — $ama)(1 — ‘563"8)'
S(n) = Q(ps, 0) = — log (1 — ¢,).

The reader should perhaps check that this procedure contains the
previous ones as special cases.

12 Causal Nets in General

It will often be possible to divide up a time-slice preceding E into
non-overlapping events whose causal influences on E are approxi-
mately but not absolutely independent. Let such a dissection of the
time-slice be Fy, Fy, . . ., F,.. We need a definition of the strength
of the causal link F; — E that will reduce to the value given previously
in the case where F; and F, . Fy. . . . F, are causally independent with
respect to E, in the same scnse as that defined above for nets having
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independence. A simple definition having the required property is
P(E|F,.Fy. . ..F,)
P(E|F, .F,. ... FE,)

This definition reduces to the previous use of the expression S(E:F)in
the case of causal independence. But the strengths of the lead-ins do
not add up to S(E:F,. . . . F,.) unless the F's do have independent
causal influences on E.  'We can cope with this difficulty by the intro-
duction of ‘ interaction terms ’ in a sense analogous to the use of this
expression in the literature of the design of statistical experiments.1
We can think of an extra node in the causal net leading to E corres-
ponding to every subset of the events Fy, F,, . . . , F,.. For example,
there will be a node corresponding to the pair (F, . Fy). The strength
of the link from the node (F, . F,) to E will then be taken as the  inter-

action ’ term

S(E : F;) = log = W(F, :E|F,.Fy. . . . F,).

fig = S35 — $; — Sy,
where

PE|F,.F,. . ..FE,)
P(E|F, .F,. ...E,)
= W(E,.F:E|F, ... F,).
When F; and F, are independent causes of E, we have Sy3= S + 5,,

and the second order interaction term vanishes. The strength of the
link to (F, . F;), from an eatlier event, G, is

W(G:F,.F,| G, .G, . . ),
where G,, G,, . . . are the other immediate predecessors of F, and F,.

The definitions of the s’s are forced, if we regard conjunctions of the
F’s as single events. An example of a third-order interaction is

f1280 = S1234 — Sas4 — S134 —S124 — S1as + S1a + S13+
« oo F Sa— S — Sg— S3— sy,
where the notation is now self-explanatory. In any piece of causal

analysis one would try to choose the dissection of the time-slice 5o as to
make the high-order interactions negligible.
Since

s13= log

. 5123---m=25i+2tu+ztijk+ v e ey
our cnlarged causal net has the property of additivity of strengths of

1 See, for example, Design and Analysis of Industrial Experiments, ed. by O. L. Davies,
London and Edinburgh 1954; index reference under ¢ Interaction ’.
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lead-ins that we previously had for causally independent lead-ins. It is
therefore now potentially possible to apply the method of Section 11
to define the causal strength of an arbitrary finite net from F to E.

13 Degrees of Causation

We may now define x(E : F) as the limit of the strength of the net
joining F to E and containing all intermediate events, when the events
are made smaller and smaller. Thave not proved that this limit exists.
The proof, if possible, would depend on a physical theory, and would
be mathematically intricate. Note the implication : whether degrees
of causality exist is a matter of physics, even if we take for granted that
physical probabilities exist.

In practice one must always over-simplify or simplify in order to be
able to judge, estimate, or guess, the value of x(E : F). (In the past, x
has been given only a few values, such as ‘ small’, ¢ moderate ' and
“large’) There is always the possibility that something has been
overlooked. Even in a statistical experiment involving randomisation,
from which we can apparently deduce that some x(E : F) is large, in
fact E and F may both have been caused by some preceding event.
The table of random numbers might have been seen by the famous
lady tea-taster,! or there may have been some psychokinesis. We are
always thrown back on judgment.

‘

14 Big Events

1

So far the analysis has assumed F and E to be small events. If Fis
big we may imagine it split up into many small events, and imagine
all these to be * short-circuited ’ from an earlier ‘ input node . By
* short-circuited * is meant that the resistances of all the imaginary links
are taken to be zero. We may apply a similar process to a big E by
short-circuiting its small parts to a future output node. The previous
methods may then be applied even if F does not end before E begins.

Appendix 1. Correction of some errors in previous work

Reichenbach # says that F is causally relevant to E if P(E | F) > P(E) and
if there is no set of events eatlier or simultaneous with F that ¢ screens off’
Efrom F. By ‘screens off* he means that the probability of E given these

1 Sir Ronald A. Fisher, The Design of Experiments, sth edn., Edinburgh and London
1949, Chapter 2 :

? Page 204 of the first reference in footnote 1, p. 45 above
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other events is unchanged if F is also given. The property is analogous to
the Markov property.

It seems to me that this definition is not acceptable as it stands for much
the same reason that my previous paper is not acceptable. For let G be any
set of events carlier than or simultaneous with F. G might be some exceed-
ingly biased selection of individual molecules, such as those that are pro-
ceeding south at a thousand miles per hour. Consider the expression P(E | G)
—P(E|G.F). Normally this will be positive for some G, say G,, and
negative for some G, say G,.  We now imagine G, to be gradually distorted
into G. The above expression must change sign at some point during this
gradual distortion, at which * time * its value will be zero. Hence the second
part of Reichenbach’s definition seems to be vacuous. In order to patch up
the definition it seems to be necessary to take G as the complete state of the
universe at the time F started.

In my previous paper, conditions C7 to C1o were vacuous for much the
same reason, though it may be possible to patch the thing up, as stated

therin (inserted in proof), by insisting that G should be in some sense a
‘natural ’ event.

Appendix IL. The meaning of * state* in quantum mechanics (see Section 4)

The seven relevant interpretations of *state’ in quantum mechanics are the
first seven on the following list. All seven of these meanings, and perhaps
others, should be taken into account in a comprehensive discussion of the
place of probabilistic causality in quantum mechanics.

() The class of all past phenomena, classically describable. (i) The class
of phenomena extending only a short way into the past. (iii) The wave
function of a physical system, under observation by another physical system.
(iv) The joint wave function of the pair of systems. (v)
of one system conditional on an assumed wave function of another system.
This is the * relative state’ of Hugh Everett I11, ‘ Relative state formulation of
quantum mechanics ’, Rev. Modern Physics, 1957, 29, 454-462. (vi) The wave
function of the entire universe if this has any meaning. See Everett, loc. cit.
(vii) The wave function of the entire universe together with all other past
phenomena.  (viii) An ensemble of wave functions. See, for this eighth

interpretation, R. C. Tolman, The Principles of Statistical Mechanics, Oxford
1938, Section ¢8.

The wave function

(concluded)
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