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RESILIENCY, PROPENSITIES, AND CAUSAL NECESSITY *

ONSIDER laws of the form: “If a physical system is in state
x then the probability that it has property ¢ is &”; or “The
probability that a physical system has property ¢ given that
it has property x = o.” These laws may be generated by statistical
treatment of an underlying deterministic process (e.g., statistical
mechahics) or may be, to the best of our knowledge, basic (e.g.,
quantum mechanics). The physical system with property x is said
to have a propensity to exhibit ¢ with probability a. Propensities
arising from the first sort of law (e.g., the propensity of a Brownian
particle to migrate a certain distance in a certain time) are not
essentially different from propensities generated by roulette wheels,
etc.

Statistical laws and resultant statements of propensity cannot
simply be saying that the limiting relative frequency of ¢ within
the ensemble of systems that exhibit x is @ any more than a uni-
versal law “All Fs are Gs” can simply be saying that 1009% of the
Fs are Gs.” There are the considerations of lawlikeness. We might
get a relative frequency by accident. What is worse, we might not
only get a relative frequency where there is no statistical law opera-
tive (a “spurious correlation”) but we might get the wrong relative
frequency even where a statistical law is operative. To make the
point bluntly, suppose a statistical law sets « = 14 and only one
physical system ever exhibits x and it is destroyed after one trial
(for vividness, you might imagine a special roulette wheel built to
oddball specifications). Then the limiting relative frequency is
either 0 or 1. Less extreme examples of the same phenomenon
emerge when we calculate from the law that there is a positive
probability that in a finite number of trials the relative frequency
will diverge from the probability.

To attempt to escape these embarrassments- by conjuring up
large ensembles is of a piece with trying to rescue lawlikeness for
universally quantified material conditionals by appeal to “unre-
stricted scope”—and just as vain.

To avoid these unacceptable consequences, some writers have
suggested that propensities be construed counterfactually, as hypo-
thetical relative frequencies; or as dispositions to manifest those
relative frequencies. Thus, Pr (¢ given x) = q, if an infinite number

*To be presented in an APA symposium on Causation and Conditionals.
Patrick Suppes, and Robert Stalnaker will comment; see this JOURNAL, this
issue, 713/4 for Suppes’ comment; Stalnaker’s is not available at this time.
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of physical systems were put into state X, the limiting relative fre-
quency of ¢ among them would be a.

This view runs into some of the same difficulties as the foregoing,
although in attenuated form. I believe that the probability of
heads on a fair flip of a fair coin is 4. Does this logically entail
that if I were to flip a fair coin (by a fair flipping process) an
infinite number of times I would not get one head after another?
Again, I think not. Granted that the probability of “all heads”
gets smaller as the number of trials increases and approaches 0 as
the number of trials goes to infinity (hence the attenuation). But
we must not take zero probability as tantamount to impossibility
in these contexts. After all, the same assumptions that got us zero
probability for “all heads” get us zero probability for each infinite
sequence of heads and tails, and we cannot very well hold that
they are all impossible! Therefore, appeal to laws of large numbers,
and appeal to hypothetical situations to assure those large numbers,
is not enough to guarantee a correct representation of propensities.

I want here to introduce a technical notion, the resiliency of a
probability claim. Let a belief state be represented by a probability
distribution [Pr;] over a language, and let p be a sentence of the
language. Then:

Def. Probabilistic Resiliency: The resiliency of Pr(p) =a in [Pr,] is 1 —
the maximum over j of |Pr,(p) — a| where the [Pr,]s are the probability
distributions got from [Pr,] by conditionalizing on some sentence of the
language consistent with p; ~p.

Resiliency is a stability property, akin to the concept of robust-
ness in statistics. A resilient probability is one that is relatively
insensitive to perturbations in our belief structure. A treatment of
conditional probabilities in the same spirit is possible:

Def. Resiliency for Conditional Probabilities: The resiliency of Pr (g
given p) =a in [Pr,] is 1 — the maximum over § of Pr, (q given p), where
the [Pr,]s are the probability distributions got from [Pr,] by conditional-
ization on some sentence that entails neither p O ¢ nor p D ~q.

The concept of probabilistic resiliency is nicely illustrated by Rich-
ard Jeffrey’s solution to Karl Popper’s “paradox of ideal evidence.”

Popper proposes the following problem. You are presented with
a coin and are to assign rational degrees of belief to the probabil-
ity that it will come up heads and the probability that it will come
up tails. You are not sure that the coin is fair. You believe that
there is some chance that it is biased, either toward heads or to-
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ward tails. But you have no more reason to think it is biased one
way than the other. From “symmetry of ignorance,” so to speak,
you arrive at the conclusion that Pr(tails) = 145. Now compare this
with the situation in which you toss the coin a great number of
times and get about 50% tails; you examine the coin and find it
physically symmetrical, etc. You now have a great deal of knowl-
edge available that you did not have in the first case, and yet when
asked your rational degree of belief that the coin will come up
tails on the next toss, you will give the same answer: Pr(tails) = 1.
The conclusion appears to be that your added knowledge is simply
not reflected in your degrees of belief in the outcomes of the coin-
tossing experiments. (Popper then wants to conclude that they can
be reflected only in degrees of belief about objective probabilities:
at this stage he is thinking about relative frequencies.)

In a slightly different context, Leonard Savage flirts with the idea
of explaining the difference between subjective probabilities that
we are “sure of” and those we are not sure of, by introducing
second-order subjective probabilities:

To approach the matter in a somewhat different way, there seems
to be some probability relations about which we are relatively “sure”
as compared with others. When our opinions, as reflected in real or
envisaged action, are inconsistent we sacrifice the unsure opinions to
the sure ones. The notion of “sure” and “unsure” introduced here
is vague, and my complaint is precisely that neither the theory of
personal probability as developed in this book, nor any other device
known to me renders the notion less vague. There is some temptation
to introduce probabilities of the second order.

We appear to have a quite intuitive picture here of the situation
in the Popper examples. In both situations the first-order prob-
ability of tails is 15. But in the ignorance situation the second-
order probabilities are spread out all over the spectrum for Pr
(tails) = x [though we may plausibly assume that the second-order
probability weighed average for values of Pr (tails) = x; i.e., the
second-order expectation, is 14]. In the “ideal-evidence” situation,
the second-order probabilities can be thought of as concentrated
sharply at Pr (tails) = 15, so that Pr (Pr (tails) = 14) = 1 (or some
close approximation to that situation). (Notice that mathematically
the Savage picture may not be so different from what Popper has
in mind. Savage thinks of both first- and second-order probabilities
as subjective, while Popper thinks of second-order as subjective and
first-order as objective.) Jeffrey points out, however, that we do not

1 The Foundations of Statistics (New York: Wiley, 1954), pp. 57/8.
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even need to ascend to second-order probabilities, in order to find
the imprint of the additional evidence:

I suggest at this point that your attention is being misdirected to
A, (the nth toss comes up heads) as a proposition to which your old
and new belief functions must surely assign different values, if there
be such a proposition. But as you both agree, prob (symmetric igno-
rance) and proB (ideal evidence) shall both assign the value 1 here.
Then this cannot be the locus of the difference. Nevertheless, there
is a difference: prob and pros will assign different values to any
proposition A(n) that asserts, concerning n >2 distinct tosses, that
all of them yield heads. To any such proposition PrOB assigns the
value 14" but to the same proposition prob must assign a higher
value, if you hope to learn from experience.?

In other words, the difference shows up in the first-order condi-
tional probabilities. In the ignorance case, Pr (tails on toss 100)
= 14, but Pr (tails on toss 100 given heads on tosses 1 through 99)
is nearer 0. In the ideal-evidence case, this conditional probability
would stay at (or very near) 4. Our “sureness” that Pr (tails) = 14
is manifest as a reluctance to change Pr (tails) on various evidence,
and this is mirrored by the constancy of value of Pr (tails on a
given q) for various ¢. In a word, the ideal evidence has changed
not the probability of tails on toss a, but rather the resiliency of
the probability of tails on toss a.?

Now in the first “symmetric ignorance” case, our rational degree
of belief in the proposition that the coin has a propensity to come
up tails with probability 14 is quite small, but in the “ideal-evi-
dence” case, it is quite high. Let x be a description of the kind of
trial involved, and let ¢ be the property that it has a propensity
to exhibit (e.g., tails). Then it seems plausible to take as our degree
of confirmation that x has a propensity to exhibit ¢ with Prob-
ability = «, as the instantial resiliency with respect to an unexam-
ined trial, a:

Resiliency Pr (¢ a given x @) =«

Likewise, a statistical law (or consequence of a statistical law) of the
form: “The probability that a physical system has property ¢ given

2 Logic of Decision (New York: McGraw-Hill, 1965), p. 184.

8 These facts are not unrelated to the second-order approach. See discussions
of the De Finetti representation theorem in Bruno de Finetti, “Foresight: Its
Logical Laws, Its Subjective Sources,” in H. E. Kyburg and H. E. Smokler, eds.,
Studies in Subjective Probability (New York: Wiley, 1963), in Savage, op. cit.,
sec. 3.7., and in L J. Good, The Estimation of Probabilities, Riesearch Mono-
graph No. 80 (Cambridge, Mass.: MiT Press, 1965).
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that it is in state x is o” may be taken to be well confirmed to its
degree of instantial resiliency, as specified above.

Resiliency over the whole language may be a requirement of un-
realistic stringency. There is no unique answer as to which sublan-
guage resiliency must be evaluated over, for lawlikeness. Rather,
we must again say that the larger the sublanguage over which we
have high instantial resiliency, the more lawlike the statistical law.
At one end of the scale we have statements like “the probability
of death within a year given that one is an American male of age
65 = d,” which is extremely sensitive to auxiliary information, and
whose resiliency is limited indeed. At the other end we have laws
of radioactive decay, which have been tested under an enormous
variety of circumstances and whose resiliency extends over a lan-
guage of impressive scope.

We can, however, say something more about how broadly the
language is taken over which resiliency is to be evaluated. It so
happens that different choices of “scope” of resiliency correspond
to different statistical properties which play an important role in
the discussion of propensities.

Let us first compare the pre-quantum-mechanical status of the
laws of statistical mechanics and their consequences (e.g., the ran-
dom walk of a Brownian particle) with the current status of the
laws of quantum mechanics and their results (e.g., laws of radio-
active decay). In the former case we are thought to have a statistical
situation only in virtue of our ignorance of the initial conditions
of the system involved. Given the initial position and momentum
of each particle involved, Newton’s laws predict the evolution of
the system deterministically. The quantum-mechanical laws on the
other hand are thought to be basic (hidden-variable aficionados
aside), and the statistical situation with respect to them is due not
to ignorance of initial conditions, but to a “genuine metaphysical
indeterminism.” Some writers regard the propensities involved in
the first sort of situation as bogus. They believe that in a deter-
ministic universe there are no real propensities. Let us call this
school the indeterminists. Pre-quantum-mechanics, the universe was
thought to be deterministic. According to the indeterminists, then,
in that knowledge situation we should not have thought of statisti-
cal mechanics as giving us genuine propensities or genuine statis-
tical laws. Likewise, we should not have thought of roulette wheels,
etc. as chance set-ups having genuine propensities. Other writers
find the concepts of propensity and physical law equally applicable
in both sorts of case.
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Now, from the standpoint of the present treatment, the dispute
can be seen as a dispute over how broadly to evaluate resiliency.
The indeterminist is worried about the fact that, once we intro-
duce descriptions of the microstate of the system into the language,
the resiliency of the appropriate probability drops drastically. But
those of us who are happy about talking about statistical laws and
propensities with regard to classical statistical mechanics, are pre-
sumably impressed enough by resiliency over descriptions of the
macrostate of the system. Similar remarks apply, mutatis mutandis
to roulette wheels and other homely paradigm chance set-ups. At
this point, it is not clear that determinism should be the point at
issue here, rather than macro-description vs. micro-description or
rough, everyday description vs. precise mechanical description (for
the roulette wheel). But if indeterminism is really what the inde-
terminist wants, then it is clear that he should evaluate Resiliency
of Pr (¢ a given x a) = « over a language that includes resources
for a complete description of the history of the world up to the
time of occurrence of a (but not after that time). But this require-
ment is very strict, and its temporal asymmetry strikes me as a little
odd in this context.

Another bone of contention among propensity theorists is whether
the various trials produced by a chance set-up must be indepen-
dent. Some wish to assume independence of trials, in order to use
the strong law of large numbers in the afore-mentioned justifica-
tion of limiting relative frequency. (The strong law of large num-
bers is that, if the trials are independent and identically distributed,
the limiting probability that relative frequency of an outcome
diverges from its probability is zero.) Independence is also a special
case of resiliency; that is, resiliency of 1 over the results of other
trials.

Finally, there is the question of whether the sequence of trials
should be random. Randomness was introduced into the theory of
physical probabilities by Richard von Mises. An infinite sequence
(e.g., tosses of a coin) is to be random with respect to its outcomes
(e.g-, heads, tails) just in case the relative frequency of the outcomes
remains unchanged in all subsequences got from the original se-
quence by ‘“place selection.” The intuitive idea behind place selec-
tion is: :

By place selection, we mean the selection of a partial sequence in

such a way that we decide whether an element should or should not

be included without making use of the attribute of the element.

4 Probability, Statistics, and Truth (New York: Macmillan, 1957), p. 25.
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Von Mises tried to make this idea precise by identifying place se-
lection as selection by a characteristic function: a function that
takes as arguments initial segments of the sequence and as values 0
(signifying “next member not selected for the subsequence” and 1
(signifying “next member selected”). Of course, with the set-the-
oretic sense of function this will not do, for there are enough func-
tions around to upset the claims to randomness of all sequences
(excepting a few degenerate ones). Take an infinite sequence of
heads and tails. Consider the function that maps an initial segment
of the sequence onto 1 just in case the next element is Heads.
There is such a function in the set-theoretic sense, although the
way I have specified it may seem a little underhanded. And, pro-
vided there were an infinite number of heads in the original se-
quence, it will select out an infinite subsequence consisting entirely
of heads. Likewise with tails. The problem is that the epistemic
clause: ‘without making use of the attribute of the element’ has
no restrictive role to play in this account.

What one can have in a nonvacuous way is a notion of random-
ness relativized to a certain class of place-selection functions.
George Wald showed that, relative to an arbitrary denumerable
class of place-selection functions, there is a continuum of random
sequences. Alonzo Church suggests taking a particularly natural
set of place-selection functions, the recursive ones.

It should be clear that these ideas of randomness are also closely
connected with probabilistic resiliency. For every place-selection
function there is a corresponding property that selects out the sub-
sequence (e.g., the property of following the initial segment TTT or
the initial segment TTTH or the initial segment TTTHHT or
. . .) Resiliency of 1 over the instantiations of this class of prop-
erties will guarantee randomness relative to the associated class of
place-selection functions. (And will coincide with it provided that
the class of properties has the appropriate Boolean closure prop-
erty.) The fact that so many key concepts are special cases of prob-
abilistic resiliency should not be surprising. Resiliency of 1 com-
prises a very general and very fundamental concept of invariance.
If resiliency of Pr(p) is 1 over a language, then Pr(p) is invariant
over any situation consistent with p describable in the language
(or, in other words, over all partitions of that region of logical space
within which p is true, that can be generated by the language).

Looking at the other side of the coin, we might say that prob-
abilistic resiliency is a natural generalization of von Mises’ original
definition of randomness. In fact, Hans Reichenbach objects that
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the direction suggested by Church construes the invariance too
narrowly for the intended physical applications: “if a sequence
possesses randomness of the von Mises-Church type there may still
be physical selections that lead to a deviating frequency.” & That is,
some physical property (e.g., temperature below —200 degrees C)
might select out a subsequence, or subensemble, which changed the
frequency (and thus called for qualification of the associated phys-
ical law or propensity statement). Let us call Reichenbach’s idea
of invariance under selection of subsequence by an arbitrary phys-
ical property physical randomness.

The absolute concept of physical randomness is clearly in as
much trouble as von Mises’ original definition. Just what physical
properties exist is a tricky physical question. If we take the exten-
sional route of identifying physical properties with classes of phys-
ical events, we will have a bit of difficulty finding physically random
sequences. But even without indulging in such dubious metaphys-
ical identifications, we can see that the concept of absolute physical
randomness is suspect. Consider the paradigm case of radioactive
decay. We can select out subsequences with different relative fre-
quencies simply by referring to the readings of detectors placed in
the vicinity. There seems to me to be no reason to believe that we
could not always, by referring to the results of physical measure-
ments, select out subsequences with variant relative frequencies.
The only sort of physical randomness that makes sense, then, is
randomness relative to a given set of physical properties (in other
words, randomness relative to a given language).

Of course, physical randomness as thought of by Reichenbach is
a property of objective sequences of events in the world, and I have
been presenting probabilistic resiliency as a property of our system
of beliefs about the world. This is not to say that the account pre-
sented here is anti-objectivist. Probabilistic resiliency of 1 does not
require belief in the existence of a objective, physically random,
sequence of events. But it does not exclude the possibility that the
resiliency is based in the belief in such a sequence. And, in fact,
strong enough belief in physical randomness will guarantee the
corresponding probabilistic resiliency.

The key tool in investigating these questions is the De Finetti
representation theorem. A probability distribution is said to be
symmetric for a sequence of trials just in case the probabilities are
invariant over permutations of trials; equivalently, the trials are

5 Theory of Probability (Berkeley: University of California Press, 1949), p. 150;
I learned of this through Jose Alberto Coffa.
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said to be exchangeable. (We have been assuming all along that
“new” individuals—individuals not in our evidence base—are ex-
changeable.) De Finetti showed that the probabilities of an ex-
changeable series of events can be represented as a mixture (i.e.,
a weighted average) of probabilities of independent series of events.
One way of using this mathematical result is to think of my sub-
jective probabilities of events in such sequences as being weighted
averages of objective probabilities; with the weights being our sub-
jective probabilities that the corresponding objective probabilities
are the true ones. Then my subjective resiliency of Pr (Fa) = o will
approach 1 as my belief in the physical randomness of the corre-
sponding sequence of events with Pr (Fa) = Pr (Fb) =...= « ap-
proaches 1.

The concept of resiliency has connections with a whole cluster of
concepts associated with lawlikeness and causality. I can here only
briefly indicate a few of these. '

(1) Shielding-off: Suppose that e; and e,, though not independent,
became independent after conditionalizing on ¢, that is,

Pr (e, given e; & ¢) = Pr (e, given c)
Then c is said to shield-off e, from e,. In a wide range of contexts
it is plausible to assume that shielding-off holds the key to causal
order: e.g., the current atmospheric conditions shield-off the drop- .
ping barometer from the impending rain.

To say that ¢ shields-off e, from e; is to say that Pr (e, given c)
has resiliency of 1 over e;.

The plausibility of the connection between resiliency and causal
ordering depends on the same sorts of assumptions that are re-
quired for the legitimacy of the second law of thermodynamics.
But this reservation should increase rather than decrease the im-
portance that resiliency has in this area.

(2) Resiliency of Nonprobabilistic Statements and Rules of Accept-
ance: The resiliency of a nonstatistical statement, p, can be identi-
fied with the limiting case of the resiliency of a statistical statement
Pr (p) = 1. Then, the resiliency of p is the minimum of Pr (p given
q;) where the g;s are the propositions consistent with p in the lan-
guage in question.

It is of some interest to see whether we can find probabilistic
rules of acceptance that are strongly consistent, that is, which al-
ways lead to a consistent set of accepted sentences. The lottery
paradox shows that high probability alone will not do. However,
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it is possible to show that:

Th. For any compact language, with a strictly coherent probability
distribution on it, any rule of acceptance that requires resiliency
>.5 will yield a consistent set of accepted statements.

(8) Simple Nonstatistical Laws: Some new light can be thrown on
old issues concerning the confirmation of simple nonstatistical laws
of the form “All Fs are Gs.” Let us say that a numerical quantity
M on laws of this form supports prediction iff Pr (Ga given Fa)*®
> M (All Fs are Gs). A quantity that supports prediction is one
that certifies only those laws which issue good inference tickets.
Let us say that a quantity M satisfies the equivalence condition iff
all logically equivalent laws® receive the same M values. Then,
subject to certain restrictions, it can be shown that there is a
unique quantity M which supports prediction and satisfies the
equivalence condition, and that it is the resiliency of the material
conditional which instantiates the law R (Fa D Ga) over a suitable
instantial language.
Thus two prima facie alternative positions:

I. That a law is expressible in terms of the material conditional, D,
but that being well confirmed qua law involves a different status -
from merely high probability; and

II. That a law is a bundle of conditionals which are not material
conditionals; e.g., a bundle of conditional probabilities,

can be seen to be compatible.

BRIAN SKYRMS
University of Illinois at Chicago Circle

SOME REMARKS ON THE CONCEPT OF RESILIENCY *

AM sympathetic with the viewpoint Skyrms develops in his
paper, but the formal characterization of the central concept
of resiliency seems defective. For example, in a language hav-
ing exactly two atoms, each with nonzero probability, the resiliency
of the probability of each atom is 1. More generally, the resiliency
5 For an unexamined a. I assume exchangeability for unexamined as.
6 Taking, for these purposes, “All Fs are Gs” as (x) (FxDGx). g
* Abstract of a paper to be presented in an APA symposium on Causation and

Conditionals, December 30, 1977, commenting on Brian Skyrms, “Resiliency,
Propensities, and Causal Necessity,” this JOURNAL, this issue, 704-713.



