
REASONING WITH CAUSE AND EFFECT

Judea Pearl

Cognitive Systems Laboratory

Computer Science Department

University of California, Los Angeles 90095

Abstract

This paper summarizes concepts, principles,
and tools that were found useful in applica-
tions involving causal modeling.1 The prin-
ciples are based on structural-model seman-
tics, in which functional (or counterfactual) re-
lationships, representing autonomous physical
processes are the fundamental building blocks.
The paper presents the formal basis of this
semantics, illustrates its application in sim-
ple problems and discusses its rami�cations to
computational and cognitive problems concern-
ing causation.

1 Introduction

The central theme in this paper is the interpretation of
causality as a computational scheme devised to identify
invariant relationships in a domain, so as to facilitate
prediction of the e�ects of actions. This conception has
been a guiding paradigm to several research communi-
ties in (and outside) AI, most notably those connected
with causal discovery, troubleshooting, policy making,
planning under uncertainty, modeling behavior of phys-
ical systems, and theories of action and change. How-
ever, the languages and technicalities developed in these
diverse areas often tend to obscure their common basic
principles and thus discourage the transfer of ideas across
disciplines. The purpose of this paper is to explicate
common principles in simple and familiar mathemati-
cal form, using little more than propositional calculus,
to encourage broader and more e�ective usage of causal
modeling in AI and its peripheries.
After casting the concepts of \causal model," \ac-

tions," and \counterfactuals" in mathematical terms we
will demonstrate by examples how counterfactual ques-
tions can be answered from both deterministic and prob-
abilistic causal models (Section 3). In Section 4, I will
argue that planning and decision making are exercises in

1Additional background material can be
found in the technical papers section of
http://www.cs.ucla.edu/�judea and will soon appear in
book form [Pearl, 1999a].

counterfactual reasoning. This will set the stage for Sec-
tion 4.1, where I discuss the empirical content of coun-
terfactuals in terms of policy predictions. Section 4.2
demonstrates the role of counterfactuals in the interpre-
tation and generation of causal explanations, while Sec-
tion 4.3 relates the properties of structural models to the
task of learning causal relationships from data. We end
with discussions of how causal relationships emerge from
actions and mechanisms (Section 4.4) and how causal di-
rectionality can be induced by a set of symmetric equa-
tions (Section 4.5).

2 Causes and Counterfactuals

In one of his most quoted passages, David Hume ties
together two aspects of causation: 1. regularity of suc-
cession and 2. counterfactual dependency:

\we may de�ne a cause to be an object followed
by another, and where all the objects, similar
to the �rst, are followed by object similar to
the second, Or , in other words, where, if the
�rst object had not been, the second never had
existed"[Hume, 1748, Section VII].

This passage is puzzling; how can convoluted expressions
of the type \if the �rst object had not been, the second
never had existed" illuminate simple commonplace ex-
pressions like \A caused B"?
The idea of reducing causality to counterfactuals is

further echoed by John Stuart Mill (1843), and has
reached its fruition in the works of David Lewis (1973,
1986). Implicit in this proposal lies an intriguing claim
that counterfactual expressions are less ambiguous to
our mind than causal expressions. Although discern-
ing the truth of counterfactuals requires the generation
and examination of possible alternative to the actual
situation|a mental task of non-negligible proportions|
Hume, Mill, and Lewis apparently believed that going
through this mental exercise is, nevertheless, simpler
than intuiting directly on whether it was A that caused
B. How? What mental representation allows humans
to process counterfactuals so swiftly and reliably, and
what logic governs that process so as to maintain uni-
form standards of coherence and plausibility?



Structure vs. similarity

According to Lewis' account (1973), the evaluation of
counterfactuals involves the notion of similarity: one or-
ders possible worlds by some measure of similarity, and
the a counterfactual A2! B (read: \B if it were A") is
declared true in a world w just in case B is true in all
the closest A-worlds to w.2

This semantics still leaves the question of represen-
tation unsettled: 1. What choice of similarity measure
would make counterfactual reasoning compatible with
ordinary conception of cause and e�ect? 2. What men-
tal representation of worlds ordering would render the
computation of counterfactuals manageable and practi-
cal in man and machine.

In his initial proposal, Lewis was careful to keep his
formalism general, and, save for the requirement that
every world be closest to itself, he did not impose any
structure on the similarity measure. However, plausible
sentences such as: \Had Nixon pressed the button, a nu-
clear war would have started," [Fine, 1975]. tells us im-
mediately that similarity of appearance is inadequate|a
world in which the button happened to be disconnected
would be many times more similar to our world than
the one yielding a nuclear blast. Thus, similarity mea-
sures must respect our conception of causal laws.3 Lewis
(1979) has subsequently set up an intricate system of
weights and priorities among various dimensions of simi-
larity: size of \miracles" (violations of laws), matching of
facts, temporal precedence etc., to bring similarity closer
to causal intuition. But these priorities turned out rather
post-hoc (reminiscent of priorities in nonmonotonic log-
ics) and still lead to counterintuitive inferences. The
structural account, to be described next, escapes these
problems by avoiding similarities altogether, and de�n-
ing counterfactuals directly on causal laws.4

3 Structural Model Semantics

We start with a de�nition of deterministic \causal
model," which consists of functional relationships among
variables of interest, each relationship representing an
autonomous mechanism. Causal and counterfactuals re-
lationships are then de�ned in terms of response to lo-
cal modi�cations of those mechanisms. Probabilistic re-
lationships emerge by assigning probabilities to back-
ground conditions.

2Related possible-world semantics were introduced in ar-
ti�cial intelligence to represent actions and database updates
[Ginsberg, 1986; Ginsberg and Smith, 1987; Winslett, 1988;
Katsuno and Mendelzon, 1991].

3In this respect, Lewis' reduction of causes to counterfac-
tuals is somewhat circular.

4This account builds on Balke and Pearl (1994, 1995),
Galles and Pearl (1997, 1998), and Halpern (1998). Related
approaches have been proposed in Simon and Rescher (1966)
and Robins (1986).

3.1 De�nitions: Causal models, actions
and counterfactuals

In standard logics, a model is a mathematical object
that assigns truth values to sentences in a well formed
language. A causal model, naturally, should encode the
truth values of sentences that deal with causal relation-
ships, these include action sentences (e.g., \A will be
true if we do B," counterfactuals (e.g., \A would have
been di�erent
if it were not for B") and plain causal utterances (e.g.,

\A was the cause of B" or \B occurred despite of A").

De�nition 3.1 (Causal model)
A causal model is a triple

M = < U; V; F >

where

(i) U is a set of background variables, (also called

exogenous), that are determined by factors outside

the model.

(ii) V is a set fV1; V2; : : : ; Vng of variables, called en-
dogenous, that are determined by variables in the

model, namely, variables in U [ V .

(iii) F is a set of functions ff1; f2; : : : ; fng where each fi
is a mapping from U[(V nVi) to Vi. In other words,

each fi tells us the value of Vi given the values of

all other variables in U [ V . Symbolically, the set

of equations F can be represented by writing

vi = fi(pai; ui) i = 1; : : : ; n

where pai is any realization of the unique minimal

set of variables PAi in V=Vi (connoting parents)
that renders fi nontrivial. Likewise, Ui � U stands

for the unique minimal set of variables in U that

renders fi nontrivial.

Every causal model M can be associated with a causal

diagram, that is, a directed graph, G(M), in which each
node corresponds to a variable in V and the directed
edges point from members of PAi toward Vi.

De�nition 3.2 (Submodel)
Let M be a causal model, X be a set of variables in V ,
and x be a particular realization of X. A submodel Mx

of M is the causal model

Mx = < U; V; Fx >

where

Fx = ffi : Vi 62 Xg [ fX = xg (1)

In words, Fx is formed by deleting from F all functions fi
corresponding to members of set X and replacing them
with the set of constant functions X = x.
Submodels are useful for representing the e�ect of lo-

cal actions and hypothetical changes, including those
dictated by counterfactual antecedents. If we interpret
each function fi in F as an independent physical mech-
anism and de�ne the action do(X = x) as the minimal
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change in M required to make X = x hold true under
any u, then Mx represents the model that results from
such a minimal change, since it di�ers from M by only
those mechanisms that directly determine the variables
in X . The transformation from M to Mx modi�es the
algebraic content of F , which is the reason for the name
modi�able structural equations used in [Galles and Pearl,
1998].5

De�nition 3.3 (E�ect of action)
Let M be a causal model, X be a set of variables in V ,
and x be a particular realization of X. The e�ect of
action do(X = x) on M is given by the submodel Mx.

De�nition 3.4 (Potential response)
Let Y be a variable in V , and let X be a subset of V . The
potential response of Y to action do(X = x), denoted
Yx(u), is the solution for Y of the set of equations Fx.

6

We will con�ne our attention to actions in the form of
do(X = x). Conditional actions, of the form \do(X = x)
if Z = z" can be formalized using the replacement of
equations by functions of Z, rather than by constants
[Pearl, 1994]. We will not consider disjunctive actions, of
the form \do(X = x or X = x0)," since these complicate
the probabilistic treatment of counterfactuals.

De�nition 3.5 (Counterfactual)
Let Y be a variable in V , and let X a subset of V . The
counterfactual sentence \The value that Y would have

obtained, had X been x" is interpreted as denoting the

potential response Yx(u).

De�nition 3.5 thus interprets the counterfactual
phrase \had X been x" in terms of a hypothetical exter-
nal action that modi�es the actual course of history and
enforces the condition \X = x" with minimal change
of mechanisms. This is a crucial step in the semantics
of counterfactuals [Balke and Pearl, 1994], as it permits
x to di�er from the current value of X(u) without cre-
ating logical contradiction; it also suppresses abductive
inferences (or backtracking) from the counterfactual an-
tecedent X = x.7

De�nition 3.6 (Probabilistic causal model)
A probabilistic causal model is a pair

< M;P (u) >

5Structural modi�cations date back to Simon (1953), and
are also used in McCarthy and Hayes (1969). An explicit
translation of interventions into \wiping out" equations from
the model was �rst proposed by Strotz and Wold (1960) and
later used in Fisher (1970), Spirtes et al. (1993), and Pearl
(1995). A similar notion of sub-model is introduced in Fine
(1985), though not speci�cally for representing actions and
counterfactuals.

6Galles and Pearl (1998) required that Fx has a unique
solution, a requirement later relaxed by Halpern (1998).
Uniqueness of solution is ensured in recursive systems, i.e.,
where G(M) is a cyclic.

7Simon and Rescher (1966, p. 339) did not include this
step in their account of counterfactuals and noted that back-
ward inferences triggered by the antecedents can lead to am-
biguous interpretations.

where M is a causal model and P (u) is a probability

function de�ned over the domain of U .

P (u), together with the fact that each endogenous
variable is a function of U , de�nes a probability distri-
bution over the endogenous variables. That is, for every
set of variables Y � V , we have

P (y)
�
= P (Y = y) =

X
fu j Y (u)=yg

P (u) (2)

The probability of counterfactual statements is de�ned
in the same manner, through the function Yx(u) induced
by the submodel Mx:

P (Yx = y) =
X

fu j Yx(u)=yg

P (u) (3)

Likewise a causal model de�nes a joint distribution
on counterfactual statements, i.e., P (Yx = y; Zw = z)
is de�ned for any sets of variables Y;X;Z;W , not nec-
essarily disjoint. In particular, P (Yx = y;X = x0) and
P (Yx = y; Yx0 = y0) are well de�ned for x 6= x0, and are
given by

P (Yx = y;X = x0) =
X

fujYx(u)=y & X(u)=x0g

P (u) (4)

and

P (Yx = y; Yx0 = y0) =
X

fu j Yx(u)=y & Y
x
0 (u)=y0g

P (u):

(5)
When x and x0 are incompatible, Yx and Yx0 cannot

be measured simultaneously, and it may seem meaning-
less to attribute probability to the joint statement \Y
would be y if X = x and Y would be y0 if X = x0"
[Dawid, 1997]. The de�nition of Yx and Yx0 in terms of
two distinct submodels, driven by a standard probability
space over U , provides a simple interpretation of prob-
abilities of counterfactuals and further illustrates that
such probabilities can be encoded rather parsimoniously
using P (u) and F .
Of particular interest to us would be probabilities of

counterfactuals conditional on actual observations. For
example, the probability that event X = x \was the
cause" of event Y = y may be interpreted as the prob-
ability that Y would not be equal to y had X not been
x, given that X = x and Y = y have in fact occurred
(Pearl, 1999b). Such probabilities require the evaluation
of expressions of the form P (Yx0 = y0jX = x; Y = y)
with x0 and y0 incompatible with x and y, respectively.
Eq. (4) allows the evaluation of this quantity using a
3-step procedure that we summarize in a theorem.

Theorem 3.7 Given model < M;P (u) >, the condi-

tional probability P (BAje) of a counterfactual sentence

\If it were A then B," given evidence e, can be evalu-

ated using the following three steps:

1. Abduction|update P (u) by the evidence e, to ob-

tain P (uje).
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2. Action|Modify M by the action do(A), where A
is the antecedent of the counterfactual, to obtain the

submodel MA.

3. Prediction|Use the modi�ed model

< MA; P (uje) > to compute the probability of B,
the consequence of the counterfactual.

In temporal metaphors, this 3-step procedure amounts
to (1) explaining the past (U) in light of the current
evidence e, (2) bending the course of history (minimally)
to comply with the hypothetical condition A and, �nally,
(3) predicting the future (Y ) on the basis of (1) and (2).

3.2 Evaluating counterfactuals:
Deterministic analysis

Example-1, The �ring squad

D

A

(Death)

B

C (Captain)

(Riflemen)

U (Court order)

Figure 1: Causal relationships in a 2-man �ring squad.

Consider a 2-man �ring squad as depicted in Fig. 1,
where A;B;C;D and U stand for the following proposi-
tions:

U = Court orders the execution
C = Captain gives a signal
A = Ri
eman-A shoots
B = Ri
eman-B shoots
D = Prisoner dies

Assume that the court's decision is unknown, that
both ri
emen are accurate, alert and law abiding, and
that the prisoner is not likely to die from fright or other
extraneous causes. We wish to construct a formal rep-
resentation of the story, so that the following sentences
can be evaluated mechanically:

S1. (prediction): If ri
eman-A shot, the prisoner is
dead. Formally, A) D

S2. (abduction): If the prisoner is alive, then the Cap-
tain did not signal. Formally, :D ) :C

S3. (transduction): If ri
eman-A shot, then B shot as
well. Formally, A) B

S4. (action): If the captain gave no signal and ri
eman-
A decides to shoot, the prisoner will die and B will
not shoot. Formally, :C ) DA & :BA

S5. (counterfactual): If the prisoner is dead, then even
if A were not to have shot, the prisoner would still
be dead. Formally, D ) D:A

Evaluating standard sentences

To prove the �rst three sentences we need not invoke
causal models; these involve standard logical connectives
and can be handled by standard logical inference. The
story can be captured in any convenient logical theory,
T , for example,

T : U , C; C , A; C , B; A _B , D

and the validity of S1-S3 can easily be veri�ed by deriva-
tion from T .
Note, however, that the two-way implications in T are

necessary for supporting abduction; if we were to use
one-way implications, e.g., C ) A, we would not be able
to conclude C from A. In standard logic, this symme-
try removes all distinctions among prediction (reasoning
forward in time), abduction (reasoning from evidence to
explanation) and transduction (reasoning from evidence
to explanation, then from explanation to predictions). In
non-standard logics (e.g., logic programming), were the
implication sign dictates the direction of inference and
contraposition is not licensed, special machinery must
be invoked to perform abduction [Eshghi and Kowalski,
1989]. Note also that the feature which renders S1-S3
manageable in standard logic is that they all deal with
epistemic inference, that is, inference from beliefs to be-
liefs about a static world.

Evaluating action sentences

Sentence S4 invokes a deliberate action and, from (De�-
nition 3.3) it must violate some premises, or mechanisms,
in the initial theory. To formally identify what remains
invariant under the action, we must incorporate causal
relationships into the theory. One symbolic representa-
tion of the causal model corresponding to our story is as
follows:

Model M :
(U)

C = U (C)
A = C (A)
B = C (B)
D = A _ B (D)

Here we use equality, rather than implication signs,
�rst, to permit two-way inference and, second, to stress
the fact that each equation represents an autonomous
mechanism, (an \integrity-constraint" in the language
of databases); it remains invariant unless speci�cally vi-
olated. We further use parenthetical symbols next to
each equation, to explicitly identify the dependent vari-
able (on the left hand side) of the equation, thus rep-
resenting the causal directionality associated with the
arrows in Fig. 1.
To evaluate S4, we follow De�nition 3.3 and form the

submodel MA, in which the equation A = C is replaced
by A (simulating the decision of of ri
eman-A to shoot
regardless of signals), and obtain
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Model MA:
(U)

C = U (C)
A (A)
B = C (B)
D = A _ B (D)

Facts: :C

Conclusions: A;D;:B;:U;:C

We see that, given the fact :C, we can easily deduce D
and :B and thus con�rm the validity of S4.
It is important to note that \problematic" sentences

like S4, whose antecedent violates one of the basic
premises in the story (i.e., that both ri
emen are law
abiding) are handled naturally within the same deter-
ministic setting in which the story is told. Alternative
approaches would be to insist on re-formulating the prob-
lem probabilistically (see next subsection) or on using
abnormality predicates, so as to tolerate exceptions to
the law A = C. Such reformulations are unnecessary;
the structural approach permits us to draw the intended
inferences in the natural, deterministic formulation of
the story.

Evaluating counterfactuals
To evaluate the counterfactual sentence S5, we can fol-
low the steps of Theorem 3.7, though no probabilities
are involved. We �rst add the fact D to the original
model, M , evaluate U , then form the submodel M:A

and, �nally, re-evaluate the truth of D in M:A, using
the value of U found in the �rst step. These steps can
be combined into one, noting that the value of U is the
only information that is carried over from Step-1 to Step-
2; all other propositions must be re-evaluated subject to
the new modi�cation of the model.
If we distinguish post-modi�cation variables from pre-

modi�cation variables by a star, we can combine M and
M:A into one logical theory and prove the validity of
S5 by purely logical inference in the combined theory.
To illustrate, we write S5 as D ) D�

:A� (read: If D is
true in the actual world, then D would also be true in
the hypothetical world created by the modi�cation :A�)
and prove the validity of D� in the combined theory:

Combined Theory:
(U)

C� = U C = U (C)
:A� A = C (A)
B� = C� B = C (B)
D� = A� _ B� D = A _B (D)

Facts: D

Conclusions: U;A;B;C;D;:A�; C�; B�; D�

Note that U is not starred, re
ecting the assumptions
that background conditions remain unaltered, thus serv-
ing as carriers of persistence information between the
actual world to the hypothetical world.

It is worth re
ecting at this point on the di�erence
between S4 and S5. Syntactically, the two appear to
be identical and, yet, we labeled S4 an \action" sen-
tence and S5 a \counterfactual" sentence. The di�er-
ence lies in the relationship between the given fact and
the antecedent of the counterfactual (i.e., the \action"
part). In S4 the fact given (C) is not a�ected by the
antecedent (A) while in S5, the fact given (D) is poten-
tially a�ected by the antecedent (:A). The di�erence
between these two situations is fundamental, as can be
seen from their methods of evaluation. In evaluating S4,
we knew in advance that C would not be a�ected by the
model modi�cation do(A) and, therefore, we were able
to add C directly to the modi�ed model MA. In eval-
uating S5, on the other hand, we were contemplating a
possible reversal, from D to :D, due to the modi�ca-
tion do(:A) and, therefore, we had to �rst add fact D
to the pre-action model M , summarize its impact via
U , and reevaluate D once the modi�cation do(:A) takes
place. Thus, although the causal e�ect of actions can
be expressed syntactically as a counterfactual sentence,
this need to route the impact of known facts through U
makes counterfactuals a di�erent species than actions.
We should also emphasize that most counterfactuals

utterances in natural language presume knowledge of
facts that are a�ected by the antecedent. When we say,
for example, \B would be di�erent if it were not for A,"
we imply knowledge of what the actual value of B is and
that B is susceptible to A. It is this sort of sentences that
gives counterfactuals their unique character, distinct of
action sentences.8

3.3 Evaluating counterfactuals:
Probabilistic analysis

Assume the following modi�cation of the story:

1. There is a probability P (u = 1) = p that the court
has ordered the execution.

2. Ri
eman-A has a probability q of pulling the trigger
out of nervousness (w=1).

3. Ri
eman-A nervousness is independent of U .

With these assumptions, we wish to compute the prob-
ability P (:D:AjD) that the prisoner would be alive if A
were not to have shot, given that the prisoner is in fact
dead.
Following Theorem 3.7, our �rst step (abduction) is

to compute the posterior probability P (u;wjD), where
U and W are the two background variables involved.

P (u;wjD) =

�
P (u;w)

1�(1�p)(1�q)
if u = 1 or w = 1

0 if u = 0; w = 0
(6)

The second step (action) is to form the submodel:

8Balke and Pearl (1994) also noted that this sort of sen-
tences requires more detailed speci�cations for their evalua-
tion; some knowledge of the functional mechanisms ffig is
necessary. See also [Heckerman and Shachter, 1995].
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< M:A; P (u;wjD) >:
(U;W )

C = U (C)
:A (A)
B = C (B)
D = A _ B (D)

The last step (prediction) is to compute P (:D) in the
probabilistic model above. Noting that :D = :U , the
expected result follows:

P (:D:AjD) = P (:U jD) =
q(1� p)

1� (1� q)(1� p)
:

3.4 The twin-network method

A major practical di�culty in the procedure described
above is the need to compute, store and use the posterior
distribution P (uje), where u stand for the set of all back-
ground variables in the model. As is illustrated in the
last example, even when we start with a model in which
the background variables are mutually independent, con-
ditioning on e normally destroys this independence, and
makes it necessary to carry over a full description of the
joint distribution of U , conditional on e; such description
may be prohibitively large.
A graphical method of overcoming this di�culty is de-

scribed in Balke and Pearl (1994), which uses two net-
works, one to represent the actual world, and one to
represent the hypothetical world (Fig. 2).

D

A B

C

D*

B*

C*

A*

W

U

Figure 2: Twin-network representation of the probabilis-
tic �ring squad.

The two networks are identical in structure, save for
the arrows entering A, which have been deleted to mir-
ror the equation deleted from M:A. Like Siamese twins,
the two networks share the background variables (in our
case U andW ) since those remain invariant under modi-
�cation. The endogenous variables are replicated and la-
beled distinctly, because they may obtain di�erent values
in the hypothetical vis a vis the actual world. The task
of computing P (:D) in the model < MA; P (u; vjD) >
thus reduces to that of computing P (:D�jD) in the twin
network shown. Such computation can be performed by
standard evidence-propagation techniques in a Bayesian
network|the distribution P (uje) need not be explicated,
conditional independencies can be exploited, and local

computation methods can be employed such as those
summarized in many textbooks (e.g., [Pearl, 1988]).
The twin-network representation also o�ers a use-

ful way of testing independencies among counterfactual
quantities. To illustrate, suppose we wish to test whether
BA is independent of D, given C. This can be veri�ed
by noting that C d-separates D from B� in the twin-
network shown in Fig. 2.
The veri�cation of such independencies is important

for deciding if the rami�cations of certain plans can be
inferred from statistical data, because these independen-
cies permit us to reduce counterfactual probabilities to
ordinary probabilistic expression on observed variables
[Pearl, 1995; Galles and Pearl, 1998].

4 Applications and Interpretation of

Structural Models

Computing counterfactual probabilities is not an aca-
demic exercise; it represents in fact the typical case in
almost every decision making situation. Whenever we
undertake to predict the e�ect of policy, two consider-
ations apply. First, the policy variables (e.g., interest
rates in economics, pressure and temperature in process
control) are rarely exogenous. Policy variables are en-
dogenous when we observe a system under operation and
turn exogenous in the planning phase, when we contem-
plate actions and changes. Second, policies are rarely
evaluated in the abstract; rather, they are brought into
focus by certain eventualities that demand remedial cor-
rection. In troubleshooting, for example, we observe un-
desirable e�ects e that are in
uenced by other conditions
X = x and wish to predict whether an action that brings
about a change in X would remedy the situation. These
are precisely the three steps that Theorem 3.7 attaches to
the evaluation of counterfactuals, and have been applied
indeed to the evaluation of economic policies [Balke and
Pearl, 1995] and to repair-test strategies in troubleshoot-
ing [Breese and Heckerman, 1996]. The reasons for using
hypothetical phrases in practical decision-making situa-
tions is discussed in the next section.

4.1 The empirical content of
counterfactuals

Consider Ohm's law V = IR. The empirical content of
this law can be encoded in two alternative forms.

1. Predictive form: If at time t0 we measure current
I0 and voltage V0 then, ceteras paribum, at any fu-
ture times t > t0, if the current 
ow will be I(t) the
voltage drop will be:

V (t) =
V0
I0
I(t):

2. Counterfactual form: If at time t0 we measure
current I0 and voltage V0 then, had the current 
ow
at time t0 been I 0, instead of I0, the voltage drop
would have been:

V 0 =
V0I

0

I0
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On the surface, it seems that the predictive form
makes meaningful and testable empirical claims while
the counterfactual form merely speculates about events
that have not, and could not have occurred; as it is im-
possible to apply two di�erent currents into the same
resistor at the same time. However, if we interpret the
counterfactual form to mean no more nor less than a con-
versational short hand of the predictive form, the empir-
ical content of the former shines through clearly. Both
enable us to make an in�nite number of predictions from
just one measurement (I0; V0), and both derive their va-
lidity from a scienti�c law (Ohm's law) which ascribes a
time-invariant property (the ratio V=I) to any physical
object.

But if counterfactual statements are merely a round-
about way of stating sets of predictions, why do we re-
sort to such convoluted modes of expression instead of
using the predictive mode directly? One obvious an-
swer is that we often use counterfactuals to convey, not
the predictions themselves, but the logical rami�cations
of those predictions. For example, the intent of saying:
\if A were not to have shot, the prisoner would still be
alive" may be merely to convey the factual information
that B did not shoot. The counterfactual mood, in this
case, serves to supplement the fact conveyed with logical
justi�cation based on a general law. The less obvious an-
swer rests with the quali�cation \ceteras paribum" that
accompanies the predictive claim, which is not entirely
free of ambiguities. What should be held constant when
we change the current in a resistor? The temperature?
the laboratory equipments? the time of day? Certainly
not the reading on the voltmeter? Such matters must be
carefully speci�ed when we pronounce predictive claims
and take them seriously. Many of these speci�cations
are implicit (hence super
uous) when we use counter-
factual expressions, especially when we agree over the
underlying causal model. For example, we do not need
to specify under what temperature and pressure future
predictions should hold true; these are implied by the
statement \had the current 
ow at time t0 been I 0, in-
stead of I0." In other words, we are referring to precisely
those conditions that prevailed in our laboratory at time
t0. That statement also implies that we do not really
mean for anyone to hold the reading on the voltmeter
constant|variables should run their natural course and
the only change we should envision is in the mechanism
which, according to our causal model, is currently deter-
mining the current.

To summarize, a counterfactual statement might well
be interpreted to convey a set of predictions under well
de�ned set of conditions, those prevailing in the factual
part of the statement. For these predictions to be valid,
two components must remain invariants: the laws (or
mechanisms) and the boundary conditions. Cast in the
language of structural models, the laws correspond to the
equations ffig and the boundary conditions correspond
to the state of the background variables U . Thus, a pre-
condition for the validity of the predictive interpretation
of a counterfactual statement is the assumption that U

will remain the same at the time when our predictive
claim is to be applied or tested.

This is best illustrated using a betting example. We
must bet heads or tails on the outcome of a fair coin
toss; we win a dollar if we guess correctly, lose if we
don't. Suppose we bet heads and we win a dollar, with-
out glancing at the outcome of the coin. Consider the
counterfactual \Had I bet di�erently I would have lost
a dollar." The predictive interpretation of this sentence
translates into the implausible claim: \If my next bet
is tails, I will lose a dollar." For this claim to be valid,
two invariants must be assumed: the payo� policy and
the outcome of the coin. While the former is a plausi-
ble assumption in betting context, the latter would be
realized in only rare circumstances. It is for this reason
that the predictive utility of the statement \Had I bet
di�erently I would have lost a dollar" is rather low, and
some would even regard it as hind-sighted nonsense. It
is the persistence across time of U and f(x; u) that en-
dows counterfactual expressions with predictive power;
take this persistence away, and the counterfactual loses
its obvious economical utility.

However, there is an element of utility in counterfac-
tuals that does not translate immediately to predictive
payo�, and may explain, nevertheless, the ubiquity of
counterfactuals in human discourse. I am thinking of
explanatory value. Suppose, in the betting story, coins
were tossed afresh for every bet. Is there no value what-
soever to the statement \Had I bet di�erently I would
have lost a dollar?" I believe there is; it tells us that
we are not dealing here with a whimsical bookie, but
one who at least glances at the bet, compares it to some
standard, and decides a win or a loss using a consistent
policy. This information may not be very useful to us as
players, but it may be useful to say state inspectors who
come every so often to calibrate the gambling machines
to ensure the State's take of the pro�t. More signi�-
cantly, it may be useful to us players, too, if we venture
to cheat slightly, say by manipulating the trajectory of
the coin, or by installing a tiny transmitter to tell us
which way the coin landed. For such cheating to work,
we should know the policy y = f(x; u) and the state-
ment \Had I bet di�erently I would have lost a dollar?"
reveals important aspects of that policy.

Is it far fetched to argue for the merit of counterfac-
tuals by hypothesizing unlikely situations where players
cheat and rules are broken? I suggest that such un-
likely operations are precisely the norm for gauging the
explanatory value of sentences. It is the nature of any
causal explanation that its utility be amortized not over
standard situations but, rather, over novel settings which
require innovative manipulations of the standards. The
utility of understanding how TV works comes not from
turning the knobs correctly, but from the ability to re-
pair a TV set when it breaks down. Recall that every
causal model advertises, not one, but a host of submod-
els, each created by violating some laws. The autonomy
of the mechanisms in a causal model stands therefore
for an open invitation to remove or replace those mecha-
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nisms, and it is only natural that the explanatory value
of sentences be judged by how well they predict the ram-
i�cations of such replacements.

4.2 Causal explanations, utterances, and
their interpretation

It is commonplace wisdom that explanation improves
understanding, and that he who understands more, can
reason and learn more e�ectively. It is also generally ac-
cepted that the notion of explanation cannot be divorced
from that of causation; e.g., a symptom may explain our
belief in a disease, but it does not explain the disease
itself. However, the precise relationship between causes
and explanations is still a topic of much discussion in
philosophy [Woodward, 1997]. Having a formal theory
of counterfactuals, in both deterministic and probabilis-
tic settings, casts new light on the question explanation
adequacy, and opens new possibilities for automatic gen-
eration of explanations by machine.

These possibilities trigger an important basic question:
Is explanation a concept based on general causes (e.g.,
\Drinking hemlock causes death,") or singular causes

(e.g., \Socrates' drinking hemlock caused his death,").

action-e�ect expressions, P (yjdo(x))
�
= P (Yx = y), be-

long to the �rst category while counterfactual expres-
sions, P (Yx0 = y0jx; y) belong to the second, since con-
ditioning on x and y narrows down world scenarios to
those compatible with the speci�c information at hand.

The classi�cation of causal statements into general
and singular categories has been the subject of intensive
research in philosophy e.g., see [Good, 1961; Cartwright,
1989; Eells, 1991]. This research has attracted little
attention in cognitive science and arti�cial intelligence,
partly because it has not entailed practical inferential
procedures, and partly because it was based on prob-
lematic probabilistic semantics (see Pearl (1996) for dis-
cussion of probabilistic causality). In the context of
machine generated explanations, this classi�cation as-
sumes both cognitive and computational signi�cance.
The analysis of counterfactual probabilities [Balke and
Pearl, 1994] has uncovered a sharp demarcation line be-
tween two types of causal queries, those that are an-
swerable from the pair < P (M); G(M) > (where P (M)
is the probability induced byM), and those that require
additional information in the form of functional spec-
i�cation. Generic causal statements (e.g., P (yjdo(x)))
often fall in the �rst category while counterfactual ex-
pressions (e.g., P (Yx0 = yjx; y)) fall in the second, thus
demanding more detailed speci�cations and higher com-
putational resources.

The proper classi�cation of explanation into a gen-
eral or singular category depends on whether the cause
x attains its explanatory power relative to its e�ect y
by virtue of x0s general tendency to produce y (as com-
pared with the weaker tendencies of x0s alternatives) or
by virtue of x being necessary for triggering the chain of
events leading to y in the speci�c situation at hand (as
characterized by y and perhaps other facts and observa-

tions.)

If we base explanations solely on generic tendencies we
lose important speci�c information. For instance, aiming
a gun at and shooting a person from 1000 meters away
will not qualify as an explanation for that person's death,
due to the very low tendency of typical shots �red from
such long distances to hit their marks. The fact that spe-
cial conditions helped the shot hit its mark on that singu-
lar day will not enter into consideration. If, on the other
hand, we base explanations solely on singular-event con-
siderations then various background factors which are
normally present in the world would awkwardly qualify
as explanations. The presence of oxygen in the room
would qualify as an explanation for the �re that broke
out. Clearly, some balance must be made between the
necessary and the su�cient, singular and generic compo-
nents of causal explanation. Basic relationships between
these components are explicated in [Pearl, 1999b], using
probabilities of counterfactuals.

The following list, taken from [Galles and Pearl, 1997],
provides brief examples of utterances used in explana-
tory discourse and their associated structural-model se-
mantics. (The necessary aspect of causation is taken as
a norm.)

� \X is a cause of Y ," if there exist two values x and
x0 of X and a value u of U such that Yx(u) 6= Yx0(u).

� \X is a cause of Y in context Z = z," if there exist
two values x and x0 of X and a value u of U such
that Yxz 6= Yx0z(u).

� \X is a direct cause of Y ," if there exist two values x
and x0 of X , and a value u of U such that Yxr(u) 6=
Yx0r(u) where r is some realization of V nX .

� \X is an indirect cause of Y ," if X is a cause of Y ,
and X is not a direct cause of Y .

� \Event X = x may have caused Y = y" if

(i) X = x and Y = y are true, and

(ii) There exists a value u of U such that X(u) = x,
Y (u) = y; Yx(u) = y and Yx0(u) 6= y for some
x0 6= x.

� \The unobserved event X = x is a likely cause of
Y = y" if

(i) Y = y is true, and

(ii) P (Yx = y; Yx0 6= yjY = y) is high for some
x0 6= x

� \Event Y = y occurred despite X = x," if

(i) X = x and Y = y are true, and

(ii) P (Yx = y) is low.

The preceding list demonstrates the 
exibility of mod-
i�able structural models in formalizing nuances of causal
expressions. Additional nuances, invoking notions such
as enabling, preventing, maintaining, and producing, are
analyzed in [Pearl, 1999a].

8



4.3 Structural models, causal discovery
and knowledge mining

It is by now fairly well understood that the central
aim of the enterprise known as \knowledge discovery"
is the identi�cation of invariant (often causal) relation-
ships in data. What is perhaps less generally appreci-
ated is that the dual character of causal mechanisms,
invariance and autonomy, is the key for the operation of
knowledge discovery programs, especially those based on
causal graphs.
The invariance property assures us that when one

mechanism undergoes change, the others remain intact.
Identifying such mechanisms would amount therefore to
the acquisition of \knowledge," as it permits us to trans-
port patterns of behavior from one context to another.
The feature of \comprehensibility" or \making sense,"
which normally accompanies the discovery of knowledge-
like relationships, is a byproduct of transportability. The
autonomy property further tells us what varies from
one context to another, and thus provides the clues for
identifying those features of the observed data that are
context-independent.
One such feature is the so called causal Markov con-

dition [Spirtes et al., 1993]. It states that, for a causal
model to be considered complete, each variable Vi must
be independent on all its non-descendants, given its par-
ents PAi in G. This parent-screening condition has been
the de�ning feature of Bayesian networks, and has served
as the key for many causal discovery algorithms (e.g.,
[Pearl and Verma,1991; Spirtes etal., 1993]. The rea-
son that the Markov condition is so often regarded as
an inherent feature of causal models rests, again, on the
property of invariance, as can be seen from the following
theorem.

Theorem 4.1 (causal Markov condition)
Every causal model M for which G(M) is acyclic and in

which the Ui's are mutually independent induces a distri-

bution P (v1; : : : ; vn) that satis�es the Markov condition

relative the causal diagram G(M). [Pearl and Verma,

1991]:9

This theorem states that the independencies dictated
by the Markov condition are invariant to the functional
form of fi and to the distributional properties of P (ui).
This invariance renders Markovian independencies reli-
able clues for inferring the structures of causal models
from data; any structure whose Markovian independen-
cies turn incompatible with the data can safely be ruled
out from consideration. The property of autonomy fur-
ther implies that, as contexts change, accidental inde-
pendencies are destroyed and only independencies dic-
tated by the Markov condition are preserved. This pro-
vides the theoretical basis for the assumption of \stabil-
ity" [Pearl and Verma, 1991] or \faithfulness" [Spirtes et
al., 1993]|the second corner stone in causal discovery
algorithms.

9Considering its generality and transparency, I would not
be surprised if some version of this theorem has appeared
earlier in the literature.

Bayesian approaches to causal discovery [Heckerman
et al., 1999] also owe their rationale to invariance and
autonomy. The assumption of parameter-independence,
which is made in all practical Bayesian approaches to
model discovery, can be justi�ed only when the parame-
ters P (vijpai) are attached to stable mechanisms (as op-
posed to arbitrary conditional probabilities) and when
those mechanisms are free to change independently of
one another, namely, autonomy.

4.4 From mechanisms to actions to
causation

The structural model described in Section 3.1 crystal-
lizes the conceptual elements behind two highly debated
issues in AI, the representation of actions, and the role
of causal ordering. We will discuss these problems in
turns, since the second builds on the �rst.

Action, Mechanisms and surgeries

Whether we take the probabilistic paradigm that actions
are transformations from probability distributions to
probability distributions, or the deterministic paradigm
that actions are transformations from states to states,
such transformations could in principle be in�nitely com-
plex. Yet, in practice, people teach each other rather
quickly what actions normally do to the world, and peo-
ple predict the consequences of most actions without
much hustle. How?
Structural models answer this question by assuming

that the actions we normally invoke in common reason-
ing can be represented as local surgeries. The world
consists of a huge number of autonomous and invariant
linkages or mechanisms, each corresponding to a physical
process that constrains the behavior of a relatively small
group of variables. If we understand how the linkages
interact with each other (usually they simply share vari-
ables) we should also be able to predict what the e�ect
of any given action would be: Simply re-specify those
few mechanisms that are perturbed by the action, then
let the modi�ed assembly of mechanisms interact with
one another, and see what state will evolve at equilib-
rium. If the speci�cation is complete (i.e., M and U are
given), a single state will evolve. If the speci�cation is
probabilistic (i.e., P (u) is given) a new probability dis-
tribution will emerge and, if the speci�cation is partial
(i.e., some fi's are not given) a new, partial theory will
then be created. In all three cases we should be able to
answer queries about post-action states of a�air, albeit
with decreasing level of precision.
The ingredient that makes this scheme operational is

the locality of actions. Standing alone, locality is a vague
concept because what is local in one space may not be
local in another. Structural semantics emphasizes that
actions are local in the space of mechanisms and not in
the space of variables or sentences or time slots. For ex-
ample, tipping the left-most object in an array of domino
tiles does not appear \local" in physical space, yet it is
quite local in the space of mechanisms: Only one mecha-
nism gets perturbed, that which keeps the left-most tile
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in erect position; all other mechanisms remain unaltered,
as speci�ed, obedient to the usual equations of physics.
Locality makes it easy to specify this action, without
enumerating all its rami�cations. The listener, assum-
ing she shares our understanding of domino physics, can
�gure out for herself the rami�cations of this action, or
any action of the type: \tip the ith domino tile to the
right." Thus, by representing the domain in the form of
an assembly of autonomous mechanisms, we have in fact
created an oracle capable of predicting the e�ects of a
huge set of actions and action combinations, without us
having to explicate those e�ects.

Laws vs. facts

In order to implement surgical procedures in mechanism
space, we need a language in which some sentences are
given di�erent status than others; sentences describing
mechanisms should be treated di�erently than those de-
scribing other facts of life, such as observations, assump-
tion and conclusions, because the former are presumed
stable, while the latter are transitory.
In Bayesian networks, the distinction between laws

and facts is made using conditional probabilities. Facts
are expressed as ordinary propositions, hence they can
obtain probability values and they can be conditioned
on; laws, on the other hand, are expressed as conditional-
probability sentences (e.g., P (accidentjcareless-driving)
= high), hence they should not be assigned probabilities
and cannot be conditioned on. A similar distinction has
been proposed for nonmonotonic logics by Poole (1985)
and Ge�ner (1992)10 and a related distinction in the
form of domain constraints is used in formal theories of
actions [Sandewall 1994; Lin 1995].

Mechanisms and causal relationships

From our discussion thus far, it may seem that one can
construct an e�ective representation for computing the
rami�cation of actions without appealing to any notion
of causation. This is indeed feasible in many areas of
physics and engineering. If we have, for instance, a large
electric circuit consisting of resistors and voltage sources,
and we are interested in computing the e�ect of chang-
ing one resistor in the circuit, the notion of causality
hardly enters the computation. We simply insert the
modi�ed value of the resistor into Ohm's and Kircho�'s
equations, and solve the set of (symmetric) equations for
the variable needed. This computation can be performed
e�ectively without committing to any directional causal
relationship between the currents and voltages.
To understand the role of causality, we should note

that, unlike the resistor-network example, most mecha-
nisms do not have names in common everyday language.
We say: \raise taxes," \make him laugh," \press the
button," and, in general, do(q) where q is a proposition,
not a mechanism. It would be meaningless to say: \in-
crease this current" or \if this current were higher..." in
the resistor-network example, because there are many

10In database theory, laws are expressed by special sen-
tences called integrity constraints [Reiter, 1987].

(minimal) ways of increasing that current, each gener-
ating di�erent rami�cations. Evidently, commonsense
knowledge is not as entangled as resistor networks. In
the STRIP language [Fikes and Nilsson, 1971], to use
another example, an action is not characterized by the
name of the mechanisms it modi�es but, rather, by the
actions' immediate e�ects (the ADD and DELETE lists),
and these e�ects are expressed as ordinary propositions.
Indeed, if our knowledge is organized causally, this speci-
�cation is su�cient, because each variable is governed by
one and only one mechanism (see De�nition 3.1). Thus,
we should be able to �gure out for ourselves which mech-
anism it is that must be perturbed in realizing the new
event, and this should enable us to predict the rest of
the scenario.
This important abbreviation de�nes a new relation

among events, a relation we normally call \causation":
Event A causes B, if the perturbation needed for real-
izing A produces the realization of B.11 Causal abbre-
viations of this sort are used very e�ectively for specify-
ing domain knowledge. Complex descriptions of domain
constrains and of how they interact with one another can
be summarized in terms of cause-e�ect relationships be-
tween events or variables. We say, for example: \If tile
i is tipped to the right, it causes tile i+ 1 to tip to the
right as well"; we do not communicate such knowledge in
terms of the tendencies of each domino tile to maintain
its physical shape, to respond to gravitational pull and
to obey Newtonian mechanics.

4.5 Simon's causal ordering

Our ability to talk directly in terms of one event caus-
ing another, (rather than an action altering a mecha-
nism and the alteration, in turn, producing the e�ect)
is computationally very useful, but, at the same time it
requires that the assembly of mechanisms in our domain
satisfy certain conditions which accommodate causal di-
rectionality. Indeed, the formal de�nition of causal mod-
els given in Section 3.1 assumes that each equation is
designated a distinct privileged variable, situated on its
left hand side, that is considered \dependent" or \out-
put". In general, however, a mechanism may be speci�ed
as a functional constraint

Gk(x1; :::; xl;u1; : : : ; um) = 0

without identifying any so called \dependent" variable.
Simon (1953) devised a procedure for deciding whether

a collection of such symmetric G functions dictates a
unique way of selecting an endogenous \dependent" vari-
able for each mechanisms (excluding the background
variables since they are determined outside the sys-
tem). Simon asked: when can we order the variables
(V1; V2; : : : ; Vn) in such a way that we can solve for each
Vi without solving for any of Vi's successors? Such an or-
dering, if it exists, dictates the direction we attribute to

11The word \needed" connotes minimality and can be
translated to: \...if every minimal perturbation realizing
A, produces B". Additional quali�cations are discussed in
[Pearl, 1999b].
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causation. This criterion might at �rst sound arti�cial,
since the order of solving equations is a matter of com-
putational convenience while causal directionality is an
objective attribute of physical reality. (See [Iwasaki and
Simon, 1986], [De Kleer and Brown, 1986], and [Druzdzel
and Simon, 1993] for discussion of this issue.) To justify
the criterion, let us rephrase Simon's question in terms of
actions and mechanism. Assume each mechanism (i.e.,
equation) can be modi�ed independently of the others
and let Ak be the set of actions capable of modifying
equation Gk (while leaving other equations unaltered).
Imagine that we have chosen an action ak from Ak, and
that we have modi�ed Gk in such a way that the set of
solutions (V1(u); V2(u); : : : ; Vn(u)) to the entire system
of equations di�ers from what it was prior to the action.
If X is the set of endogenous variables constrained by
Gk, we can ask which members of X would change by
the modi�cation. If only one member of X changes, say
Xk, and if the identity of that distinct member remains
the same for all choices of ak and u, we designate Xk as
the \dependent" variable in Gk.
Formally, this property means that changes in ak in-

duce a functional mapping from the domain of Xk to
the domain of fV nXkg; all changes in the system (gen-
erated by ak) can be attributed to changes in Xk. It
would make sense, in such a case, to designate Xk as
a \representative" of the mechanism Gk, and we would
be justi�ed in replacing the sentence \action ak caused
event Y = y" with \Event Xk = xk caused Y = y" (Y
being any variable in the system). The invariance of Xk

to the choice of ak is the basis for treating an action as
a modality do(Xk = xk) (De�nition 3.3). It provides
a license for characterizing an action by its immediate
consequence(s), independent of the instrument that ac-
tually brought about those consequences, and de�nes in
fact the notion of \local action" or \local surgery".
It can be shown [Nayak, 1994] that the uniqueness of

Xk can be determined by a simple criterion that involves
purely topological properties of the equation set (i.e.,
how variables are grouped into equations). The criterion
is that one should be able to form one-to-one correspon-
dence between equations and variables and that the cor-
respondence be unique. This can be decided by solving
the matching problem [Serrano and Gossard, 1987] be-
tween equations and variables. If the matching is unique,
then the choice of dependent variable in each equation
is unique and the directionality induced by that choice
de�nes a directed acyclic graph (DAG). In Fig. 1, for
example, the directionality of the arrows need not be
speci�ed externally, they can be determined mechani-
cally from the set of symmetrical constraints (i.e., logical
propositions):

S = fG1(C;U); G2(A;C); G3(B;C); G4(A;B;D)g (7)

that characterizes the problem. The reader can easily
verify that the selection of a privileged variable from
each equations is unique and, hence, that the causal di-
rectionality of the arrows shown in Fig. 1 is inevitable.
Thus, we see that causal directionality, according to

Simon, emerges from two assumptions: 1. The partition
of variables into background (U) and endogenous (V )
sets, and 2. the overall con�guration of mechanisms in
the model. Accordingly, a variable designated as \de-
pendent" in a given mechanism may well be labeled \in-
dependent" when that same mechanism is embedded in
a di�erent model. Indeed, the engine causes the wheels
to turn when the train goes up hill, and changes role in
going down hill.
Of course, if we have no way of determining the back-

ground variables, then several causal orderings may en-
sue. In Eq. (7), for example, if we were not given the
information that U is a background variable, then ei-
ther one of fU;A;B;Cg can be chosen as background,
and each such choice would induce a di�erent ordering
on the remaining variables. (Some would con
ict with
commonsense knowledge, e.g., that the Captain's sig-
nal in
uences the court decision). The directionality of
A! D  B however, would be maintained in all those
orderings. The question whether there exists a partition
fU; V g of the variables that would yield a causal ordering
in a system of symmetric constraints can also be solved
(in polynomial time) by topological means [Dechter and
Pearl, 1991].
Simon's ordering criterion fails when we are unable

to solve the equations one at a time, but must solve a
block of k equations simultaneously. In such a case, all
the k variables determined by the block would be mu-
tually unordered, though their relationships with other
blocks may still be ordered. This occurs, for example, in
economic modeling, which often include feedback loops
(e.g., demand a�ects price and price a�ects demand).
The correspondence between equations and variables, in
this case, will not be unique and the directionality of the
arrows in the loop would be arbitrary.
In cases where we tend to assert categorically that

the 
ow of causation in a feedback loop goes clockwise,
rather than counterclockwise, the assertion is normally
based on the relative magnitudes of forces. For exam-
ple, turning the faucet would lower the water level in the
water tank but there is practically nothing we can do to
the water tank that would turn the faucet. When such
information is available, causal directionality is deter-
mined by appealing, again, to the notion of hypothetical
intervention and asking whether an external control over
one variable in the mechanism necessarily a�ects the oth-
ers. This consideration then constitutes the operational
semantics for identifying the dependent variables Vi in
nonrecursive causal models (De�nition 3.1).
The asymmetry that characterizes causal relationships

in no way con
icts with the symmetry of physical equa-
tions. By saying that \X causes Y and Y does not cause
X" we mean to say that changing a mechanism in which
X is normally the dependent variable has a di�erent ef-
fect on the world than changing a mechanism in which Y
is normally the dependent variable. Since two separate
mechanisms are involved, the statement stands in perfect
harmony with the symmetry we �nd in the equations of
physics.
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