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CHRISTOPHER READ HITCHCOCK

A GENERALIZED PROBABILISTIC THEORY OF CAUSAL RELEVANCE*

ABSTRACT. I advance a new theory of causal relevance, according to which
causal claims convey information about conditional probability functions. This
theory is motivated by the problem of disjunctive factors, which haunts existing
probabilistic theories of causation. After some introductory remarks, I present in
section 3 a sketch of Eells' (1991) probabilistic theory of causation, which
provides the framework for much of the discussion. Section 4 explains how the
problem of disjunctive factors arises within this framework. After rejecting three
proposed solutions, I offer in section 6 a new approach to causation which
avoids the problem. Decision-theoretic considerations also support the new
approach. Section 8 develops the consequences of the new theory for causal
explanation. The resulting theory of causal explanation incorporates the new
insights while respecting important work on scientific explanation by Salmon
(1970), Railton (1981), and Humphreys (1989). My conclusions are enumerated
in section 9.

1. INTRODUCTION
Traditional theories of causation have tried to analyze causes as being
necessary or sufficient conditions for their effects. Over the past several
decades, however, philosophers have increasingly become interested in
probabilistic theories of causation, which characterize causation in terms of
probability relations. Thus smoking causes lung cancer, not because all or only
smokers develop lung cancer, but because smokers are     more       likely     to develop
lung cancer than are non-smokers. This and similar examples lend to the
probabilistic approach an air of plausibility. But with increasing philosophical
interest has come a barrage of criticisms and counterexamples. In this paper I
will discuss one particular problem which plagues most probabilistic theories of
causation in one form or another: the problem of disjunctive factors.1 This
problem illustrates the need to move to a more generalized probabilistic theory
of causation. Although motivated by the problem of disjunctive factors, I believe
the generalized theory that emerges stands on its own merits; in particular, I
argue that this account meets the needs of a theory of causal explanation.

I will take as my point of departure Eells’ probabilistic theory of causation,
together with the hypothetical limiting frequency conception of probability which
he grudgingly adopts (Eells 1991). It is my hope, however, that the suggested
generalization may be appended      mutatis          mutandem     to the reader’s favourite
probabilistic theory of causation as well.

2. NOTATION
Before proceeding, it is necessary to settle on some conventions for notation
and terminology. A probability space is a triple 〈Ω , F,     P    〉, where Ω is a set, F a σ-
field over Ω, and     P     a probability function with domain F. (Definitions of all
probability concepts used in this paper are given in the appendix.) A lower case
‘ω’ will be used to denote members of Ω. Upper case Roman letters from the
beginning of the alphabet (    A     through      G     ), possibly primed or subscripted, will be
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used to denote members of F. Members of F will be called ‘events’; this word is
intended here only in the set-theoretic sense — it is not intended to invoke any
metaphysical theory of events. Members of F, as sets, are subject to the
operations of union, intersection, and complementation, denoted ‘∪ ’, ‘∩’, and ‘~’
respectively. The symbols ‘Ł’ and ‘Ø’ will be used to denote generalized union
and intersection. Upper case Roman letters from the middle of the alphabet (     H     
through     K    ), possibly primed or subscripted, will be used to refer to sets of real
numbers;      H      will only be used for Borel sets. Lower case Roman letters will play
different roles, frequently standing for individual real numbers or functions. The
Upper case Roman letters from the end of the alphabet (     W      through     Z    ), possibly
primed or subscripted, will stand for random variables.  For ease of notation,
‘    X     ∈       H     ’ will abbreviate ‘{ω:    X   (ω) ∈       H     }’, and similarly for ‘    X     =      x    ’. Conditional
probabilities of the form     P    (    E    |    X     =      x    ) are generalized conditional probability
functions, and may be defined even if     P    (    X     =      x    ) is zero.

3. A PROBABILISTIC THEORY OF CAUSATION
Probabilistic theories of causation have centred on the following idea:      C      is a
cause of     E     if     P    (    E    |     C     ) >     P    (    E    |~     C     ). This idea needs to be expanded, of course, and
there are many different variations on the basic theme. The best developed
probabilistic theory of causation is that of Eells (1991), which is based loosely
on the theory advanced in Cartwright (1979). For definiteness, we will work
within the framework of Eells’ theory. Of necessity, the following exposition
achieves brevity at the cost of clarity; interested readers are encouraged to
study Eells’ more leisurely presentation.

Before delving into the details, I would like to draw attention to three respects
in which the theory to be sketched here differs slightly from that of Eells. First,
Eells intends his theory to give an account of type-level causation; that is, it is
supposed to capture causal generalizations, such as ‘smoking causes cancer’.
Eells offers an independent theory of token-level causation to capture singular
causal claims such as ‘Harry’s smoking caused him to develop lung cancer’.
However, not all authors who have written on the topic of probabilistic causality
agree that a theory of the sort sketched below is inappropriate for singular
causation. Humphreys (1989), for example, offers a variant of this theory as an
account of singular causation, while Suppes (1970) seems to take his theory to
be neutral between the two levels of causation. I will maintain a position of
neutrality on this issue.

Second, Eells, following Cartwright, argues that it is not possible to provide a
reductive analysis of causation in terms of probabilities. (For an attempt at such
a reductive analysis, see Papineau (1989).) Instead, Eells introduces four
primitive relations: positive causation, negative causation, mixed causation, and
neutrality. The first three relations are different species of causal relevance, the
fourth a species of causal irrelevance. The probabilistic theory then imposes
constraints upon these relations. I suggest a slight modification of Eells’ theory
at this point. It suffices to begin with one primitive relation, causal relevance,
which is extensionally equivalent to the union of Eells’ three relations of causal
relevance. The resulting theory not only provides constraints on this primitive
relation, but provides a   reduction     of the three species of causal relevance to
probabilities and the primitive relation of causal relevance. Restructuring the
theory in this way makes explicit an important contribution made by probabilistic
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theories of causation: they provide    taxonomies     of causal relevance. Consider a
paradigmatic causal claim: ‘smoking causes lung cancer’. There is much to this
claim that is not captured by the relevant probability relations, such as the
existence of processes in the lungs that lead to the formation of cancer cells.
What the probability relations     do     capture is the sense in which smoking (which
is causally relevant to lung cancer)    promotes    lung cancer, rather than inhibits it.

Third, Eells conceives of probability as ‘an objective and a physical relation
between event types’ (1991, pp. 34-35). In order to preserve mathematical
clarity, I prefer to talk of probability in the formal mode: probability is a function
over set-theoretic entities. Nonetheless, the assumption underlying Eells’
conception can be translated: there are objective and physical relations
between ‘event types’ which admit of probabilistic    representation    . Events in a σ-
field can    represent    the sorts of entities that stand in causal relations (Eells
usually calls them ‘factors’), and probability assignments to those events can
represent objective features of such entities. The formal primitive ‘causal
relevance’ must then be a two-place relation between events in a σ-field, so it
too is abstract. Again, we can assume that this formal relation corresponds to a
physical relation (which need not be physically or philosophically primitive).

Eells’ causal relations have four argument places. Claims about the causal
relevance of      C      for     E     are always made relative to a population     p     and a
population-type    t   . The choice of      C     ,    E   , and     p     constrains the choice of    t   . For
example, the population     p      must be of type    t   , and    t    must not be such as to
explicitly specify the frequency of the factors represented by      C      and     E     in any
population of type    t   . It is the population-type    t    which determines the structure of
the probability space 〈Ω , F,    P   〉. As an intuitive crutch, we might think of    t    as an
indeterministic set-up which produces populations, where    p    is the outcome of
one trial of type    t   . The probability of    A    will be the limiting relative frequency of
the factor it represents in a hypothetical sequence of populations generated in
conformity with    t   .2 By determining the structure of Ω and F,  t  also determines
which events other than      C      and     E     are to be considered in evaluating the causal
relevance of      C      for     E    .

In order to evaluate the causal relevance of     C     for     E     relative to     p     and  t , it is
necessary to construct a partition {     G     1,     G    2, ... }3 of the outcome space Ω
determined by    t   . Each set     G    i will be called a    cell    of the partition. Each cell
represents a uniform causal background context; the partition divides the entire
probability space into all of its possible background contexts. The procedure for
constructing the partition is described below.

The construction involves two defined relations: interaction, and causal
subsequence. Let {    A    1,     A    2, ... } be an arbitrary partition of the outcome space Ω.
C         interacts     with this partition, with respect to     E    , iff for each  i ,    p   i =    P   (    E   |     C     ∩    A    i),     q    i =
P    (    E    |~     C     ∩    A    i), and    i   ≠   j    implies that either     p    i≠    p    j or     q    i≠    q    j. Informally,     C     interacts with a
partition, relative to     E    , if the different cells  of the partition make a difference to
the probability of     E    , conditional either on      C      or ~     C    .     B     is a     subsequent        causal   
factor    to      C     , with respect to     E    , iff: (i)      C      is causally relevant to    B   ; or (ii)    E    is causally
relevant to     B    ; or (iii) there is some      D      ∈  F, such that      C      is causally relevant to     D    ,      D     
is causally relevant to     E    , and      D      is causally relevant to    B   ; note that all clauses in
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the definition of causal subsequence should be understood as being relativized
to a population and a population-type.

Let {     F    1,     F    2, ... } consist of all     F    i ∈  F such that (i)     F    i is a member of some
partition with which      C      interacts with respect to     E    ; and (ii)    F   i is not a subsequent
causal factor to      C      with respect to     E     (relative to    p    and    t   ). Intuitively, each     F    i
represents a factor which is relevant to     E     independently of      C     ; such factors
should be held fixed when evaluating the causal relevance of     C     for     E    . For
example, if      C      represents smoking, and     E     lung cancer,     F    1 might represent
exposure to asbestos,     F    2 a genetic predisposition to lung cancer, and so on.
There is a worry that smoking might be positively or negatively correlated with
one of these factors. If smoking is negatively correlated with exposure to
asbestos, for example, it could turn out that smokers are  less    likely to develop
lung cancer than non-smokers in the population as a whole, even though
smoking raises the probability of lung cancer both in the presence and in the
absence of asbestos exposure. This reversal of probabilistic relevance would
occur because smokers would be less likely to be exposed to asbestos.  In
order to avoid erroneous causal conclusions, the causal relevance of smoking
for lung cancer should be assessed while other relevant factors are held fixed in
the background. One must take care, however, not to hold fixed those factors
which are causally subsequent to smoking. Suppose, for example, that smoking
causes lung cancer exclusively by depositing pollutants in the lungs. Then it will
turn out that smoking has no effect on the probability of lung cancer if one holds
fixed the presence or absence of pollutants in the lungs; nonetheless, we
should not conclude that smoking does not cause lung cancer: it causes lung
cancer     by     polluting the lungs.

Let the partition {     G     1,      G     2,...} contain all the intersections of maximal consistent
sets of the     F    i’s and their complements. This partition is analogous to the set of
Carnapian state descriptions over the set of predicates corresponding to    F   1,
F    2,... Each      G     i holds fixed each of the members of    F   i either negatively or
positively. The partition {     G    1,      G     2, ...} is the desired partition for evaluating the
causal relevance of      C      for    E   .

C      is said to be     causally        positive     for      E     relative to     p     and    t    if     P    (    E    |     C    ∩     G    i) >
P    (    E    |~     C     ∩     G     i) for all      G     i in the partition;     C     is     causally        negative     for     E     if    P   (    E   |     C     ∩     G     i) <
P    (    E    |~     C     ∩     G     i) for all      G     i;     causally        neutral    if    P   (    E   |     C     ∩     G     i) =     P    (    E    |~     C     ∩     G     i) for all      G     i; and
causally          mixed     if different relations hold in different cells.4     C     is     causally        relevant   
to     E     iff it is not causally neutral; this imposes a formal constraint upon the
primitive relation. In normal English usage, the phrases ‘     C     causes    E   ’ and ‘     C     
promotes     E    ’ are used in place of ‘     C      is causally positive for     E    ’; similarly ‘     C     
prevents     E    ’ and ‘     C      inhibits     E    ’ are used for ‘     C     is a negative cause of    E   ’.

Some have challenged the requirement that positive causes must raise the
probabilities of their effects in     all  background contexts (and likewise for negative
causes), a condition which Eells, following Dupré (1984), calls    context-  
unanimity    .  Skyrms (1980) suggests that a condition of Pareto dominance be
employed:      C      is a positive cause of    E    if     P    (    E    |     C     ∩     G     i) > P(    E    |~     C     ∩     G     i) for some      G     i, and
P    (    E    |     C     ∩     G     i) ≥ P(    E    |~     C     ∩     G     i) for all      G     i (negative causation can be defined
analogously). Dupré (1984) suggests a more radical alternative. Eells argues
against these proposals (1991, pp. 94-107). Eells’ defense rests in part on
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considerations of expressive power: his taxonomy permits greater precision in
conveying information about the underlying probability relations. This provides
a clue to the account that will be developed in section 6. Until then, it suffices
that the causal relevance of      C      for    E    in a population depends on the values of
P(E|C∩Gi) and P(E|~C∩Gi) for each cell     G    i. In a population-type involving only a
single cell, the causal relevance of     C     for     E     depends only on the the probability
values within that cell. In the discussion that follows, then, we will assume the
population-type to be sufficiently narrow to give rise to a homogeneous causal
background. Note that there can be no mixed causal relevance relative to such
a population-type, so I will frequently omit reference to this species of causal
relevance when discussing the different types of causal relevance below.
Similarly, the relativity of causal relevance to a population and population-type,
while important for many purposes, will not be of concern in what follows. I will
assume that these relata are fixed, and suppress reference to them at many
points, talking instead as if the relations of causal relevance were binary.

4. THE PROBLEM OF DISJUNCTIVE FACTORS
Humphreys offers an example which serves to illustrate the problem of
disjunctive factors (1989, pp. 41-2).5 Suppose that research is being conducted
on the efficacy of a new drug in the treatment of a certain disease. The research
team is interested in whether the drug is effective in moderate doses, since in
large doses the drug has toxic side effects. The thirty subjects in the study all
have the disease. Let us suppose, moreover, that they are selected so as to be
uniform with regard to other factors which might aid or impair recovery, as well
as with regard to factors which would interact with the drug. Ten subjects are
assigned at random to each of three treatment groups. The first group is given a
placebo, represented by     C    0, the second receives a moderate dose,     C    1, and the
third a strong dose,      C     2; recovery from the disease within the time period of the
study will be represented by    E   . The causal question guiding the research is: ‘is
C     1 causally positive for     E    ?’

The probabilities for recovery are as follows:

P    (    E    |     C     0) = .2,
P    (    E    |     C     1) = .4,
P    (    E    |     C     2) = .9.

(We will assume that the recovery rates within each treatment group accurately
reflect the probabilities of recovery for each group.) If we assume that    P   (     C    0) =
P    (     C     2), then     P    (    E    |~     C     1) = (    P    (     C     0)    P   (    E    |     C    0) +    P   (     C    2)    P    (    E    |     C    2))/(    P   (     C     0) +     P    (     C     2)) =
.5    P    (    E    |     C     0) + .5    P    (    E    |     C     2) = .55 > .4 =     P    (    E    |     C    1). According to the theory outlined
above, then,      C     1 is causally negative for     E    . This result seems wrong, given the
various probabilities for recovery. For example, a doctor treating a patient who
cannot afford a strong dose of the drug would be foolish to refrain from
prescribing a more moderate dose on the grounds that such a dose would
actually prevent recovery from the disease.

Perhaps the hypothesis that     P    (     C    0) =     P    (     C     2) is at fault: if    P   (     C    0) is sufficiently
large — if     P    (     C     0)/    P    (     C     2) > 5/2 — then the computation yields the result that     C    1 is
a positive cause of     E    . It is remarkable, however, that the causal relevance of      C     1
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for     E     should depend on the values of    P   (     C    0) and     P    (     C     2) at all. Whether      C     1 is
causally positive for recovery should depend upon the chemical properties of
the drug and human physiology, not on the probabilities of receiving a placebo
or a strong dose of the drug. It would be curious, for instance, if the company
manufacturing the drug had to offer the following advice to physicians: ‘the drug,
when given in moderate doses, is efficacious in treating the disease so long as
you prescribe at least five placebos for every two strong dosages...’

Three interrelated problems are exposed by this example. In increasing
order of gravity they are: (i) the values of    P   (     C    0) and    P   (     C    2) are needed in order
to compute     P    (    E    |~     C     1), yet these values are not obvious from the description of
the experimental set-up; (ii) natural assumptions about the values of     P    (     C     0) and
P    (     C     2) lead to counterintuitive causal judgments; (iii) according to the
probabilistic theory of causation outlined above, the causal efficacy of      C     1 for     E    
depends on the ratio of the probabilities of      C     0 and      C     2, but the causal efficacy of
C     1 for     E     should not depend on these probabilities at all. The problems arise
because ~     C     1 is disjunctive, being equivalent to      C     0∪      C     2, where the two disjuncts
confer different  probabilities upon the effect     E    . Hence the name: ‘the problem of
disjunctive causal factors’.

Similar problems arise when the causal factor, and not just its negation, is
disjunctive. Suppose, in the example above, that the researchers are interested
not only in whether the subjects recover from the disease, but also in whether
they survive the trial period with no serious medical problems whatsoever, be
they due to the disease, or to side effects of the drug. Let     F     be survival without
medical complications. In moderate doses, the drug is unlikely to produce
serious side effects, but in higher doses, it is so likely to produce side effects
that this risk outweighs the curative benefits of the drug. Here are the
probabilities:

P    (    F    |     C     0) = .2,
P    (    F    |     C     1) = .3,
P    (    F    |     C     2) = .1.

What is the causal relevance of taking the drug (in any quantity) to     F    ? That is,
what is the relevance of      C     1∪      C     2 to    F   ? Whether    P   (    F   |     C     1∪      C     2) is greater than,
equal to, or less than     P    (    F    |     C    0) will depend upon the probabilities of      C     1 and     C    2. It
is clear that analogues of problems (i) and (iii) will arise, although problem (ii)
will not arise since we do not have any strong pre-theoretic intuitions about
what the causal relevance of      C     1∪      C     2    should    be.

It might be objected that it does not make sense to talk of the effects of such
disjunctive causes. How might one argue for such an objection? First, it could
be argued that gerrymandered events should not be allowed to stand in causal
relations. This restriction seems reasonable enough, but the disjunction of      C     1
and      C     2 is perfectly natural, so the proscription of gerrymandered events does
not solve the current problem.6 Second, it might be argued that only events that
are maximally specific can stand in causal relations. It is hard to see what could
motivate such a view: certainly no probabilistic theory of causation has ever
insisted that a cause      C      cannot have any subsets in F. Thus, while we are
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uneasy about assigning a causal role to     C    1∪     C    2, we have, as yet, no principled
reason for rejecting such a role.

Before canvassing some proposals for tackling these problems, I wish to
advance some desiderata that these proposals should satisfy. My primary
desideratum is that the resulting probabilistic theory of causation vindicate our
strong pre-theoretic intuitions, or reasonable refinements of those intuitions,
about what is a cause of what.  For example, the revised theory should yield the
result that      C     1 is a cause of     E,    and this result should not be contingent upon the
values of     P    (     C     0) and     P    (     C     2). There are two secondary desiderata, of roughly
equal importance. First, a theory of causation should not leave any meaningful
causal claims indeterminate in truth value. Thus, a theory should say whether
C     1∪      C     2 is causally positive or negative for     F    , or else show that     C    1∪     C    2 and     F     are
not the sorts of events that can be meaningfully said to stand in causal relations.
Second, it is a desideratum that a theory of causation allow us to explain why
we have some of the causal intuitions that we do; in particular, it would be nice
to understand why we feel that     C    1 is a positive cause of    E   , but have no intuition
about whether      C     1∪      C     2 is a cause of    F   .

5. THREE PROPOSED SOLUTIONS
The first solution, advocated by Humphreys (1989), is suggested almost
immediately by the given example. Our intuition is that      C     1 is a positive cause of
recovery,     E    , because the probability of recovery is higher for those that take
moderate doses of the drug than for those who take only a placebo; that is,
P    (    E    |     C     1) >     P    (    E    |     C     0). This is, no doubt, the comparison the research team would
make in evaluating the efficacy of the drug in moderate doses. In general,
Humphreys’ suggestion is that in order to determine the causal relevance of     B    
for     A    , one must compare     P    (    A    |    B   ) with     P    (    A    |    B   0), where    B   0 is an objectively
determined     neutral        state    , a privileged alternative to    B   .7    B    is a positive cause of     A    
if     P    (    A    |    B    ) >     P    (    A    |    B    0) (and analogously for other species of causal relevance).8

There is no universal neutral state: different putative causes will have different
neutral states. Determining the appropriate neutral state may itself require
causal knowledge. For example, in determining the efficacy of the drug in the
example above, the neutral state would not be the absence of any treatment
whatsoever, but treatment with a placebo. It was an important discovery that
being provided with drugs by a health professional can have curative effects
that go beyond the chemical properties of the substance prescribed.9

There are problems with this solution to the problem of disjunctive factors,
however. First, it does not resolve the problem in the case where the     cause     is
disjunctive. If we compare    P   (    F   |     C     1∪      C     2) with     P    (    F    |     C    0), the probability of     F     in the
neutral state, we are still left with the original problem.

A second problem is that comparison with probabilities in the neutral state
will sometimes be impossible, or lead to the wrong conclusions. Consider the
following example. High blood pressure is known to cause a variety of health
problems: let us ask, then, what the causal relevance of having a blood
pressure of 180/120 is to survival in the following year. Let these factors be
represented by     B     and      D      respectively. (We will again assume that all of the
appropriate background factors are held fixed.) To what shall we compare the
probability     P    (     D     |    B    )? The obvious choice for a neutral state would be zero blood
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pressure: call it     B    0. (Humphreys’ comments in (1989, pp. 38-41) suggest that
the zero level of a variable that is measurable on a ratio scale should be taken
as the neutral state relative to other values of that variable.) Insofar as it makes
sense to attribute a value to     P    (     D     |    B    0), this value would have to be zero. There is
a non-zero probability of surviving the year with blood pressure 180/120, so
P    (     D     |    B    ) >     P    (     D     |    B    0); having a blood pressure of 180/120 would be causally
positive for survival, according to this proposed solution. This result is strongly
counterintuitive.

Perhaps some other level of blood pressure could serve as the neutral
state? One possibility would be that having optimal blood pressure would
constitute the neutral state     B    0. Suppose that in the relevant background context,
having a blood pressure of 120/80 maximizes the probability of surviving the
year. Now     P    (     D     |    B    ) <     P    (     D     |    B   0), yielding the intuitively correct result that having a
blood pressure of 180/120 is causally negative for survival. The problem with
this suggestion is that it would force us to say that having a blood pressure of
120/80 is causally     neutral    for survival. (It is a trivial consequence of Humphreys’
proposal that any event is always causally neutral for any effect for which it is a
neutral state.) Most, however, would be inclined to say that having optimal
blood pressure is causally positive for survival; at the very least it should be
causally relevant in     some     way, and not lumped with other neutral factors such
as shoe size and favourite colour.

Perhaps the average blood pressure for those in the relevant group could
serve as a neutral value. This, however, would raise the problem that the causal
relevance of blood pressure of 180/120 would depend upon demographics, as
well as physiology. Moreover, this suggestion would come close to rendering
certain causal claims — such as ‘the average fifty year old male has
dangerously high blood pressure’ — false by definition. Thus, the example of
the relevance of blood pressure to survival shows that Humphreys’ solution to
the drug example is not universally applicable.10

The second proposed solution to the problem of disjunctive factors is due to
Eells (1988, 1991). Return to the original example involving the drug, where      C     0
represents treatment with a placebo,      C     1 treatment with a moderate dose,      C     2
treatment with a strong dose, and    E    recovery; we are interested in whether     C    1 is
a positive cause of     E    . Suppose that   r   is a probability function that assigns
probability one to      C     0∪      C     2. Consider the conditional: ‘if the subject    s    did not
receive treatment      C     1,     s     would have received treatment      C     0 or     C    2, with
probabilities    r   (     C     0) and    r   (     C    2) respectively’.11 Treating     s     as a variable, this
conditional can be construed as a property; it holds of a subject if the resulting
conditional is true when her name is substituted for    s   . Let the event     F    r represent
this property. Eells argues that     P    (    E    |~     C    1∩    F   r) =    r   (     C     0)    P    (    E    |     C     0) +    r   (     C    2)    P    (    E    |     C    2), so it
is possible to directly compare     P    (    E    |     C     1) with     P    (    E    |~     C     1) if     F    r is held fixed in the
background. Eells provides an independent motivation for holding    F   r fixed: Let    q   
be a probability function different from   r   such that     q    (     C     1) = 0. Then     P    (    E    |~     C     1∩    F    q)
≠     P    (    E    |~     C     1∩    F    r), so we can expect     F    q and    F   r to be members of a partition with
which      C     1 interacts with respect to     E     (in Eells’ sense of interaction defined in
section 3 above). Thus within any cell of the partition of background contexts,
just one event of the form     F    r will be held fixed. Since    F   r determines a unique
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probability for     P    (    E    |~     C     1), the causal relevance of      C     1 for    E    will be unequivocally
determined within each cell of the partition. A generalization of this approach
can be applied to the case where the cause is also disjunctive.

This approach has its problems too. First, there is a technical difficulty. Call a
probability function    r       trivial    if it assigns probability one to either     C    0 or     C    2. It is
clear that Eells wants his account to apply to non-trivial probability distributions.
According to the Lewis-Stalnaker approach to subjunctive conditionals,
however, the properties ~     C    1 and     F    r will be incompatible unless    r    is trivial; thus
P    (    E    |~     C     1∩    F    r) will be     undefined     for non-trivial    r   .12 On the Lewis-Stalnaker
approach, the conditional ‘If     S     were true, then     T     would be true’ is true whenever
S      and     T     are both true. In the set-up described in the example of section 4, any
subject who does not receive treatment      C     1 will receive treatment     C    0 or
treatment      C     2. Thus, of any possible subject who does not receive      C     1, one of the
following two conditionals must be true: (i) ‘if she did not receive     C    1, she would
have received      C     0’; (ii) ‘if she did not receive      C     1, she would have received      C     2’.
Both of these conditionals are incompatible with the subject’s having the
property represented by     F    r, unless   r   is a trivial probability measure. Thus, if   r   is a
probability function which does    not  assign probability one to either      C     0 or      C     2,
then     no     subject could possibly have the property represented by    F   r together
with the property represented by ~     C    1. Put in the language of hypothetical
limiting frequencies: in a hypothetical infinite sequence of populations,     no   
individuals will have the property represented by ~     C    1∩    F   r. Eells’ claim that
P    (    E    |~     C     1∩    F    r )  =     r   (     C    0)P(    E    |     C     0 )  +     r   (     C     2)    P   (    E   |     C     2) is thus false: ~     C    1∩    F   r = φ, so
P    (    E    |~     C     1∩    F    r) is undefined. Of course, Lewis and Stalnaker do not have a
monopoly on theories of subjunctive conditionals,13 but we are still owed an
account that will undergird Eells’ proposed computation.

Second, the example of section 4 gave rise to three inter-related problems,
and Eells’ proposal aims at resolving only one. Let us assume that Eells can
provide an account of subjunctive conditionals to motivate his equation:
P    (    E    |~     C     1∩    F    r )  =     r   (     C    0)    P    (    E    |     C     0 )  +     r   (     C     2)    P   (    E   |     C     2).14 As the example was described,
equal numbers of subjects were randomly assigned to the three treatment
groups      C     0,      C     1, and      C     2. For the subjects in this study, then, the following
conditional would be true (modulo difficulties described above): ‘if the subject
had not been in treatment group     C    1, she would have been equally likely to have
been in groups      C     0 and      C     2’. Thus     P    (    E   |~     C    1) = .5    P    (    E    |     C     0) + .5    P   (    E   |     C     2) = .55 > .4 =
P    (    E    |     C     1). According to Eells’ proposal, then,     C    1 will be causally negative for
recovery: the counterintuitive result with which we began.15 Moreover, this
solution to the problem makes the causal relevance of     C    1 for    E    sensitive to the
mechanism by which the subjects were assigned to the three treatment groups
— another undesirable consequence.

The third solution can be found in the account of the statisticians Paul
Holland and Donald Rubin. (See e.g., Holland (1986) and Rubin (1974)). Their
framework is different from that described in section 3, and they do not
specifically address the problem of disjunctive factors, but a feature of their
account might be adapted in an attempt to solve the problem. The suggestion is
to interpret causal relevance as involving an additional argument place. Thus,
one could not say that      C     1 is a positive, neutral, or negative cause of     E    
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simpliciter   .      C     1 can only bear one of these relations to     E     with respect to some
third event, an alternative to      C     1. In general,    B    will be a positive cause of     A    
relative to     B    ’ if     P    (    A    |    B    ) >     P    (    A    |    B    ’). Thus, in the drug example,     C    1 would be
causally positive for     E     with respect to     C    0, but causally negative with respect to
C     2.16 In the blood pressure example, having a blood pressure of 180/120 is
negatively relevant to survival when compared with a blood pressure of 120/80,
but positively relevant with respect to zero blood pressure (and other extremely
low values). Having a blood pressure of 120/80 would be positively relevant for
survival when compared with any alternative blood pressure level.17

In order to be in accord with our normal causal judgments, this account
would need to be supplemented with a discussion of the pragmatics of making
causal claims. In making causal claims, we typically do not specify the
additional relatum, the alternative to the cause in question; rather, the
alternative cause is usually determined by contextual factors. The suppression
of the additional relatum in normal discourse is one reason why the causal
relation is often taken to be binary, and why we seem to have intuitions about
binary causal claims. Note that the context dependence of causal claims, as
typically expressed, does not rob the causal relation of its objectivity: it may still
be an objective fact whether a certain triple of events satisfies the relation of
positive, negative, or neutral relevance. Contextual factors play a role in
determining the third relatum in many causal claims, but this does not mean that
they play a role in determining whether the resulting ternary causal claims are
true.

This proposal has many virtues. It captures much of what is attractive about
Humphreys’ account: the neutral state, whether explicitly mentioned or not, is
frequently used as the third relatum in causal claims. In the drug example for
instance, the claim that moderate doses of the drug are causally positive for
recovery would normally be interpreted with the neutral state — the placebo —
as the third relatum. It is for this reason that we are inclined to accept the claim
that      C     1 is a positive cause of     E    . The neutral state is not always the third relatum,
however, as the blood pressure example shows.18

The Holland-Rubin proposal does have its shortcomings, however. It does
not resolve the problem of disjunctive causal factors for the case where the
cause is disjunctive. Recall that in this example,    P   (    F   |     C     0) = .2,    P   (    F   |     C     1) = .3,
P    (    F    |     C     2) = .1; and we are interested in the causal relevance of     C    1∪     C    2 for    F   . In
this example,      C     0 is the only alternative to     C    1∪     C    2, so P(F|C0) is the same as
P    (    F    |~(     C     1∪      C     2)), and explicit relativization of causal claims to an alternative
cause leaves us with the original problem.

None of the proposals provides an adequate solution to the problem of
disjunctive causal factors. The first proposal yields the result that     C    1 is a cause
of     E    , which agrees with our pre-theoretic intuition; however, this proposal
clashes with our intuitions on a different example. Moreover, the first proposal
was silent on the question of whether      C     1∪      C     2 is a cause of     F    , and did not
provide an explanation of our lack of intuitions about this example. The second
proposal, if supplied with the necessary technical refinements, could provide an
answer to the question of whether      C     1∪      C     2 is a positive cause of     F    : it depends
upon the conditional which is held fixed in the background context. Moreover,



GENERALIZED CAUSAL RELEVANCE 11

this proposal explains why our intuitions are silent in this case: the example is
underdescribed unless the appropriate background conditional is specified.
However, the second proposal does not yield the intuitively correct result that
C     1 is a cause of    E    in the original example. The third proposal agrees with our
intuition that      C     1 is a cause of    E    if we are willing to let this intuition be refined
slightly. Moreover, the third proposal can be made to agree with our intuitions in
the blood pressure example, on which the first proposal ran aground.
Unfortunately, the third proposal fails to give an account of the causal relevance
of      C     1∪      C     2 for     F    , and it fails to explain the silence of our intuitions.

Of the three proposals, the third is the most successful, as it is the only one
that completely satisfies the primary desideratum of vindicating our causal
intuitions. This proposal introduced two interesting suggestions into the
discussion of causation. The first is that events such as      C     1 cannot be said to be
positive or negative causes of events such as    E    in an absolute sense: there are
no two-place relations of positive and negative causal relevance.19 In order to
square this idea with our common causal judgments, it was suggested that
English expressions which appear to describe binary relations of causal
relevance are actually elliptical for more complex attributions of causal
relevance. Both of these suggestions will have a useful role to play in the
solution advocated below.

6. A NEW SOLUTION
I wish to propose a generalization of the third alternative which is a more radical
departure from existing probabilistic theories of causation. First, I suggest that
we use random variables to represent the causal factors and their alternatives.
In the drug example, let    X    represent the dosage of the drug taken;     X     will take
values in the non-negative real numbers.20 Similarly, in the blood pressure
example, we could let    Y    be the (vector-valued) random variable which
measures blood pressure. Probabilistic theories of causation have typically
been concerned with defining the causal relevance of    events    of the form    X    ∈       H     .
It would not be torturing the language, however, to talk instead of the causal
relevance of     variables     such as    X   .21 It would be natural to say that the dosage of
the drug received is causally relevant to recovery (    X     is causally relevant to     E    )
and that blood pressure (    Y    ) is causally relevant to survival (     D     ). In standard
English, ‘affects’ and ‘influences’ often stand in for ‘is causally relevant to’ in
such phrases.

Let us define conditional probability functions as follows: let  f (    x    ) =
P    (    E    |    X     =      x    ), and     g    (    x    ,     y    ) =    P   (     D    |    Y    = (    x    ,     y    )).22 In the drug example, the probability of
recovery increases with the dosage of the drug taken, so    f   (    x    ) is monotonically
increasing, asymptotically approaching one. The blood pressure example is
more complex. The function    g    has two argument places, so its graph would be a
two dimensional surface over the first quadrant of the Cartesian plane.23 The
function would reach its maximum (less than one) at (    x   ,      y    ) = (120, 80). If one
were to draw a line of moderate slope, about 2/3, outward from the origin, and
consider the restriction of     g     to this line, the values of     g     would display an inverted
‘U’ shape, increasing monotonically to 120/80, and decreasing monotonically
beyond that. My suggestion is to let the function  f (    x    ) represent the causal
relevance of the variable     X     for    E   , and    g   (    x    ,     y   ) of     Y     for      D     . Causal relevance, then,
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is infinite in variety: it does not break down simply into positive and negative
relevance.

Typically we do not know the details of functions like    f   . Even when we do
know the values of the function with some accuracy, there may be no
convenient linguistic means of conveying them, or no reason to convey them in
excruciating detail. Frequently, then, we will want to communicate certain
important features about the general shape of the function. One important way
of doing this is by making comparisons of the probability of    E    conditional upon
different values of the variable     X    . For example, the inequality     P    (    E    |    X     =      m    )  >
P    (    E    |    X     =      n    ) conveys important information about the function  f (    x    ) =     P    (    E    |    X     =     x   ).
This inequality would be conveyed linguistically by claims of the form: ‘doses of
strength      m      tend to cause recovery (when compared with doses of strength     n    )’.
(The parenthetical clause is frequently left implicit.) Thus the language of
positive and negative causal relevance, when interpreted along the lines of the
Holland-Rubin proposal discussed above, can be used to convey information
about more complex causal relations. However, not all causal claims express
inequalities of this sort. ‘Sufficiently large doses of the drug make recovery
virtually certain’ is a causal claim, which expresses the following piece of
information about the function  f : ‘there exists an     m     such that     x     >      m      implies that
f   (    x    ) > 1 - ε’, where the value of ε is typically left vague. The claim would also
carry a strong implicature to the effect that  f (    x    ) is lower for smaller values of     x    .
This claim could not be expressed using only inequalities of the sort considered
by the third proposal. Conversely, it is not the case that arbitrary triples of events
can be said to stand in some sort of causal relation: attributions of causal
relevance to such triples are only appropriate if they convey information about a
conditional probability function. For example, I will suggest below that there is
no useful information conveyed by an attribution to     C    1∪     C    2 of positive, negative
or neutral relevance for     F     with respect to      C     0.

There are two reasons why we have so long held on to the belief that causal
relevance can be partitioned into a few simple varieties, such as positive and
negative. The first is that statements about positive and negative causal
relevance can convey important information about the structure of functions
such as    f   . Because we typically use the language of positive and negative
causation to describe the causal relevance of (say)    X    for     E    , we have come to
believe that these expressions pick out categories in a simple taxonomy of
causal relevance. The second reason is that the simple dichotomy is a vestige
of determinism. If determinism were true, there would be a set     H     such that
P    (    E    |    X     ∈       H     ) = 1, and     P    (    E    |    X    ∈  R –     H    ) = 0. In this situation, it would be natural to
describe     X     ∈       H      (and perhaps its subsets) as a positive cause of     E    , and
X     ∈  R –      H      (and perhaps its subsets) as a negative cause of    E   .24 If determinism
is false, however,     P    (    E    |    X     =      x    ) can take on any value between zero and one
inclusive. For what values of     x    , then, should we say that     X     =     x     is a positive,
rather than a negative cause of     E    ? There is no natural way to divide the
possible values of     X     into positive and negative causes; I urge that we stop
looking for an unnatural way.

Here, then, is the solution to our original problem. The causal relevance of
the drug for recovery is given by the function  f . The inequalities     P    (    E    |     C     0) <
P    (    E    |     C     1), and     P    (    E    |     C     1) <     P    (    E    |     C    2) convey important information about the function
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f   , although they do not exhaustively describe the causal relevance of    X    for     E    .
The comparison of     P    (    E    |     C     1) with     P    (    E    |~     C     1) conveys almost no useful information
about the function    f   ;     P    (    E    |     C     1) <    P   (    E    |~     C     1), for example, tells us only that the
probability of     E     is not a maximum at      C     1. It does not tell us whether the
probability of     E     increases from      C     0 to      C     1 to      C     2, decreases through this interval,
or reaches a minimum at     C    1.25 This probability comparison is uninformative
because the probability value     P    (    E    |~     C     1) depends on the values of the quantities
P    (     C     0) and     P    (     C     2), which have nothing to do with the values of    f   . In many contexts
‘moderate doses of the drug are causally positive for recovery’ would be
elliptical for ‘moderate doses of the drug are causally positive for recovery      when   
compared          with        treatment        by       placebo    ’. This causal claim expresses the
inequality     P    (    E    |     C     1) >     P    (    E    |     C     0), which does provide information about    f   . Although
there is no objective relation of positive relevance  holding between     C    1 and     E    ,
we would still be inclined to make the claim of positive relevance as a way of
conveying true and useful information. This explains our initial inclination to say
that      C     1 is a positive cause of     E    .

In the example where the researchers are concerned with     F    , survival without
any major medical complications, the causal relevance of     X     for     F     is given by the
function     h    (    x    ) =     P    (    F    |    X     =     x    ). The inequalities     P    (    F    |     C    2) <     P    (    F    |     C     0) <     P    (    F    |     C    1) provide
useful information about     h    . The comparison of     P    (    F    |     C    1∪     C    2) with     P    (    F    |     C     0), by
contrast, provides virtually no information about the function    h   , for the reasons
discussed in the previous example. This explains why we lack intuitions about
which causal claim to make in this case: we would not use causal terminology
to make such a comparison because it tells us so little about the function    h   . Nor
is the proposed account under any obligation to determine the actual causal
relevance of      C     1∪      C     2 for     F    ; causal relevance is, at the deepest level, a relation
that takes a variable, not an event, as its first relatum. Claims about the causal
relevance of events are appropriate only insofar as they provide information
about conditional probability functions.

Thus the proposal advanced here meets all the desiderata discussed in
section 4. It vindicates our inclination to say that      C     1 is a cause of     E    , and can be
made to agree with our intuitions in the example involving blood pressure as
well. Moreover, it explains why we have no inclination to attribute to      C     1∪      C     2 any
sort of causal relevance for     F    , and why any such attribution of causal relevance
would be inappropriate.

Recall, however, that the function    f    described above determines the causal
relevance of the drug for recovery only within one cell of the partition of causal
background contexts (and analogously for    g    and     h    ). In some other cell, some
function different from    f    will describe the causal relevance of the drug for
recovery. In a heterogeneous population, the causal relevance of     X     for     E     will be
determined by an array of functions of the form  f i(    x   ) =     P    (    E    |      X     =     x    ∩       G     i), where
{     G     1 ,       G     2,...} is the partition of the outcome space into possible causal
background contexts. Typically, it is not possible to convey information about all
of the    f   i’s; again, most causal claims in English give only partial information.
Singular causal claims, such as ‘the drug caused Mary’s recovery’, may refer to
single cells — in this case, the cell that applies to Mary.26 A causal claim such
as ‘the drug promotes recovery in most cases, although resistant strains have
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been discovered’ might mean: For most      G     i,    f   i is monotonically increasing;
however, for      G     i in which      W      (the resistance of the disease) is greater than      m     ,    f   i  is
almost constant. In general, the information about the    f   i’s that is conveyed by a
particular causal claim will be qualitative in nature, and will depend upon
context as well as the literal meanings of the words used.

I return now to a brief discussion of Eells’ context-unanimity condition: the
requirement that a cause     C     must raise the probability of the effect    E    in     all  causal
background contexts. Recall that Eells defended this condition on the grounds
of expressive power. Against Skyrms’ Pareto-dominance requirement, for
example, Eells argues that everything that can be said using the language of
Pareto-dominant causation can be said in the language of context-unanimous
causation, while the converse does not hold.27 Eells concedes, however, that:

...one may carve up all the possibilities however one wants, and if I do it
differently from the way you do it, then we simply arrive at     different   
concepts    . One set of concepts may be more versatile or descriptive than
the other for one purpose, and vice versa for another purpose; and each
set of concepts may be just as ‘legitimate’ and coherent as the other. I do
not think there is anything conceptually wrong or incoherent with the
Pareto revision... (1991, pp. 97-98.)

Eells’ defense together with this concession suggest that the     point    of making
causal claims is to provide information about the underlying probability
relations, and not to ascribe objective relations of positive and negative
relevance. This is a suggestion that I strongly endorse. Eells prefers the context-
unanimity approach because it allows for more precision in describing
probability relations. But Eells’ account does not provide maximal expressive
power, for it permits only the expression of probabilistic inequalities. Complete
expressive power comes only with the ability to specify all of the values of the
conditional probability functions described above. Unfortunately, this level of
expressive power is beyond our linguistic and cognitive powers, and we must
resort to more inexact tools of communication. The language of positive and
negative causal relevance is just such a tool.

7. ASIDE ON DECISION
The logical geography in the neighbourhood of causation is complex. Many
domains of interest to philosophers border that of causation: knowledge, moral
responsibility, probability, explanation and decision are but a few. While
explanation will be the causal neighbour of primary concern in this paper, a
brief excursion into decision theory will provide some support for the theory of
causal relevance outlined in the preceding section. The argument will not hinge
on the details of causal decision theory, but only on a platitudinous connection
between causation and decision: if one is trying to achieve some end, one
should perform those actions which tend to cause that end, and abstain from
those which tend to prevent it.28

Suppose that a doctor is treating a patient for the disease in the example of
section 4. One of her ends will be to cure the patient of the disease, that is, to
bring about     E    . The doctor will have other ends as well, such as avoiding side
effects from medication, minimizing the costs to the patient, and so on. In order
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to prescribe a dosage of the drug that is suited to the first goal, she will want to
have information about the causal relevance of the drug for recovery. What
does the doctor need to know about the causal relevance of the drug for     E     in
order to make an informed decision? I contend that the information contained in
the function    f   (    x    ) =     P    (    E    |    X     =    x   ) — and that is a lot of information — suffices. She
would prescribe the moderate dose      C     1, for example, if she thought that this was
the dosage for which the chance of recovery most strongly outweighed the
chance of suffering from side effects and the financial cost of filling the
prescription. The function    f    tells her what the chance of recovery is for every
level of dosage — no more information about the relevance of the drug for
recovery is needed for her computation (although she will need information
about the relevance of the drug for side effects, financial cost, and so on).
According to the proposals advanced by Humphreys and Eells, however, the
doctor could possess all of the information contained in the function  f , and still
not know whether a particular level of dosage such as     C    1    causes     recovery.
According to Humphreys, she would need to know which value of     X     served as
the neutral state; according to Eells, she would need to know which subjunctive
conditional was true of the patient. It is evident, however, that the doctor need
not know either of these in order to reach an informed decision.

8. CAUSAL EXPLANATION
Humphreys (1989) presents an account of causal explanation in which
explanations have the following grammar: ‘    E    because Φ, despite Ψ’, where Φ is
a partial list of positive causes and Ψ is a partial list of negative causes.
(According to Humphreys, Φ must be non-empty, although Ψ need not be.)
Correct explanations need not exhaustively list all causally relevant factors, nor
need they cite probability values for     E     (although the list of causes will entail
certain probabilistic inequalities). This picture of causal explanation is
appealing: in particular, it seems right that a causal explanation should not only
provide a list of causally relevant factors, but also say something about the
species of causal relevance exhibited by each factor.  Suppose it be asked why
Harry suffered a heart attack; it would be misleading to respond that he smoked
heavily and exercised often, without specifying that the former was a
contributing cause, and the latter an inhibiting cause. If the account of the
preceding section is correct, however, there is no neat division of causes into
positive and negative; causal relevance comes in all shapes and sizes. I wish to
suggest a picture of causal explanation that incorporates the ideas of the
previous section, while preserving the appealing features of Humphreys’
account.

We may take as a clue a parallel between the approach to causation
recommended above, and the approach to explanation suggested in Railton
(1981). It was argued above that typical causal claims do not tell the complete
story about the causal relevance of a variable for an event, but only provide
information about this complex relation of causal relevance. Railton argues that
for any explanandum there is an ‘ideal explanatory text’ containing all the
information necessary for a complete understanding of why the explanandum
occurred. However, one is seldom, if ever, in a position to completely describe
the ideal text when an explanation is requested. Instead, actual explanations
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provide information about the ideal text. An explanation is correct insofar as
what it says about the ideal text is true; explanatory to the extent that it provides
information about the ideal text: the more informative an explanation is about
the ideal text, the more explanatory it is. If the ideal explanatory text were to
include complete descriptions of the conditional probability functions described
above, then one way to provide information about the text, and thus to provide
an explanation, would be to describe these conditional probability functions.

The picture of causal explanation I propose is a hybrid of Railton’s (1981)
theory of explanation with that of Salmon (1970, 1971). The core of Salmon’s
statistical relevance (     S     -    R    ) theory of explanation is contained in the following
passage:

...an explanation of the fact that     x    , a member of     A    , is a member of     B    ,
would go as follows:
P    (    B    |    A    ∩     C     1) =     p    1
P    (    B    |    A    ∩     C     2) =     p    2
 . . .
P    (    B    |    A    ∩     C     n) =     p    n
where
A    ∩     C     1,     A    ∩     C     2, …,     A    ∩     C     n is a homogeneous partition of    A    with respect to
B    ,
p    i =     p    j only if    i    =    j   ,

x     ∈      A    &     C     k.
(Salmon et al. 1971, pp. 76-7. The notation is changed slightly)

Thus an      S     -    R     explanation is an assemblage of statistically relevant factors.
My suggestion is that for causal explanations, there is an ‘ideal causal array’

that looks something like Salmon’s collection of statistically relevant factors.
Actual explanations, however, can seldom if ever describe this array in its
entirety, but can only provide partial information about the array. It is the role of
causal claims to provide such partial information. The structure of the ideal array
will differ somewhat from that of Salmon’s model for      S     -    R     explanations, in order
to accommodate advances in probabilistic theories of causation over the past
two decades, and to accommodate the shift in emphasis from events to
variables recommended in the previous section.

I will propose a construction of the ideal array which mirrors Eells’
construction as outlined in section 3. Parallels to other probabilistic theories of
causation are no doubt possible. We take as our primitive a relation of causal
relevance that holds between a variable and an event.29 Generalizing this
relation, we will say that the random variable      W      is causally relevant to the
variable     Z     if there is a Borel set      H      such that      W      is causally relevant to the event

Z     ∈       H      . Suppose     E     is the event to be explained, and that χE is the
characteristic function of     E    . First, we will need to say what it is for one variable to
interact with another, since this notion has only been defined in terms of events.
We will say that     X    j    interacts          with         X    i with respect to     E    , if there exist Borel sets      H     ,
H     1,      H     2, ... such that {     H     1 ,      H    2,... } is a partition of the range of    X   j, and     X    i ∈       H     
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interacts with {    X    j  ∈       H     1,     X    j  ∈      H    2,... }, a partition of Ω, in the sense of section 3.
Let {    X    1,     X    2,...} be the maximal set of random variables such that each     X    i either:
(i) is causally relevant to     E    ; or (ii) interacts with some     X    j which is causally
relevant to     E    . The set of all sets of the form Ø i    X   i  =     x   i is a partition of the
outcome space, and these sets provide the basis for the ideal array. We may
also use the set {    X   1,     X    2,...} to impose a constraint upon the primitive relation of
causal relevance. For this, we need an analogue of Eells’ notion of causal
subsequence.     X    j will be causally subsequent to     X    i relative to     E     if (i)     X    i is causally

relevant to     X    j; (ii) χE is causally relevant to     X    j; or (iii) there is some    X   k such that
X    i is causally relevant to     X    k,     X    k is causally relevant to     E    , and    X   k is causally
relevant to     X    j. Let     K    i = {   j   :  j  ≠  i  and     X    j is not causally subsequent to     X    i}. Causally
relevant variables must satisfy the following constraint:    X   i is causally relevant to
E     iff there exist     x    ,    y   , and     x    j for each  j  ∈      K    i such that     P    (    E    |    X   i  =     x    ∩  Ø  j ∈     K    i     X   j  =      x    j)

≠      P    (    E    |    X    i  =      y     ∩  Ø   j   ∈      K     i      X    j  =     x   j). In other words, there must be some
background context in which some difference in the value of     X    i gives rise to
some difference in the probability of     E    .

The ideal causal array will be a probability space over a σ-field which
contains     E    , and on which all of the random variables     X    1,     X    2,... are measurable.
This ideal array will contain all information about conditional probabilities of the
form      P    (    E    |    X    i  =      x    i ∩  Øj∈      K     i      X    j  =      x    j), where the set     K    i is defined as above. In
particular, for each of the variables, the ideal causal array will contain all of the
information contained in the functions  f i defined in the last section. Let us
change the notation slightly, in order to make it explicit that we have such
functions for     each     causally relevant variable. Let     k    i be a function from     K    i to R
such that     k    i(j) is in the range of    X   j. Then define    f      i   ,    k   i(    x    ) =

P    (    E    |    X    i  =      x     ∩  Ø   j   ∈      K     i      X    j  =      k    i(   j   )). Here the constellation of factors represented by
Ø   j   ∈      K     i      X    j  =      k    i(   j   ) plays the same role as a cell of the partition {     G     1,      G     2, ...} in Eells’
theory. The causal relevance of    X   i for    E    is given by the set of conditional
probability functions of the form    f      i   ,    k    i. Generalizing, we can say that the causal
relevance of     X    i for the     variable        Z     is given by the conditional    distribution     functions
of the form µi,ki(     H     ,      x    ) =     P    (    Z     ∈       H     |    X   i  =      x     ∩  Ø   j   ∈      K     i      X    j  =      k       i   (   j   )). Talking of the
causal relevance of one variable for another, rather than of a variable for an
event, would be a natural extension of the change in emphasis from events to
variables recommended above. In contexts where explanations are requested,
however, there is usually some specific event specified as explanandum.30

Actual explanations will not be able to describe the ideal array in every
detail, just as causal claims in English are typically unable to describe the
functions    f      i   ,    k    i  in every detail. Instead, explanations will provide information
about this ideal causal array. One way to provide information about the ideal
array is to cite some of the causally relevant variables, and to provide some
information about the functions which characterize the causal relevance of each
— this sort of information is typically conveyed by causal locutions in English.
The way in which different causal claims in English can be used to convey this
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sort of information about the ideal array has already been discussed in section
6.

Suppose, for example, that Martha was a subject in the study described in
section 4, and that she recovered from the disease. Why did she recover? The
ideal causal array will include the event    E   , representing recovery, and a set of
variables. Among these will be    X   , representing the dosage of the drug taken; a
family of variables {Yi}i∈ I representing various physiological factors relevant to
the probability of recovery, such as T-cell count; a family {Zj}j∈ J representing
features of different strains of the disease, such as their level of resistance to the
drug; and so on. An explanation might cite any of these factors, but let’s assume
that the person requesting the explanation is interested in finding out about any
forms of medical treatment relevant to Martha’s recovery. In this context, it would
be appropriate to point out that Martha received a moderate dose of the drug,
and to describe the functional dependence of the probability of recovery upon
doses of the drug. Typically, this functional dependence is described using
causal language: ‘Martha’s taking a moderate dose of the drug (rather than a
placebo) was a positive cause of her recovery.’ The language of positive,
negative, and mixed causal relevance is useful in providing explanations, not
because it corresponds to an objective taxonomy of causal relevance, but
because it corresponds to the sort of imprecise information that we typically
have at our disposal when called upon to provide explanations.

The probability space constituting the ideal array will contain information
beyond that contained in the conditional probability functions of the form
P    (    E    |    X    i  =      x    i ∩  Ø   j   ∈      K     i      X    j  =     x   j). This raises two questions. First, why is
information about these conditional probability functions of particular interest?
Second, is information about the underlying probability space which is     not    of
this sort ever of interest in explanatory contexts? In answer to the first question, I
would speculate that the information contained in the conditional probability
functions described above is that which is needed for decision. The brief
digression in section 7 supports this, but clearly more work needs to be done in
order to make the intimated connection between causation and decision
explicit.31 In answer to the second question, I have little doubt that other types of
information about the underlying probability space will be of interest in some
explanatory contexts. It is even likely that causal language could be used to
convey some of this information. After all, the discussion has focussed only on
that fragment of causal language which deals with different species of causal
relevance. Other pieces of causal language might be used to convey different
sorts of information about the underlying probability space. Non-causal
explanations might also be construed as providing information about a
probability space. For example, R. I. G. Hughes (1989) has argued that quantum
mechanical probabilities are defined not over a σ-field of events, but over a
Sub-Boolean lattice. Moreover, he claims that this piece of information about
quantum mechanical probabilities is explanatory. Both claims are controversial,
but it seems clear that to provide this sort of information about a probability
space is not to provide a    causal  explanation.
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9. CONCLUSION
I have offered a new approach to probabilistic theories of causation. The main
features of this approach are: (i) Probabilistic theories of causation do not
provide analyses, or reductions, of causation in terms of probabilities; but given
a relation of causal relevance as a primitive, such theories can be seen as
attempts to provide non-circular    taxonomies     of causal relevance. (ii) Causal
relevance is best seen not as a relation between two events (in the probabilistic
sense), but as a relation between a variable and an event, or even between two
variables. (iii) There is no natural division of causal relevance into a few simple
species, such as positive and negative; rather, causal relevance is infinite in
variety. (iv) Causal claims, such as those made when providing explanations,
are used to provide information — usually of a sketchy and qualitative sort —
about a complex probability space. The language of positive and negative
causal relevance is useful for this end, but it does not correspond to any
objective division of causal relevance into positive and negative.

Several arguments support this account. First, traditional probabilistic
theories of causation have run aground on the problem of disjunctive factors,
whereas the approach outlined above deftly deals with the various aspects of
this problem. Second, on this approach, the causal information that is needed
for decision is precisely information about causal relevance. Finally, the
approach to causation outlined emerges naturally as a hybrid of extant theories
of explanation. Since explanation is an important context in which one makes
causal claims, this consonance between the suggested approach to causation
and existing theories of explanation is highly desirable.
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APPENDIX: PROBABILITY
1. A     probability         space     is a triple 〈Ω, F,     P    〉, where Ω is a set, F is a σ-   field     of
subsets over Ω, and     P     a     probability         measure    on F.
2.  F is a σ-   field     over Ω if F is a set of subsets of Ω such that:

(i) φ ∈  F ;
(ii)     A     ∈  F implies ~    A     ∈  F ;
(iii) If     A    1,     A    2,... ∈  F, then Łi∈ N     A    i ∈  F.

3.     P     is a     probability         measure    on F if it is a function with domain F, such that:

(i) For all     A     ∈  F ,     P    (φ) = 0 ≤    P   (    A   ) ≤ 1 =     P    (Ω);
(ii) If     A    1,     A    2,... ∈  F, and     A    i ∩     A    j = φ for all    i    ≠    j   , then

    P    (Łi∈ N     A    i) = Σi∈ N     P    (    A    i).

4.      H      ⊆  R is a     Borel      set    if it belongs to B, the smallest σ-field containing all open
intervals (or equivalently, all closed intervals). This definition can be
generalized for subsets of Rn.
5.     X     is a    random          variable     on the probability space 〈Ω, F,     P    〉 if it is a real-valued
function with domain Ω, such that for any Borel set     H    , {ω:     X    (ω) ∈       H     } ∈  F.    X    is
said to be      measurable     with respect to F if it satisfies this condition. This
definition can be generalized for    random          vectors    , which take values in Rn. If     X     is
a random variable on Ω, then σ(    X    ) denotes the smallest σ-field over Ω with
respect to which     X     is measurable.
6. The     conditional        probability     P(A|B) (read: the probability of     A     given    B   ) is
standardly defined as the ratio P(A∩B)/P(B). If P(B) = 0, this ratio is undefined. A
generalized notion of conditional probability is available, however. Let
〈Ω , F ,      P    〉  be a probability space, and let G ⊆  F be a σ-field over Ω. For fixed     A    ,
there will be a random variable    Z    such that:

(i)     Z     is measurable with respect to G;
(ii)∫     B         Z    (ω)    d    (    P    ) =     P    (    A    ∩    B    ) for all     B     ∈  G.

The existence of such a variable is guaranteed by the    Radon-Nikodym      theorem.
Any random variable satisfying conditions (i) and (ii) is said to be a    version    of
the conditional probability     P    [    A    ||G]. Any two versions of      P    [    A    ||G] will differ at most
on a set of probability zero; that is, if     Y     and    Z    are versions of     P    [    A    ||G], and      D      =
{ω:      Y    (ω)  ≠      Z    (ω)}, then     P    (     D     ) = 0.  The standard definition of conditional
probability follows as a special case. Let {    B    1 ,    B   2,...} be a countable partition of
Ω such that     P    (    B    i) > 0 for each  i  ∈  N . Let G be the smallest σ-field which is a
superset of this partition. Then the only version of     P    [    A    ||G] is the function    Z   ,
defined as follows:
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Z    (ω) =     P    (    A     ∩     B    i)/    P    (    B    i), where ω ∈      B    i.

Let     X     be a random variable, and let     Z     be a version of     P    [    A   ||σ(    X    )], then the
function     P    (    A    |    X     =      x    ) can be defined as follows:

P    (    A    |    X     =      x    ) =     Z    (ω), for any ω such that     X    (ω)  =      x    .

Since     Z     is measurable with respect to σ(    X    ), it follows that    Z    is constant on the set
{ω:      X    (ω)  =      x    }. Note that the values of     P    (    A    |    X    =      x    ) may depend upon the
selection of a particular version of     P    [    A    ||σ(    X   )].



CHRISTOPHER READ HITCHCOCK 22

NOTES

* I would like to thank Nuel Belnap, John Earman, Richard Gale, Paul

Humphreys, Satish Iyengar, Wes Salmon and two anonymous referees for

comments and discussion. I am also indebted to the members of an audience at

the Center for Philosophy of Science at the University of Pittsburgh, where

some of the ideas contained in this paper were presented.
1The problem is not unique to probabilistic theories of causation; it is particularly

pressing for counterfactual theories as well, but the details will not be discussed

here.
2There remains an important ambiguity in this informal description; see Eells

(1991, chapter 1) for more discussion.
3The notation is not intended to indicate that this set is countably infinite. In

general, I will use this notation for sets when I do not wish to commit myself to

the set’s being of a particular cardinality.
4Eells also imposes a temporal priority condition upon the relations of positive,

negative, and mixed causation, in order to ensure that these relations are anti-

symmetric. Thus any factors which occur after    E    are also to be considered

causally neutral for     E    . We will not worry about the details of this addition here.
5The moral which Humphreys draws from this example is somewhat different

from that developed here.
6Sober (1984, pp. 93-95) offers a criterion for distinguishing natural from
unnatural disjunctions of causes;      C     1∪      C     2 passes.
7Humphreys’ approach is similar to that taken by David Lewis’s counterfactual

theory of causation (Lewis 1973, 1986b). On this account, one compares the

probability of the effect in the presence of the cause, with the value that the

probability of the effect would have had    if     the        cause         had        been        absent   . Some of

Lewis’s comments (e.g. 1986b, pp. 210-1) suggest that the situation in which

the cause would have been absent  should be taken to be something like

Humphreys’ neutral state.
8Note that in the discussion that follows, we will consider the theory outlined in

section three, emended by Humphreys’ suggestion that comparisons be made

with probabilities conditional on the neutral state. This hybrid theory is not to be

attributed to Humphreys, whose own theory differs in important ways.
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9It should be noted that Humphreys’ treatment of the background context is

slightly different from that outlined in section 3. On the account sketched there,

we would not need  to take so much care in specifying the neutral state. Since

all subjects in the test are put through the same process of being prescribed

pills by a health professional, regardless of the actual quantities of the drug

consumed, this aspect of the treatment can be taken to be an independent

causal factor which is held fixed in the background context. With this factor held

fixed, receiving a dosage of zero would automatically entail receiving a

placebo.
10This discussion is not entirely fair to Humphreys, since he holds that causes

may be either states, or     changes     in states. The neutral state for a change is the

absence of change. For example, in determining the causal relevance of an

increase in blood pressure from 160/100 to 180/120, we would compare the

probability in the presence of the change with the probability in the absence of

change — where blood pressure remains constant at 160/100. This would yield

the correct result that the increase is a negative cause of survival. In general, for

blood pressure levels higher than 120/80, increases in blood pressure are

negative for survival. It is this fact, Humphreys might argue, that we are referring

to elliptically when we say that high levels of blood pressure are negative for

survival. For more discussion, see note 18 below.
11Strictly speaking, the conditional should read: ‘if the subject did not receive
the treatment    represented        by         C     1,...’ but it is already a mouthful. Where it aids

readability, the words ‘represented by’ will be omitted below.
12Generalized conditional probability is of no help here, since the problem is not
merely that the set ~     C     1∩    F    r has measure zero, but that this set is identical to the

empty set. Even if there were an appropriate σ-field G, and a version of     Z     of

P    [    E    ||G], there is     no     ω ∈  ~     C     1∩    F    r such that we might take    Z   (ω) to be

P    (    E    |~     C     1∩    F    r).
13For a survey of the logic of conditionals, see Nute (1984). The principle which

causes problems for Eells’ account is the one which Nute labels CS; Nute’s

discussion makes it clear which theories are committed to CS  and which are

not.
14In a terse paragraph, Good (1961/2, p. 309) suggests that claims about the
causal strength of      C     1 for     E     are made relative to a probability distribution over
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alternatives to      C     1. This suggestion could license the equation proposed by

Eells: since Good does not require that such distributions are rooted in the truth

of subjunctive conditionals, his account does not run into the sorts of problems

sketched above. Good’s suggestion might also be taken as a generalization of

the Holland-Rubin proposal described below.
15I have been informed that Eells does not find this consequence

counterintuitive, so we have a clash of intuitions here.
16One of the referees has suggested that Eells’ theory has the resources to
make the same three-place causal claims:     C    1 is causally positive for    E    relative

to a population whose members receive either the treatment represented by      C     0
or the treatment represented by     C    1; but      C     1 is causally negative relative to a

population receiving      C     1 and     C    2.
17The suggestion that the causal relation has an additional argument place is

also easily adapted to counterfactual theories of causation, as Glymour (1986)

notes.
18Similarly, the Holland-Rubin approach allows for the sorts of probability

comparisons made in Humphreys’ theory of changes, and for some of those

made in Eells’ theory of token causation. At the same time, this proposal is not

committed to the claim that the appropriate     change     in probability values must

occur in order for the comparison of the two values to be relevant.
19Of course several causal relations that have been proposed in the literature,

such as those of Eells, involve more than two argument places. It is not the

move from a binary to a ternary relation     per       se    that is of central interest in the

Holland-Rubin account, but the relativization of causal relevance to an

alternative causal factor.
20We need not explicitly state that X(ω) = 0 represents treatment with a placebo,

rather than no treatment at all: see footnote 9 above.
21Indeed this is standard usage in much of the literature on causal modelling

and causation in the social sciences. In chapter 5 of his (1970) monograph,

Suppes extends some of his ideas to cover causal relations between variables.

In particular, his brief description of    functional      causes     is suggestive of the ideas

contained in this section.
22 The values of    f     may depend upon the selection of a version of     P    [    E    ||σ(    X    )] (and

similarly for     g    ). Since none of what is said below requires that    f    be determined
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by other features of the probability space, we may assume that there is a
privileged version of     P    [    E    ||σ(    X    )] in which we are interested.
23Actually the graph would be more tightly confined. Since diastolic pressure

does not exceed systolic pressure, the graph would be confined between the    x   -

axis and the line of slope one passing through the origin.
24This account of positive relevance is roughly equivalent to Mackie’s (1974)

account of causation in terms of  inus     conditions. According to this account,
X     ∈       H      would be a cause of     E     if it is an insufficient but non-redundant part of an

unnecessary but sufficient condition. The sufficient condition here is     X     ∈       H     

together with the other factors that are held fixed to determine the background

context in the cell of the partition under consideration. This conjunction of

factors is not necessary, since the probability of     E     might be one in other cells of

the partition (for certain values of     X    ). Within this cell of the partition, the
probability of     E     will be zero if     X     ∉       H     , so the factor     X     ∈       H      is non-redundant.

Finally,     X     ∈       H      will, by itself, be insufficient for     E    , depending as it does on the

other factors making up the background context.
25There may, conceivably, be contexts in which the information that the
probability of     E     is not a maximum at      C     1 is important, but this is not one of them.
26This is very controversial, however. Eells believes that the probabilistic theory

of causation sketched in section 3 does not apply to singular causation.

Humphreys (1989) offers a probabilistic theory of singular causation in which

the cause must raise the probability of the effect in all physically possible

background contexts, not just the actual one.
27Actually, the converse only fails if claims which quantify over sub-populations

are not allowed, as Eells himself notes (1991, p. 97, n. 25).
28For a nice discussion relating probabilistic theories of causation with the

means-end relationship relevant to decision, see Mellor (1988).
29Recall that this relation is formal, taking set-theoretical entities as relata. It is

assumed, however, that there exists a physical relation to which the

mathematical primitive corresponds.
30Keep in mind that ‘event’ is here being used in its set-theoretic sense. In

particular, this claim should not be understood as asserting that causal

explanation involves causal relations at the singular, rather than the general
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level. Cartwright (1979), for example, argues that causal explanations invoke

causal       laws     rather than singular causal claims.
31The suggestion is also in the spirit of Cartwright (1979), who argues that

causal laws are needed in order to distinguish effective strategies from

ineffective ones.
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