Probability, Inter pretations of*

1. INTRODUCTION

'Interpreting probability' is a commonly used but misleading name for a worthy
enterprise. The so-called 'interpretations of probability’ would be better called ‘analyses of
various concepts of probability’, and 'interpreting probability' is the task of providing
such analyses. Normally, we speak of interpreting a formal system, that is, attaching
familiar meanings to the primitive termsin its axioms and theorems, usually with an eye
to turning them into true statements. However, there is no single formal system that is
‘probability’, but rather a host of such systems. To be sure, Kolmogorov's axiomatization,
which we will present shortly, has achieved the status of orthodoxy, and it is typically
what philosophers have in mind when they think of 'probability theory'. Nevertheless,
severa of the leading 'interpretations of probability' fail to satisfy all of Kolmogorov's
axioms, yet they have not lost their title for that. Moreover, various other quantities that
have nothing to do with probability do satisfy Kolmogorov's axioms, and thus are
interpretations of it in a strict sense: mass, length, area, volume (each suitably
normalized), and indeed anything that falls under the scope of measure theory. Nobody
ever seriously considers these to be 'interpretations of probability', however, because they
do not play the right role in our conceptual apparatus. Instead, we will be concerned here
with various probability-like concepts that purportedly do. Be al that as it may, we will
follow common usage and drop the cringing scare quotes in our survey of what
philosophers have taken to be the chief interpretations of probability.

Whatever we call it, the project of finding such interpretations is an important one.
Probability is virtually ubiquitous. It plays arole in amost every branch of science. It
finds its way, moreover, into much of philosophy. In epistemology, the philosophy of
mind, and cognitive science, we see states of opinion being modeled by subjective
probability functions, and learning being modeled by the updating of such probability
functions. Since probability theory is central to decision theory and game theory, it has
ramifications for various theories in ethics and political philosophy. It figures
prominently in such staples of metaphysics as causation and laws of nature. It appears
again in the philosophy of science in the analysis of confirmation of theories, scientific
explanation, and in the philosophy of specific scientific theories, such as quantum
mechanics, statistical mechanics, and genetics. It can even take center stage in the
philosophy of logic, the philosophy of language, and the philosophy of religion. Thus,
problems in the foundations of probability bear at least indirectly, and sometimes
directly, upon central scientific and philosophical concerns. The interpretation of
probability is arguably the most important such foundational problem.

2. KOLMOGOROV'SPROBABILITY CALCULUS

Probability theory was inspired by games of chance in 17" century France and
inaugurated by the Fermat-Pascal correspondence. However, its axiomatization had to
wait until Kolmogorov’s classic book (1933). Let Q be a non-empty set (‘the universa
set’). A sigma-field (or sigma-algebra) on Q is a set ¥ of subsets of Q that has Q as a

| thank Branden Fitelson for extremely hel pful comments.



member, and that is closed under complementation (with respect to Q) and countable
union. Let P be afunction from # to the real numbers obeying:
1. (Non-negativity) P(A)=0foral A 0 £
2. (Normalization) P(Q) = 1.
3. (Finite additivity) P(A O B) = P(A) + P(B) for dl A, B 0 Fsuchthat A
nB=1L0
Call P aprobability function, and (Q, # P) aprobability space.

We could instead attach probabilities to members of a collection S of sentences of a
formal language, closed under truth-functional combinations, with the following
counterpart axiomatization:

.  P(A)=O0foral AOS.

1. If Tisalogical truth (in classical logic), then P(T) = 1.

1. P(A OB) =P(A) + P(B) for all AJSand B [0S suchthat A and B are
logically incompatible.

It is controversial whether we should strengthen finite additivity, as Kolmogorov
does:

3. (Countable additivity) If {A;} is a countable collection of (pairwise)
digoint sets, each [ # then

AU A=Y AR,

The conditional probability of A given B is then taken to be given by the ratio of

unconditional probabilities:
P(X nY) _

P(X]Y) = “RY) provided P(Y) > 0.

There are other axiomatizations that give up normalization; that give up countable
additivity, and even additivity; that allow probabilities to take infinitesimal values
(positive, but smaller than every positive real number); that allow probabilities to be
vague (interval-valued, or more generally sets of numerical values); and that take
conditional probability to be primitive. For now, however, when we speak of 'the
probability calculus, we will mean Kolmogorov's approach.

Given certain probabilities as inputs, the axioms and theorems allow us to compute
various further probabilities. However, apart from the assignment of 1 to the universal set
and O to the empty set, they are silent regarding the initial assignment of probabilities.
For guidance with that, we need to turn to the interpretations of probability.

3. CRITERIA OF ADEQUACY

First, however, let us list some criteria of adequacy for such interpretations. We begin

by following Salmon (19xx, 64):

Admissibility. We say that an interpretation of aformal system is admissible if the
meanings assigned to the primitive terms in the interpretation transform the
formal axioms, and consequently all the theorems, into true statements. A
fundamental requirement for probability concepts is to satisfy the mathematical
relations specified by the calculus of probability...

Ascertainability. This criterion requires that there be some method by which, in
principle at least, we can ascertain values of probabilities. It merely expresses the



fact that a concept of probability will be useless if it isimpossible in principle to
find out what the probabilities are...

Applicability. The force of this criterion is best expressed in Bishop Butler's
famous aphorism, "Probability is the very guide of life."...

It might seem that the criterion of admissibility goes without saying: 'interpretations
of the probability calculus that assigned to P the interpretation 'the number of hairs on the
head of' or 'the political persuasion of' would obviously not even be in the running,
because they would render the axioms and theorems so obviously false. The word
'interpretation’ is often used in such a way that ‘admissible interpretation’ is a pleonasm.
Yet it turns out that the criterion is non-trivial, and indeed if taken seriously would rule
out severa of the leading interpretations of probability! Aswe will see, some of them fail
to satisfy countable additivity; for others (certain propensity interpretations) the status of
at least some of the axioms is unclear; and one of them (unconstrained subjectivism)
violates all of the axioms. Nevertheless, we regard them as genuine candidates. It should
be remembered, moreover, that Kolmogorov's is just one of many possible
axiomatizations, and there is not universal agreement on which is 'best’ (whatever that
might mean). Thus, there is no such thing as admissibility tout court, but rather
admissibility with respect to this or that axiomatization. It would be unfortunate if,
perhaps out of an overdeveloped regard for history, one felt obliged to reject any
interpretation that did not obey the letter of Kolmogorov's laws, and that was thus
'inadmissible’. Indeed, Salmon's preferred axiomatization differs from Kolmogorov's.? In
any case, if we found an inadmissible interpretation that did a wonderful job of meeting
the criteria of ascertainability and applicability, then we should surely embraceit.

So let us turn to those criteria. It is alittle unclear in the ascertainability criterion just
what "in principle" amounts to, though perhaps some latitude here is all to the good.
Understood charitably, and to avoid trivializing it, it presumably excludes omniscience.
On the other hand, understanding it in a way acceptable to a strict empiricist or a
verificationist may be too restrictive. 'Probability’ is apparently, among other things, a
modal concept, plausibly outrunning that which actually occurs, let alone that which is
actually sensed.

Most of the work will be done by the applicability criterion. We must say more (as
Salmon indeed does) about what sort of a guide to life probability is supposed to be.
Mass, length, area and volume are all useful concepts, and they are 'guides to life' in
various ways (think how critical distance judgments can be to survival); moreover, they
are admissible and ascertainable, so presumably it is the applicability criterion that will

2]t turns out that the axiomatization that Salmon gives (p. 59) is inconsistent, and thus that by his lights no
interpretation could be admissible. His axiom A2 states:

"If A isasubclass of B, P(A, B) = 1" (read this as 'the probability of B, given A, equals 1).
Let | be the empty class; then for al B, P(l, B) = 1. But his A3 states:

"If B and C are mutually exclusive P(A, B 0 C) = P(A, B) + P(A, C)."
Then for any X, P(I, X O —=X) = P(l, X) + P(l, =X) = 1 + 1 = 2, which contradicts his normalization axiom
Al. This problem is easily remedied (simply add the qualification in A2 that A is non-empty), but it is
instructive. It suggests that we ought not take the admissibility criterion too seriously. After all, Salmon's
subsequent discussion of the merits and demerits of the various interpretations, as judged by the
ascertainability and applicability criteria, still stands, and that is where the real interest lies.



rule them out. Perhaps it is best to think of applicability as a cluster of criteria, each of
which is supposed to capture something of probability's distinctive conceptual roles;
moreover, we should not require that all of them be met. They include:

Non-triviality: an interpretation should make non-extreme probabilities at least a
conceptual possibility. For example, suppose that we interpret 'P as the truth function: it
assigns the value 1 to all true sentences, and O to all false sentences. Then trivially, al the
axioms come out true, so this interpretation is admissible. We would hardly count it as an
adequate interpretation of probability, however, and so we need to exclude it. It is
essential to probability that, at least in principle, it can take intermediate values. All of
the interpretations that we will present meet this criterion, so we will discuss it no more.

Applicability to frequencies. an interpretation should render perspicuous the
relationship between probabilities and (long-run) frequencies. Among other things, it
should make clear why, by and large, more probable events occur more frequently than
less probable events.

Applicability to rational belief: an interpretation should clarify the role that
probabilities play in constraining the credences of rational agents. Among other things,
knowing that one event is more probable than another, a rational agent will be more
confident about the occurrence of the former event.

Applicability to ampliative inference: an interpretation will score bonus points if it
illuminates the distinction between 'good' and 'bad’ ampliative inferences, while
explicating why both fall short of deductive inferences.

The next criterion may be redundant, given our list so far, but including it will do no
harm:

Applicability to science: an interpretation should illuminate paradigmatic uses of
probability in science (for example, in quantum mechanics and statistical mechanics).

Perhaps there are further metaphysical desiderata that we might impose on
interpretations. For example, there appear to be connections between probability and
modality. Events with positive probability can happen, even if they don't. Some authors
(e.g. Carnap 19xx, Jackson 19xx) also insist on the converse condition that only events
with positive probability can happen, although this is more controversial. Be that as it
may, our list is already long enough to help in our assessment of the leading
interpretations on the market.

4. THE MAIN INTERPRETATIONS

4.1 CLASSICAL PROBABILITY

The classical interpretation owes its name to its early and august pedigree.
Championed by Laplace, and found even in the works of Pascal, Bernoulli and Leibniz, it
assigns probabilities in the absence of any evidence, or in the presence of symmetrically
balanced evidence. The guiding ideais that in such circumstances, probability is shared
equally among all the possible outcomes, so that the classical probability of an event is
simply the fraction of the total number of possibilitiesin which the event occurs. It seems
especially well suited to games of chance which by their very design create such
circumstances—for example, the classical probability of afair die landing with an even
number showing up is 3/6. It is often presupposed (usually tacitly) in textbook probability
puzzles.



Hereisaclassic statement of the classical interpretation by Laplace (1814):

The theory of chance consists in reducing all the events of the same kind to a
certain number of cases equally possible, that is to say, to such as we may be
equally undecided about in regard to their existence, and in determining the
number of cases favorable to the event whose probability is sought. The ratio of
this number to that of all the cases possible is the measure of this probability,
which is thus simply a fraction whose numerator is the number of favorable cases
and whose denominator is the number of all the cases possible.

There are numerous questions to be asked about this formulation. When are events of the
same kind? Intuitively, 'heads' and 'tails' are equally likely outcomes of tossing a fair
coin; but if their kind is 'ways the coin could land', then ‘edge' should presumably be
counted alongside them. Is the "certain number of cases' always finite? Laplace's talk of
"the ratio of this number to that of all the cases possible" suggests that it is. What, then,
of probabilitiesin infinite spaces? Apparently, irrational-valued probabilities such as 1/v2
are automatically eliminated, and thus the truth of a theory such as guantum mechanics
that posits them is ruled out a priori. Who are "we", who "may be equally undecided"?
Different people may be equally undecided about different things (as it might be, Joe is
that way regarding the sixth decimal place of pi, while Jo is not). It seems, then, that
Laplace's is best regarded as a quasi-subjectivist interpretation, a statement of the
probability assignment of arational agent in an epistemically neutral position. But then
the proposal risks sounding empty: for what is it for an agent to be "equally undecided"
about a set of cases, other than assigning them equal probability?

This brings us to one of the key objections to Laplace's account. Central to it is the
notion of "equally possible" cases. But either this is category mistake (for ‘possibility’
does not come in degrees), or circular (for what is meant is really 'equally probable’. The
notion is finessed by the so-called 'principle of indifference’, a coinage due to Keynes. It
states that whenever there is no evidence favoring one possibility over another, then they
have the same probability.

Enter Bertrand's paradoxes. They all turn on alternative parametrizations of a given
problem that are non-linearly related to each other. The following example (adapted from
van Fraassen 1989) nicely illustrates how Bertrand-style paradoxes work. A factory
produces cubes with side-length between 0 and 1 foot; what is the probability that a
randomly chosen cube has side-length between 0 and 1/2 afoot? The tempting answer is
1/2, as we imagine a process of production that is uniformly distributed over side-length.
But the question could have been given an equivalent restatement: A factory produces
cubes with face-area between 0 and 1 square-feet; what is the probability that a randomly
chosen cube has face-area between 0 and 1/4 square-feet? Now the tempting answer is
1/4, as we imagine a process of production that is uniformly distributed over face-area.
And it could have been restated equivalently again: A factory produces cubes with
volume between 0 and 1 cubic feet; what is the probability that a randomly chosen cube
has volume between 0 and 1/8 cubic-feet? Now the tempting answer is 1/8, as we
imagine a process of production that is uniformly distributed over volume. What, then, is
the probability of the event in question?



It is sometimes said that Bertrand-style paradoxes involve different ways of carving
up the space of possibilities, or words to that effect. That is incorrect. In the cube
example, (and in general) the space of possibilities is exactly the same in each case. For
example, the very same possibility is variously labeled 'the cube's side-length is1/3', 'the
cube's faces have area 1/9' and 'the cube's volume is 1/27'. By contrast, a genuine case of
carving up the space of possibilities in different ways is this: the possible outcomes of a
dietoss are {1, 2, 3, 4, 5, 6}, or dternatively {1, not-1}. The classical theory is then
precariously poised to deliver conflicting values to the probability of the die landing 1,
namely 1/6 and 1/2. What the Bertrand-style paradoxes do involve (unlike the die case)
are different ways of 'equally weighting' the very same set of possibilities. It is worth
pointing out that the paradoxes always involve infinite—indeed,
uncountable—probability spaces. But going back to Laplace's formulation, and our initial
critique of it, it is unclear whether the classical theory even applies in such cases.
However one enumerates the sets of possibilities in question, it cannot be by
straightforward counting. (Presumably it is by integration.) It seems, then, the Bertrand's
classic 'refutations' of the classical interpretation—supposedly showing that it is
inconsistent—involve exactly those cases where the interpretation, at least as originally
formulated, fails to apply. Of course, that only drives home the point that the
interpretation is incomplete; but that is another point. It is best to think of Bertrand's
paradoxes as posing difficulty for the principle of indifference, which can be separated
from Laplace's particular formulation.

Classical probabilities are only finitely additive (de Finetti 1974). This is not to say
that they violate countable additivity, for the two sides of the countable additivity
equation, which involve infinite collections of events, are always undefined for
Laplacean classical probabilities. It would be more careful to say that classical
probabilities fail to satisfy countable additivity—but presumably that still implies that
they are not admissible with respect to Kolmogorov's axioms. They are ascertainable,
assuming that the space of possibilities can be determined in principle. They bear a
relationship to the credences of rational agents; the concern is that the relationship is
vacuous, and that rather than constraining the credences of a rational agent in an
epistemically neutral position, they merely record them.

Without supplementation, the classical theory makes no contact with frequency
information. However the coin happens to land in a sequence of trials, the possible
outcomes remain the same. Indeed, even if we have strong empirical evidence that the
coin is biased towards heads with probability, say, 0.6, it is hard to see how the
unadorned classical theory can accommodate this fact—for what now are the ten
possibilities, six of which are favorable to heads? Laplace does supplement the theory
with his Rule of Succession: "Thus we find that an event having occurred successively
any number of times, the probability that it will happen again the next time is equal to
this number increased by unity divided by the same number, increased by two units."
That is:

: : N+1
Pr(success on N+1st trial | N consecutive successes) = N2
Thus, inductive learning is possible. We must ask, however, whether such learning can be
captured once and for all by such a simple formula, the same for all domains. We will
return to this question when we discuss the logical interpretation below.



Science apparently invokes at various points probabilities that look classical. Bose-
Einstein statistics, Fermi-Dirac statistics, and Maxwell-Boltzmann statistics each arise by
considering the ways in which particles can be assigned to states, and then applying the
principle of indifference to different subdivisions of the set of alternatives. The troubleis
that Bose-Einstein statistics apply to some particles (e.g. photons) and not to others,
Fermi-Dirac statistics apply to different particles (e.g. electrons), and Maxwell-
Boltzmann statistics do not apply to any known particles. None of this can be determined
a priori, as the classical interpretation would have it. Moreover, the classical theory
purports to yield probability assignments in the face of ignorance. But as Fine (1973)
writes: "If we are truly ignorant about a set of alternatives, then we are also ignorant
about combinations of alternatives and about subdivisions of alternatives. However, the
principle of indifference when applied to alternatives, or their combinations, or their
subdivisions, yields different probability assignments® (170).

This brings us to one of the chief points of controversy regarding the classical
interpretation. Critics accuse the principle of indifference of extracting information from
ignorance. Proponents reply that it rather codifies the way in which such ignorance
should be epistemically managed—for anything other than an equal assignment of
probabilities would represent the possession of some knowledge. Critics counter-reply
that in a state of complete ignorance, it is better to assign vague probabilities (perhaps
vague over the entire [0, 1] interval), or to eschew the assignment of probabilities
altogether.

4.2 LOGICAL PROBABILITY

Logical theories of probability retain the classical interpretation’s guiding idea that
probabilities can be determined a priori by an examination of the space of possibilities.
However, they generalize it in two important ways: the possibilities may be assigned
unequal weights, and probabilities can be computed whatever the evidence may be,
symmetrically balanced or not. Indeed, the logical interpretation, in its various guises,
seeks to codify in full generality the degree of support or confirmation that a piece of
evidence E confers upon a given hypothesis H, which we may write as c(H, E). In doing
S0, it can be regarded also as generalizing deductive logic and its notion of implication, to
a complete theory of inference equipped with the notion of ‘degree of implication’ that
relates E to H. It is often called the theory of ‘inductive logic’, though this is another
misnomer: there is no requirement that E be in any sense ‘inductive’ evidence for H.
‘Non-deductive logic’ would be a better name, although even that overlooks the fact that
deductive logic’s relations of implication and incompatibility are also accommodated as
extreme cases in which the confirmation function takes the values 1 and O respectively.
Nevertheless, what is significant is that the logical interpretation provides a framework
for induction.

Early proponents of logical probability include Keynes (1921), W. E. Johnson (1932),
and Jeffreys (1939). However, by far the most systematic study of logical probability was
by Carnap. His formulation of logical probability begins with the construction of aformal
language. In (1950) he considers a class of very simple languages consisting of afinite
number of logically independent monadic predicates (naming properties) applied to
countably many individual constants (naming individuals) or variables, and the usual
logical connectives. The strongest (consistent) statements that can be made in a given



language describe all of the individuals in as much detail as the expressive power of the
language allows. They are conjunctions of complete descriptions of each individual, each
description itself a conjunction containing exactly one occurrence (negated or unnegated)
of each predicate of the language. Call these strongest statements state descriptions.

Any probability measure m(-) over the state descriptions automatically extends to a
measure over all sentences, since each sentence equivalent to a disunction of state
descriptions; m in turn induces a confirmation function ¢(—-):

m(h & e)

c(h, e) = “me
There are obvioudly infinitely many candidates for m, and hence c, even for very simple
languages. Carnap argues for his favored measure “m*” by insisting that the only thing
that significantly distinguishes individuals from one another is some qualitative
difference, not just a difference in labeling. A structure description is a maximal set of
state descriptions, each of which can be obtained from another by some permutation of
the individual names. m* assigns each structure description equal measure, which in turn
is divided equally among their constituent state descriptions. It gives greater weight to
homogenous state descriptions than to heterogeneous ones, thus ‘rewarding’ uniformity
among the individuals in accordance with putatively reasonable inductive practice. It can
be shown that the induced ¢* alows inductive learning from experience—as, annoyingly,
do infinitely many other candidate confirmation functions. Carnap claims that c*
neverthel ess stands out for being simple and natural.

He later generalizes his confirmation function to a continuum of functions c ). Define
a family of predicates to be a set of predicates such that, for each individual, exactly one
member of the set applies, and consider first-order languages containing a finite number
of families. Carnap (1963) focuses on the specia case of alanguage containing only one-
place predicates. He lays down a host of axioms concerning the confirmation function c,
including those induced by the probability calculus itself, various axioms of symmetry
(for example, that c(h, €) remains unchanged under permutations of individuals, and of
predicates of any family), and axioms that guarantee undogmatic inductive learning, and
long-run convergence to relative frequencies. They imply that, for afamily {P.}, n =1,
Ko k>2

 +

C) (individua s+ 1isPj, 5 of thefirst sindividuals are P)) = §S+—)\)\/k

where A is apositive real number.

The higher the value of A, the less impact evidence has: induction from what is observed
becomes progressively more swamped by a classical-style equal assignment to each of
the k possibilities regarding individual s+ 1.

The problem remains: what is the correct setting of A, or said another way, how
‘inductive’ should the confirmation function be? Also, it turns out that for any such
setting, a universal statement in an infinite universe always receives zero confirmation,
no matter what the (finite) evidence. Many find this counterintuitive, since laws of nature
with infinitely many instances can apparently be confirmed. Earman (1992) discusses
prospects for avoiding the unwelcome resullt.

Significantly, Carnap’s various axioms of symmetry are hardly logical truths. More
seriously, we cannot impose further symmetry constraints that are seemingly just as
plausible as Carnap’s, on pain of inconsistency—see Fine (1973, p. 202). Goodman



taught us: that the future will resemble the past in some respect is trivial; that it will
resemble the past in al respects is contradictory. And we may continue: that a probability
assignment can be made to respect some symmetry is trivial; that one can be made to
respect all symmetries is contradictory. This threatens the whole program of logical
probability.

Another Goodmanian lesson is that inductive logic must be sensitive to the meanings
of predicates, strongly suggesting that a purely syntactic approach such as Carnap’s is
doomed. Scott and Krauss (1966) use model theory in their formulation of logical
probability for richer and more realistic languages than Carnap’s. Still, finding a
canonical language seems to many to be a pipe dream, at least if we want to analyze the
“logical probability” of any argument of real interest—either in science, or in everyday
life.

Logical probabilities are admissible, and, assuming a rich enough language,
ascertainable. They fail on the applicability criteriain very much the same way that the
classical theory did, and for very much the same reasons. In connection with the
‘applicability to science' criterion, a further point, due to Lakatos, is worth noting. The
degree of confirmation of a hypothesis depends on the language in which the hypothesis
is stated and over which the confirmation function is defined. But scientific progress
often brings with it a change in scientific language (for example, the addition of new
predicates and the deletion of old ones), and such a change will bring with it a change in
the corresponding c-values. Thus, the growth of science may overthrow any particular
confirmation theory. There is something of the snake eating its own tail here, since
logical probability was supposed to explicate the confirmation of scientific theories.

4.3 SUBJECTIVE PROBABILITY

We may characterize  subjectivism (also knownas  personalismand subjective
Bayesianism) with the slogan: 'Probability is degree of belief'. We identify probabilities
with degrees of confidence, sometimes known as credences, of suitable agents. Thus, we
realy have many interpretations of probability here, as many as there are doxastic states
of suitable agents. we have Aaron's degrees of belief, Abel's degrees of belief, Abigail's
degrees of belief, ..., or better still, Aaron's degrees of belief-at-time-t1, Aaron's degrees
of belief-at-time-t2, Abel's degrees of belief-at-time-t1, ... Of course, we must ask what
makes an agent 'suitable’. Unconstrained subjectivism places no constraints on the
agents—anyone goes, and hence anything goes. Various studies by psychologists (e.g.
Kahneman and Tversky 19xx) show that people commonly violate the usual probability
calculus in spectacular ways. We clearly do not have here an admissible interpretation
(with respect to any probability calculus), since there is no limit to what agents might
assign—negative probabilities, infinite probabilities, probabilities that are not additive,
and so on. Indeed, one wonders what would make them assignments of probabilities, as
opposed to just utterances of numbers.

More interesting, however, is the claim that the suitable agents must be, in a strong
sense, rational. Various subjectivists want to assimilate probability to logic, regarding
probability as the logic of partial belief. A rational agent is required to be logically
consistent, now taken in a broad sense. These subjectivists argue that this implies that the
agent obeys the axioms of probability (with at least finite additivity), and that
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subjectivism is thus (to this extent) admissible. But before we can present this argument,
we must say more about what degrees of belief are.

The betting inter pretation
Subjective probabilities, in turn, are traditionally analyzed in terms of betting
behavior. Hereis a classic statement by de Finetti (19xx):
Let us suppose that an individual is obliged to evaluate the rate p at which he would
be ready to exchange the possession of an arbitrary sum S (positive or negative)
dependent on the occurrence of a given event E, for the possession of the sum pS; we
will say by definition that this number p is the measure of the degree of probability
attributed by the individual considered to the event E, or, more simply, that p is the
probability of E (according to the individual considered; this specification can be
implicit if there is no ambiguity). (1980, p. 62)

This boils down to the following analysis:
Y our degree of belief inEisp
iff
p unitsis the price at which you would buy or sell a bet that pays 1 unit if E, O if not
E.

De Finetti presupposes that, for any E, there is exactly one such price. This
presupposition may fail. There may be no such price—you may refuse to bet on E at all
(perhaps unless coerced, in which case your genuine opinion about E may not be
revealed), or your selling price may differ from your buying price, as may occur if your
probability for E is vague. There may be more than one such price—you may find a
range of such prices acceptable, as may also occur if your probability for E is vague. For
now, however, let us waive these concerns, and turn to an argument that uses the betting
interpretation purportedly to show that rational degrees of belief must conform to the
probability calculus (with at least finite additivity).

The Dutch Book argument

A Dutch book is a series of bets, each of which the agent regards as fair, but which
collectively guarantee her loss, however the world turns out. De Finetti (1937) proves
that if your subjective probabilities violate the probability calculus, then you are
susceptible to a Dutch book. For example, suppose that you violate the additivity axiom
by assigning P(A v B) < P(A) + P(B), where A and B are mutually exclusive. Then a
bookie could buy from you a bet on A v B for P(A v B), and sell you bets on A and B
individually for P(A) and P(B) respectively. He pockets an initia profit of P(A) + P(B) —
P(A v B), and retains it whatever happens.

Equally important, and often neglected, is the converse theorem that establishes that
you do not face such a predicament whatever you do. If your subjective probabilities
conform to the probability calculus, then no Dutch book can be made against you
(Kemeny 1955); your probability assignments are then said to be coherent. In a nutshell,
conformity to the probability calculusis necessary and sufficient for coherence.®

% Some authors simply define ‘coherence' as conformity to the probability calculus.
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Problemswith the betting inter pretation

But let us return to the betting interpretation. We have here an operational definition
of subjective probability, and indeed it inherits some of the difficulties of operationalism
in general, and of behaviorism in particular. For example, you may have reason to
misrepresent your true opinion, or to feign having opinions that in fact you lack, by
making the relevant bets (perhaps to exploit an incoherence in someone else's betting
prices). Moreover, as Ramsey (19xx) points out, placing the very bet may alter your state
of opinion. Trivialy, it does so regarding matters involving the bet itself (e.g., you
suddenly increase your probability that you have just placed a bet). Less trivialy, placing
the bet may change the world, and hence your opinions, in other ways (betting at high
stakes on the proposition 'l will sleep well tonight' may suddenly turn you into an
insomniac). And then the bet may concern an event such that, were it to occur, you would
no longer value the pay-off the same way. (During the August 11, 1999 solar eclipse in
the UK, aman placed a bet that would have paid a million pounds if the world came to an
end.)

These problems stem largely from taking literally the notion of entering into a bet on
E, with its corresponding payoffs; yet as it stands, it is unclear how else we are supposed
to understand the analysis. The problems are avoided by identifying your degree of belief
in a proposition with the betting price you regard as fair, whether or not you enter into
such a bet; see Howson and Urbach (19xx). Still, the fair price of a bet on E appears to
measure the wrong quantity: not your probability that E will be the case, but rather your
probability that E will be the case and that the prize will be paid, which may be rather
less—for example, if E is unverifiable. Weatherson (19xx) argues that this commits
proponents of the betting interpretation to an underlying intuitionistic (as opposed to
classical) logic. This in turn raises the question: if subjectivism is supposed to be an
interpretation of the probability calculus, how exactly should the sentential version of the
normalization axiom, with its reference to 'logical truth', be understood? Likewise, what
exactly is the additivity axiom, with its reference to 'logical incompatibility', that is
supposedly interpreted by the subjectivist? Absent answers to these questions, it is
premature to claim that subjectivism is an admissible interpretation of Kolmogorov's
axioms (understood sententially).

De Finetti speaks of "an arbitrary sum" as the prize of the bet on E. It isjust as well
that he does not speak of dollar or pound or lire amounts, as some subjectivists do, as this
would hold the analysis—again, taken literally—hostage (trivially) to the existence of
these monetary systems, and (more interestingly) to their corresponding 'graininess.
Dollars, for instance, can be divided no more finely than units of 1/100, so any
probability measurement using a dollar as prize would be imprecise beyond the second
decimal place, and propositions that ought to receive different probabilities would wind
up getting the same (e.g., alogical contradiction and 'afair coin lands heads 8 timesin a
row'). Still, there are difficulties with de Finetti's "arbitrary sums'. Whatever they are,
they had better be infinitely divisible, or else the problem of imprecision will still arise.
More significantly, if utility is not a linear function of such sums, then the size of the
prize will make a difference to the putative probability: winning a dollar means more to a
pauper more than it does to Bill Gates, and this may be reflected in their betting
behaviors in ways that have nothing to do with their genuine probability assignments. De
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Finetti responds to this problem by suggesting that the prizes be kept small; that,
however, only creates the opposite problem that agents may be reluctant to bother about
trifles, as Ramsey points out.

Better, then, to let the prizes be measured in utilities: after all, utility is infinitely
divisible, and utility isalinear function of utility.

Probabilities and utilities

Utilities (desirabilities) of outcomes, their probabilities, and rational preferences are
al intimately linked. The Port Royal Logic showed how utilities and probabilities
together determine rational preferences; de Finetti's betting interpretation derives
probabilities from utilities and rational preferences, von Neumann and Morgenstern
(1944) derive utilities from probabilities and rational preferences. And most remarkably,
Ramsey (1926) derives both probabilities and utilities from rational preferences alone.

First, he defines a proposition to be ethically neutral—relative to an agent and an
outcome—if the agent is indifferent between having that outcome when the proposition is
true and when it isfalse. The ideais that the agent doesn't care about the ethically neutral
proposition as such—it isameans to a end that he might care about, but it has no intrinsic
value. Now, there is asimple test for determining whether, for a given agent, an ethically
neutral proposition N has probability 1/2. Suppose that the agent prefers A to B. Then N
has probability 1/2 iff the agent isindifferent between the gambles:

Aif N, B if not

Bif N, A if not.

Ramsey assumes that it does not matter what the candidates for A and B are. We may
assign arbitrarily to A and B any two real numbers u(A) and u(B) such that u(A) > u(B),
thought of asthe desirabilities of A and B respectively.

Given various assumptions about the richness of the preference space, and certain
‘consistency assumptions, he can define areal-valued utility function of the outcomes A,
B, etc—in fact, various such functions will represent the agent's preferences. He is then
able to define equality of differencesin utility for any outcomes over which the agent has
preferences. It tuns out that ratios of utility-differences are invariant—the same
whichever representative utility function we choose. This fact allows Ramsey to define
degrees of belief as ratios of such differences. For example, suppose the agent is
indifferent between A, and the gamble "B if X, C otherwise". Then her degree of belief
in X, P(X), isgiven by:

u(A) —u(C)
P(X) = uB) —u(C)
Ramsey shows that degrees of belief so derived obey the probability calculus (with finite
additivity). He calls what results "the logic of partial belief", and indeed he opens his
essay with the words "In this essay the Theory of Probability is taken as a branch of
logic...".

Ramsey avoids some of the objections to the betting interpretation, but not all of
them. Notably, the essential appeal to gambles again raises the concern that the wrong
guantities are being measured. And his account has new difficulties. It is unclear what
facts about agents fix their preference rankings. It is also dubious that consistency
requires one to have a set of preferences as rich as Ramsey requires, or that one can find
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ethically neutral propositions of probability 1/2. This places strain on Ramsey's claim to
assimilate probability theory to logic.

Savage (1954) likewise derives probabilities and utilities from preferences among
options that are constrained by certain putative 'consistency’ principles. For agiven set of
such preferences, he generates a class of utility functions, each an affine transformation
of the other, and a unique probability function; together these are said to 'represent’ the
agent's preferences. Jeffrey (1966) refines the method further. The result is theory of
decision according to which rational choice maximizes 'expected utility', a certain
probability-weighted average of utilities. Some of the difficulties with the behavioristic
betting analysis of degrees of belief can now be resolved by moving to an analysis of
degrees of belief that is functionalist in spirit. According to Lewis (1986a, 1994), an
agent's degrees of belief are represented by the probability function belonging to a utility
function/probability function pair that best rationalizes her behavioral dispositions,
rationality being given a decision-theoretic analysis.

It is a striking fact that agents with preferences that satisfy such-and-such conditions
can be represented by a utility/probability function pairs. However, this falls short of the
claim that they must be so represented. Said another way, the fact that there exists a
probabilistic representation of a suitable agent does not preclude there also existing non-
probabilistic representations of the very same agent. Indeed, Zynda (2001) shows that this
is the case. The question thus arises. why should the probabilistic representation be
favored over the non-probabilistic?

There is another deep issue that underlies all of these accounts of subjective
probability. They all presuppose the existence of necessary connections between desire-
like states and belief-like states, rendered explicit in the connections between preferences
and probabilities. In response, one might insist that such connections are at best
contingent, and indeed can easily be imagined to be absent. Think of an idealized Zen
Buddhist monk, devoid of any preferences, who dispassionately surveys the world before
him, forming beliefs but no desires.

Once desires enter the picture, they may also have unwanted consequences. For
example, how does one separate an agent's enjoyment or disdain for gambling from the
value she places on the gamble itself? As Ramsey puts it, "The difficulty is like that of
separating two different co-operating forces' (xx). One might 'overvalue' a gamble that
provides insurance against an unwanted outcome, or for its desirable consequences. (The
manager of a basketball team might secretly bet against his team at an inflated price for
the first reason, or, in a public show of bravado, on his team at an inflated price for the
second reason.) There is no telling how many forces might enter into the overall
desirability of agamble, only one of which is the probabilistic force that we seek.

The betting interpretation apparently makes subjective probabilities ascertainable. It
is unclear that the derivation of them from preferences does—for it is unclear that an
agent's full set of preferences is ascertainable (even to himself or herself!). Here alot of
weight may need to be placed on the 'in principle' qualification in that criterion. The
expected utility representation makes it virtually analytic that an agent should be guided
by probabilities—after all, the probabilities are her own, and they are fed into the formula
for expected utility in order to determine what it is rational for her to do. But do they
function as a good guide to life? Subjectivists in the style of de Finetti recognize no
rational constraints on subjective probabilities beyond conformity to the probability
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calculus (and a certain rule for how probabilities change under the impact of new
evidence known as 'conditionalizing’). This permissiveness licenses doxastic states that
we would normally call crazy. Thus, you could assign probability 0.999 to this sentence
ruling the universe, while upholding subjectivism—provided, of course, that you assign
probability 0.001 to this sentence not ruling the universe, and that your other probability
assignments all conform to the probability calculus. Such probabilistic coherence plays
much the same role for degrees of belief that consistency plays for ordinary, al-or-
nothing beliefs. What the subjectivist lacks is an analogue of truth, some yardstick for
distinguishing the 'veridical' probability assignments from the rest (such as the 0.999 one
above). To the extent that truth is an indispensable guide to life, it seems that the
subjectivist needs something more.

4.4 FREQUENCY INTERPRETATIONS

Gamblers, actuaries and scientists have long understood that relative frequencies bear
an intimate relationship to probabilities. Frequency interpretations posit the most intimate
relationship of al: identity. Thus, we might identify the probability of 'heads on a certain
coin with the frequency of heads in a suitable sequence of tosses of the coin, divided by
the total number of tosses. A simple version of frequentism, which we will call finite
frequentism, attaches probabilities to events or attributesin afinite reference classin such
a straightforward manner:

the probability of an attribute A in a finite reference class B is the relative

frequency of actual occurrences of A within B.

Thus, finite frequentism bears certain structural similarities to the classical interpretation,
insofar as it gives equal weight to each of a set of events, simply counting how many of
them are 'favorable' as a proportion of the total. The crucia difference, however, is that
where the classical interpretation counted all the possible outcomes of a given
experiment, finite frequentism counts actual outcomes. It is thus congenial to those with
empiricist scruples. It was developed by Venn (1876), who in his discussion of the
proportion of births of males and females, concludes: "probability is nothing but that
proportion™” (p. 84, hisemphasis). Other notable finite frequentists include Russell (19xx)
and Braithwaite (19xx).

Finite frequentism gives another operational definition of probability, and its
problems begin there. For example, just as we want to alow that our thermometers could
be ill-calibrated, and could thus give misleading measurements of temperature, so we
want to allow that our 'measurements of probabilities via frequencies could be
misleading, as when afair coin lands heads 9 out of 10 times. More than that, it seems to
be built into the very notion of probability that such misleading results can arise. Indeed,
in many cases, misleading results are guaranteed. Starting with a degenerate case:
according to the finite frequentist, a coin that is never tossed, and that thus yields no
actual outcomes whatsoever, lacks a probability for heads altogether; yet a coin that is
never measured does not thereby lack a diameter. Perhaps even more troubling, a coin
that is tossed exactly once yields arelative frequency of heads of either O or 1, whatever
its bias. Famous enough to merit a name of its own, this is the so-called 'problem of the
single case'. In fact, many events are most naturally regarded as not merely unrepeated,
but in a strong sense unrepeatable—the 2000 presidential election, the final game of the
2001 NBA play-offs, the Civil War, Kennedy's assassination, certain events in the very
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early history of the universe. Nonetheless, it seems natural to think of non-extreme
probabilities attaching to some, and perhaps all, of them. Worse still, some cosmologists
regard it as a genuinely chancy matter whether our universe is open or closed (apparently
certain quantum fluctuations could, in principle, tip it one way or the other), yet whatever
itis, itis'single-case in the strongest possible sense.

The problem of the single case is particularly striking, but we really have a sequence
of related problems: 'the problem of the double case', 'the problem of the triple case' ...
Every coin that is tossed exactly twice can yield only the relative frequencies 0, 1/2 and
1, whatever its bias... A finite reference class of size n, however large n is, can only
produce relative frequencies at a certain level of 'grain’, namely 1/n. Among other things,
this rules out irrational probabilities; yet our best physical theories say otherwise.
Furthermore, there is a sense in which any of these problems can be transformed into the
problem of the single case. Suppose that we toss a coin a thousand times. We can regard
this as a single trial of a thousand-tosses-of-the-coin experiment. Y et we do not want to
be committed to saying that that experiment yields its actual result with probability 1.

The problem of the single case is that the finite frequentist fails to see intermediate
probabilities in various places where others are inclined to see them. There is also the
converse problem: the frequentist sees intermediate probabilities in various places where
others are inclined not to. Our world has myriad different entities, with myriad different
attributes. We can group them into still more sets of objects, and then ask with which
relative frequencies various attributes occur in these sets. Many such relative frequencies
will be intermediate; the finite frequentist automatically identifies them with intermediate
probabilities. But it would seem that whether or not they are genuine probabilities, as
opposed to mere tallies, depends on the case at hand. Bare ratios of attributes among sets
of disparate objects may lack the sort of modal force that one might expect from
probabilities. | belong to the reference class consisting of myself, the Eiffel Tower, the
southernmost sandcastle on Santa Monica Beach, and Mt Everest. Two of these four
objects are less than 7 ft tall, a relative frequency of 1/2; moreover, we could easily
extend this class, preserving this relative frequency (or, equally easily, not). Yet it would
be odd to say that my probability of being less than 7 ft tall, relative to this reference
class, is 1/2, even though it is perfectly acceptable (if uninteresting) to say that 1/2 of the
objects in the reference class are less than 7 ft tall.

Frequentists (notably Venn, and Reichenbach 19xx among others), partly in response
to some of the problems above, have gone on to consider infinite reference classes,
identifying probabilities with limiting relative frequencies of events or attributes therein.
Thus, we require an infinite sequence of trials in order to define such probabilities. But
what if the actual world does not provide an infinite sequence of trials of a given
experiment? In that case, some frequentists (e.g., Venn, Reichenbach) identify probability
with a hypothetical or counterfactual limiting relative frequency. We are to imagine
hypothetical infinite extensions of an actual sequence of trials; probabilities are then what
the limiting relative frequencies would be if the sequence were so extended. Note that at
this point we have left empiricism behind. A modal element been injected into
frequentism with this invocation of a counterfactual; moreover, the counterfactual may
involve aradical departure from the way things actually are, one that may even require
the breaking of laws of nature. (Think what it would take for the coin in my pocket,
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which has only been tossed once, to be tossed infinitely many times—never wearing out,
and never running short of people willing to tossit!)

Limiting relative frequencies, we have seen, must be relativized to a sequence of
trials. Herein lies another difficulty. Consider an infinite sequence of the results of
tossing acoin, asit might beH, T,H,H, H, T, H, T, T, ... Suppose for definiteness that
the corresponding relative frequency sequence for heads, which begins 1/1, 1/2, 2/3, 3/4,
4/5, 4/6, 5/7, 5/8, 5/9, ..., converges to 1/2. By suitably reordering these results, we can
make the sequence converge to any value in [0, 1] that we like. (If this is not obvious,
consider how the relative frequency of even numbers among positive integers, which
intuitively 'should' converge to 1/2, can instead be made to converge to 1/4 by reordering
the integers with the even numbersin every fourth place, asfollows: 1, 3,5, 2, 7, 9, 11, 4,
13, 15, 17, 6, ...) To be sure, there may be something natural about the ordering of the
tosses as given—for example, it may be their temporal ordering. But there may be more
than one natural ordering. Imagine the tosses taking place on a train that shunts
backwards and forwards on tracks that are oriented west-east. Then the spatial ordering
of the results from west to east could look very different. Why should one ordering be
privileged over others?

A well-known objection to any version of frequentism is that relative frequencies
must be relativised to a reference class. Consider a probability concerning myself that |
care about—say, my probability of living to age 80. | belong to the class of males, the
class of non-smokers, the class of philosophy professors who have two vowels in their
surname, ... Presumably the relative frequency of those who live to age 80 varies across
(most of) these reference classes. What, then, is my probability of living to age 807 It
seems that there is no single frequentist answer. Instead, there is my probability-qua-
male, my probability-gua-non-smoker, and so on. This is an example of the so-called
reference class problem for frequentism (although it can be argued that analogues of the
problem arise for the other interpretations as well). As we have seen in the previous
paragraph, the problem is only compounded for limiting relative frequencies:
probabilities must be relativized not merely to a reference class, but to a sequence within
the reference class. We might call this the reference sequence problem.

The beginnings of a solution to this problem would be to restrict our attention to
sequences of a certain kind, those with certain desirable properties. For example, there
are sequences for which the limiting relative frequency of a given attribute does not exist;
Reichenbach thus excludes such sequences. Von Mises gives us a more thoroughgoing
restriction to what he calls collectives—hypothetical infinite sequences of attributes
(possible outcomes) of specified experiments that meet certain requirements. Call a
place-selection an effectively specifiable method of selecting indices of members of the
sequence, such that the selection or not of the index i depends at most on the firsti — 1
attributes. The axioms are:

Axiom of Convergence: the limiting relative frequency of any attribute exists.

Axiom of Randomness. the limiting relative frequency of each attribute in a

collective w is the same in any infinite subsequence of w which is determined by

aplace selection.
[Axiom of randomness implies axiom of convergence.]
The probability of an attribute A, relative to a collective w, is then defined as the limiting
relative frequency of A in w. Note that a constant sequence such asH, H, H, ..., inwhich
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the limiting relative frequency is the same in any infinite subsequence, trivially satisfies
the axiom of randomness—a perhaps unwelcome result. Collectives are abstract
mathematical objects that are not empirically instantiated, but that are nonethel ess posited
by von Mises to explain the stabilities of relative frequencies in the behavior of actual
sequences of outcomes of a repeatable random experiment. Church (1940) renders
precise the notion of a place selection as a recursive function. Nevertheless, the reference
sequence problem remains: probabilities must always be relativized to a collective, and
for a given attribute such as 'heads' there are infinitely many. Von Mises embraces this
consequence, insisting that the notion of probability only makes sense relative to a
collective. In particular, he regards single case probabilities as "nonsense". Some critics
believe that rather than solving the problem of the single case, this merely ignoresiit.

Let us take stock. Finite relative frequencies only arise where there are finite
sequences of trials. They are, of course, finitely additive; however, they fail to satisfy
countable additivity, since neither side of the equation is defined (another point of
analogy to classical probabilities). Limiting relative frequencies violate countable
additivity (Birkhoff 1940, Ch. XII, 86; de Finetti 1972, 85.22). Indeed, the domain of
definition of limiting relative frequency is not even a field (de Finetti 1972, 85.8). So
relative frequencies do not provide an admissible interpretation of Kolmogorov's axioms.
Finite frequentism has no trouble meeting the ascertainability criterion, as finite relative
frequencies are in principle easily determined. The same cannot be said of limiting
relative frequencies. On the contrary, any finite sequence of trials (which, after al, is all
we ever see) puts literally no constraint on the limit of an infinite sequence; still less does
an actual finite sequence put any constraint on the limit of an infinite hypothetical
sequence, however fast and loose we play with the notion of 'in principle' in the
ascertainability criterion.

Offhand, it might seem that the frequentist interpretations resoundingly meet the
applicability to frequencies criterion. Finite frequentism meets it all too well, while
limiting relative frequentism meets it in the wrong way. If anything, finite frequentism
makes the connection between probabilities and frequencies too tight, as we have already
observed. A fair coin that istossed a million timesis very unlikely to land heads exactly
half the time; one that is tossed a million and one times is even less likely to do so!
Limiting relative frequentism fails to connect probabilities with finite frequencies. It
connects them with limiting relative frequencies, of course, but again too tightly: for even
in infinite sequences, the two can come apart. (A fair coin could land heads forever, even
if it is highly unlikely to do so.) To be sure, science has much interest in finite
frequencies, and indeed working with them is much of the business of statistics. Whether
it is interested in highly idealized, hypothetical extensions of actual sequences, and
relative frequencies therein, is another matter. The applicability to rational opinion goes
much the same way: it is clear that it is guided by finite frequency information, unclear
that it is guided by information about limits of hypothetical frequencies.

4.5 PROPENSITY INTERPRETATIONS

Like the frequency interpretations, propensity interpretations locate probability 'in the
world' rather than in our heads or in logical abstractions. Probability is thought of as a
physical propensity, or disposition, or tendency of a given type of physical situation to
yield an outcome of a certain kind, or to yield a long run relative frequency of such an
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outcome. This view was motivated by the desire to make sense of single-case
probabilities, such as 'the probability that this radium atom decays in 1500 yearsis 1/2'.
Indeed, Popper (1957) advocates propensity as an account of such quantum mechanical
probabilities.

Popper develops the theory further in (1959). For him, a probability p of an outcome
of a certain type is a propensity of a repeatable experiment to produce outcomes of that
type with limiting relative frequency p. For instance, when we say that a coin has
probability 1/2 of landing heads when tossed, we mean that we have a repeatable
experimental set-up—the tossing set-up—which has a propensity to produce a sequence
of outcomes in which the limiting relative frequency of heads is 1/2. With its heavy
reliance on limiting relative frequency, this position risks collapsing into von Mises-style
frequentism according to some critics. Giere (1973), on the other hand, explicitly allows
single-case propensities, with no mention of frequencies: probability is just a propensity
of a repeatable experimental set-up to produce sequences of outcomes. This, however,
creates the opposite problem to Popper's. how, then, do we get the desired connection
between probabilities and frequencies?

It isthus useful to follow Gillies (2001) in distinguishing long-run propensity theories
and single-case propensity theories. "A long-run propensity theory is one in which
propensities are associated with repeatable conditions, and are regarded as propensities to
produce in a long series of repetitions of these conditions frequencies which are
approximately equal to the probabilities. A single-case propensity theory is one in which
propensities are regarded as propensities to produce a particular result on a specific
occasion." (822). Gillies offers a long-run (though not infinitely long-run) propensity
theory; Miller (19xx) and Fetzer (19xx) offer single-case propensity theories.

It seems that those theories that tie propensities to frequencies do not provide an
admissible interpretation of the probability calculus, for the same reasons that relative
frequencies do not. It is prima facie unclear whether single-case propensity theories obey
the probability calculus or not. To be sure, one can stipulate that they do so, perhaps
using that stipulation as part of the implicit definition of propensities. Still, it remains to
be shown that there really are such things—stipulating what a witch is does not suffice to
show that witches exist. Indeed, to claim, as Popper does, that an experimental
arrangement has a tendency to produce a given limiting relative frequency of a particular
outcome, presupposes a kind of stability or uniformity in the workings of that
arrangement (for the limit would not exist in a suitably unstable arrangement). But thisis
the sort of 'uniformity of nature' presupposition that Hume argued could not be known
either a priori, or empirically. Now, appeals can be made to limit theorems—so called
'laws of large numbers—whose content is roughly that under suitable conditions, such
limiting relative frequencies almost certainly exist, and equal the single case propensities.
Still, these theorems make assumptions (e.g., that the trials are independent and
identically distributed) whose truth again cannot be known, and must merely be
postul ated.

Part of the problem here, say critics, is that we do not know enough about what
propensities are to adjudicate these issues. There is some property of this coin tossing
arrangement such that this coin would land heads with a certain limiting frequency, say,
or with a certain long-run frequency (approximately). But as Hitchcock (forthcoming)
points out, "calling this property a‘propensity’ of a certain strength does little to indicate
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just what this property is." Said another way, propensity accounts are accused of giving
empty accounts of probability, alaMoliére's 'dormative virtue'. Similarly, Gillies objects
to single-case propensities on the grounds that statements about them are untestable, and
that they are "metaphysical rather than scientific" (825). Some might level the same
charge even against long-run propensities, which are supposedly distinct from the
testable relative frequencies.

This suggests that the propensity account has difficulty meeting the applicability to
science criterion. Some propensity theorists (e.g. Giere) liken propensities to physical
magnitudes such as electrical charge that are the province of science. But Hitchcock
observes that the analogy is misleading. We can only determine the general properties of
charge—that it comes in two varieties, that like charges repel, and so on—by empirical
investigation. What investigation, however, could tell us whether or not propensities are
non-negative, normalized and additive?

More promising, perhaps, is the idea that propensities are to play certain theoretical
roles, and that these place constraints on the way they must behave, and hence what they
could be (in the style of the Ramsey/L ewis/'Canberra plan' approach to theoretical terms).
The trouble here is that these roles may pull in opposite directions, overconstraining the
problem. The first role, according to some, constrains them to obey the probability
calculus (with finite additivity); the second role, according to others, constrains them to
violate it.

On the one hand, propensities are said to constrain rational credences in a way
codified by the so-called 'Principle of Direct Probability’, and refined and made famous to
philosophers by David Lewis (19xx) under the name 'the Principal Principle’. Roughly,
the principle is that rational credences strive to 'track’ propensities, so that if a rational
agent knows the propensity of a given outcome, her degree of belief will be the same.
More generally, where 'Cr' is the subjective probability function of arational agent, and
'Pr' isthe propensity function, for any X,

*) Cr(X | Pr(X) =x) =x.
For example, my degree of belief that this coin toss lands heads, given that its propensity
of landing heads is 3/4, is 3/4. (*) underpins an argument that whatever they are,
propensities must obey the usual probability calculus (with finite additivity); after all, itis
argued, rational credences, which are guided by them, do.

On the other hand, Humphries (19xx) gives an influential argument that propensities
do not obey the probability calculus. The idea is that the probability calculus implies
Bayes theorem, which allows usto 'invert' a conditional probability:

P(BJA).P(A)
P(AIB) =~ P(B)
Yet at least some propensities seem to be measures of 'causal tendencies, and much as
the causal relation is asymmetric, so these propensities supposedly do not invert. Suppose
we have atest for an illness that occasionally gives false positives and false negatives. A
given sick patient may have a (non-trivial) propensity to give a positive test result, but it
apparently makes no sense to say that a given positive test result has a (non-trivial)
propensity to have come from a sick patient. 'Humphries' paradox’, as it is known, has
prompted Fetzer and Nute (19xx) to offer a "probabilistic causal calculus' which looks
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quite different to Kolmogorov's calculus. Thus, we have an argument that whatever they
are, propensities must not obey the usual probability calculus.*

Perhaps all this shows that the notion of 'propensity’ bifurcates: on the one hand, there
are propensities that bear an intimate connection to relative frequencies and rational
credences, and that obey the probability calculus (with finite additivity); on the other
hand, there are causal propensities that behave rather differently. In that case, there would
be still more interpretations of probability than have previously been recognized.

5. CONCLUSION: FUTURE PROSPECTS?

It should be clear from the foregoing that there is still much work to be done
regarding the interpretation of probability. Each interpretation that we have canvassed
seems to capture some crucial insight into it, yet falls short of doing complete justiceto it.
Perhaps the full story about probability is something of a patchwork, with partially
overlapping pieces. In that sense, the above interpretations might be regarded as
complementary, although to be sure each may need some further refinement. My bet, for
what it is worth, is that we will retain at least three distinct notions of probability: one
guasi-logical, one objective, and one subjective.

There are already signs of the rehabilitation of classical and logical probability, and in
particular the principle of indifference, by authors such as Stove (1986), Bartha
(forthcoming), Festa (1993) and Maher (2000, forthcoming). Relevant here may also be
advances in information theory and complexity theory (see Fine 1973, Li and Vitanyi
1997). These theories have aready proved to be fruitful in the study of randomness
(Kolmogorov 19xx, Martin-Lof 19xx), which obviously isintimately related to the notion
of probability. Refinements of our understanding of randomness, in turn, should have a
bearing on the frequency interpretations (recall von Mises appeal to randomness in his
definition of 'collective’), and on propensity accounts (especially those that make explicit
ties to frequencies). Given the supposed connection between propensities and causation
adumbrated in the previous section, powerful causal modeling techniques by authors such
as Pearl (2000) and Spirtes, Glymour and Scheines (1993) may aso play arole here.

An outgrowth of frequentism is Lewis (1986, 1994) account of chance. It runs
roughly as follows. The laws of nature are those regularities that are theorems of the best
theory: the true theory of the universe that best balances simplicity, strength, and
likelihood (that is, the probability of the actual course of history, given the theory). If any
of the laws are probabilistic, then the chances are whatever these laws say they are. Now,
it is somewhat unclear exactly what 'simplicity’ and 'strength’ consist in, and exactly how
they are to be balanced. Perhaps insights from statistics and computer science may be
helpful here: approaches to statistical model selection, and in particular the ‘ curve-fitting’
problem, that attempt to codify simplicity, and its trade-off with strength—e.g., the
Akaike Information Criterion (see Forster and Sober 1994), the Bayesian Information
Criterion (see Kieseppa forthcoming), Minimum Description Length theory (see Rissanen
1999) and Minimum Message L ength theory (see Wallace and Dowe 1999).

We may expect that further criteria of adequacy for subjective probabilities will be
devel oped—perhaps refinements of ‘scoring rules’ (Winkler 1996), and more generally,
candidates for playing a role for subjective probability analogous to the role that truth

* It should be noted that Gillies argues that Humphries' paradox does not force non-Kolmogorovian
propensities on us.
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plays for belief. Here we may come full circle. For belief is answerable both to logic and
to objective facts. A refined account of degrees-of-belief may be answerable both to a
refined quasi-logical and arefined objective notion of probability.

Well may we say that probability is a guide to life; but the task of understanding
exactly how and why it is has still to be completed, and will surely prove to be a guide to
future theorizing about it.

Alan H§jek
California Institute of Technology
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