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Abstract: As the paper explains, it is crucial to epistemology in general and to the theory of cau-

sation in particular to investigate the properties of conditional independence as completely as possible.

The paper summarizes the most important results concerning conditional independence with respect to

two important representations of epistemic states, namely (strictly positive) probability measures and

natural conditional (or disbelief or ranking) functions. It finally adds some new observations.

In 1978, I submitted my manuscript "Stochastic Independence, Causal Independen-

ce, and Shieldability" to the Journal of Philosophical Logic. Having realized that the laws

of conditional probabilistic independence are the basis of any theory of probabilistic caus-

ality and trying to explain how in my view that theory should be built upon this basis I

started the manuscript by proving as many of the laws of conditional and also of uncondi-

tional probabilistic independence as I knew and conjectured that the two lists were indeed

complete; these conjectures looked very plausible to me after half a year of unsuccessful

attempts to prove them. The editor responded that I should rewrite the paper in the light of

the referee's comments and attached an utmost valuable report which was four pages long;

I have not received so long and careful a review since then. My first guess turned out to be

right later on; Pat Suppes was the referee.
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Referring to these conjectures Pat Suppes wrote that they "are almost surely incor-

rect ... It would be very surprising if the properties he mentions would be sufficient ... I

think the remarks should be deleted." And so I did.

In this note, now, I would like to return to the issue and to briefly summarize es-

sential parts of the progress made since then. We shall see that Pat Suppes' remark was

proved to be mainly correct only ten years later, and we shall see that the progress made is

satisfying in essential respects, but still incomplete in the general case. The results to be

reported are mainly those of the group around Judea Pearl; but others made also important

contributions, and I can add some news which make the general case less hopeless than it

presently looks.

What was the content of the retracted conjectures? It was pure probability theory.

Let a probability space < Ω, A, P > be given; Ω is a space of possibilities, A an algebra of

propositions or events over Ω1, and P a probability measure. Infinity will be irrelevant;

thus we may assume the possibility space Ω to be finite, and then it does not matter

whether A is a Boolean or a s-algebra and whether P is finitely or s-additive. Just for the

sake of completeness let us define probabilistic independence in

Definition 1: Let A, B and C be three events. Then A and B are independent  w.r.t. P,

symbolically A ⊥P B, iff P(A ↔ B) = P(A) P(B); and if P(C) ≠ 0, then A and B are

independent conditional on  C w.r.t. P, symbolically A ⊥P B / C, iff P(A ↔ B | C) =

P(A | C) P(B | C).

Conditional independence among events obeys

Theorem 1:

(a) If A ⊥P B / C, then B ⊥P A / C;

(b) if P(C) ≠ 0 and A ↔ C ∑  B ↔ C, then A ⊥P B / C iff P(A | C) = 0 or P(B | C) = 1;
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(c) if A and A' are disjoint and A ⊥P B / C, then A ≈ A' ⊥P B / C iff A' ⊥P B / C;

(d) if A ⊥P C / D, then A ⊥P B ↔ C / D iff A ⊥P B / C ↔ D.

Any other valid statement I know of which is stated purely in terms of conditional inde-

pendence and extremal probabilities is entailed by Theorem 1.

However, independence among events is not the most important kind of independ-

ence; an independency between two events may be insignificant because it may arise

accidentally, so to speak. The firmer and more interesting kind of independence is that

between random variables and sets of them, which is my proper concern in the sequel.

So, let a finite set I of random variables on Ω be given; I shall use X, Y, and Z for

denoting single variables and J, K, L, and M for denoting subsets of I. For any J = {X1,...,

Xn} ∑ I let a J-state be any event of the form {ω | X1(ω) = x1, ..., Xn(ω) = xn} specifying

one way for X1, ..., Xn to realize. We assume the possible states of disjoint sets of

variables to be logically independent, i.e. if, for k = 1,...,n, Ak is a Xk-state and if each Ak is

a possible event, so is their intersection. Then we may generalize Definition 1 to

Definition 2:  Let K, L, and M be three mutually disjoint sets of random variables. Then K

and L are independent w.r.t. P,  symbolically K ⊥P L, iff A ⊥P B  for all K-states A and L-

states B; and K and L are independent conditional on M w.r.t. P, symbolically K ⊥P L / M

, iff A ⊥P B / C for all K-states A, L-states B, and M-states C with P(C) ≠ 0.

In informal terms K ⊥P L / M says that given complete knowledge about the variables in

M, nothing concerning the variables in L can be inferred or induced from gaining in-

formation about the variables in K (and vice versa). By considering only mutually disjoint

sets of variables, I neglect per definition the formally trivial, but intuitively somewhat

confusing case of self-independence.

Unconditional independence between sets of variables is characterized by

Theorem 2:
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(U1) If K ⊥P L , then L ⊥P K   (Symmetry),

(U2) K ⊥P ∅   (Trivial Independence),

(U3) if K ⊥P L ≈ M, then K ⊥P L   (Decomposition),

(U4) if K ⊥P L and K ≈ L ⊥P M, then K ⊥P L ≈ M   (Mixing).

My minor conjecture has been that this characterization is complete, as expressed in

Theorem 3: Each binary relation between disjoint subsets of I satisfying (U1-4) is uncon-

ditional independence w.r.t. some probability measure.

However, this theorem was proved to hold only by Geiger, Paz, and Pearl (1988), and as

Milan Studeny pointed out to me, by Matus (1988). This is a remarkable positive re–sult.

Conditional independence is much more intricate, and it will occupy us in the rest of

the paper. For its characterization it is useful to introduce

Definition 3: A ternary relation ⊥ between disjoint subsets of I is called a semi-graphoid

(over I) iff it satisfies

(G1) If K ⊥ L / M, then L ⊥ K / M  (Symmetry),

(G2) J ⊥ ∅ / M   (Trivial Independence),

(G3) if J ⊥ K ≈ L / M, then J ⊥ K / M   (Decomposition),

(G4) if J ⊥ K ≈ L / M, then J ⊥ K / L ≈ M   (Weak Union), and

(G5) if J ⊥ K / L ≈ M and J ⊥ L / M, then  J ⊥ K ≈ L / M   (Contraction).2

And it is called a graphoid (over I) iff it additionally satisfies

(G6) if J ⊥ K / L ≈ M, and J ⊥ L / K ≈ M, then J ⊥ K ≈ L / M  (Intersection).
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These terms and the labels of the properties are due to Pearl and Paz (1985). They derive

from the rich and useful graph theoretic connections of independence notions which,

however, need not to be displayed here.

In these terms conditional independence is characterized by

Theorem 4: For any probability measure P, ⊥P is a semi-graphoid. If P is strictly positive,

i.e. if P(A) = 0 only for A = ∅, then ⊥P is a graphoid.3 Moreover, we have for any P:

(B) if X is a binary variable, i.e. takes only two values, and if K ⊥P L and K ⊥P L / {X},

then K ≈ {X} ⊥P L or K ⊥P L ≈ {X}.

My major conjecture was that this characterization is complete as well, i.e. that, more

precisely, for any semi-graphoid or graphoid there is, respectively, a probability measure

or a strictly positive probability measure such that the semi-grapoid or graphoid is

conditional independence with respect to that measure - provided all the variables take

more than two values; the proviso is to circumvent the somewhat disturbing special law

(B) for binary variables. Pearl and Paz (1985) had the very same conjecture. Alas, we were

all wrong.

Before proceeding to this negative result and its partial positive substitutes we have

to introduce, however, another very useful model of the graphoid properties of independ-

ence. There are subjective probabilities guiding betting behavior and (all?) other actions.

But there is also plain belief, at least we talk of it all the time; we believe things to be true

or to be false, or we suspend opinion. Plain belief cannot be adequately represented in

terms of subjective probability. So what to do about it? One may disregard it; but we better

account for it. A fully conditionalizable and hence dynamizable account of plain belief is, I

think, best given in the following terms:

Definition 4: κ is a natural conditional function or NCF 4 (over Ω) iff κ is a func-

tion from Ω into the set of natural numbers5 such that κ-1(0) ≠ Ø. A NCF κ is extended
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to propositions by defining κ(A) = min {κ(ω) | ω ∈ A} for each A ≠ ∅ and κ(∅) = ∞.6

Moreover, for A ≠ ∅ we can define conditional κ-values by setting κ(ω | A) = κ(ω) -κ(A)

for ω ∈ A and κ(B | A) = min {κ(ω | A) | ω ∈ A ↔ B} = κ(A ↔ B) -κ(A).

A NCF κ is to be interpreted as a grading of disbelief. κ(ω) = 0 says that ω is not

disbelieved, i.e. ω might be realized according to κ; because not every possibility can be

held to be unrealized, Definition 4 requires that κ(ω) = 0 for some ω ∈ Ω. And κ(ω)

= n > 0 says that ω is disbelieved with degree n. A proposition is then assigned the mi-

nimal degree of disbelief of its members. Thus, if κ(A) = 0, A is not disbelieved, i.e. A

might be true according to κ; and if κ(A) = n > 0, A is disbelieved, and ~A 7 believed, with

degree n. Hence, precisely the supersets of κ-1(0) are plainly believed according to κ. In a

similar way, conditional κ-values express conditional belief and disbelief. On that basis,

conditionalization rules analogous to those discussed in probabilistic epistemology finally

allow for a dynamic theory of plain belief.8

NCFs may also be understood in terms of non-standard probability measures, na-

mely as assigning to propositions the infinitesimal order of magnitude of their probability

(relative to some given infinitesimal); this maps products of probabilities into sums of κ-

values, divisions into subtractions, and sums into minima.9 So, in a way, it is no wonder

that NCFs behave very similar to probability measures. In particular, if there is condition-

alization, there is also independence:

Definition 5: Let K, L, and M three mutually disjoint sets of variables. Then K and L are

independent w.r.t. to the NCF κ, symbolically K ⊥κ L, iff for all K-states A and L-states B

κ(A ↔ B) = κ(A) + κ(B); and K and L are independent conditional on M w.r.t. κ,

symbolically K ⊥κ L / M , iff for all K-states A, L-states B, and M-states C κ(A ↔ B | C) =

κ(A | C) + κ(B | C).

Conditional independence w.r.t. NCFs is characterized by
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Theorem 5: For any NCF κ, ⊥κ is a graphoid.10

There is no need to assume an analogue to strict positivity; NCFs are automatically strictly

positive, so to speak (by not taking ∞ as a value). Also, the special law (B) does not hold

for NCFs because, whereas P(A) and P(~A) are functionally related, κ(A) and κ(~A) are

not; there is only the condition that at least one of them must be 0.

What's the use of knowing Theorems 4 and 5 and whether or not they are complete?

There is, first, mathematical curiosity to be satisfied. There is, moreover, a general

philosophical interest. It is my experience that the notion of independence is one of the

most problematic and confusing notions throughout the entire history of philosophy11;

and then it is important to distinguish its various meanings and to uncover their formal

properties which are able to guide its quite unreliable use. This has been good philosophi-

cal methodology in other cases as well.

But there are more specific reasons for knowing the properties of epistemic inde-

pendence which we are considering here in the form of probabilistic and NCF-independ-

ence. In probabilistic models of epistemic states, which are doubtlessly the most important

and successful ones, conditional and unconditional independencies provide a qualitative

skeleton for epistemic states which is of vital importance. It is needed in AI for making

probability measures computationally manageable. It is needed for describing the in-

fluence of experience which strikes the epistemic structure at one point and then spreads

along its paths; these are also the paths along which we proceed from suppositions to

conclusions. The skeleton is needed to determine which parts are unaffected by local

changes in other parts; it thus helps to modularize basically appropriate, but undifferen-

tiated and therefore theoretically unfruitful holistic accounts of epistemic states. And so

forth. This fundamental epistemological role of probabilistic independence is displayed in

Pearl (1988) in beautiful abundance. The very same remarks apply to any other useful

model of epistemic states and its associated independence notion and in particular to

NCFs and NCF-independence. It is obvious, then, how important it is to know the formal
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properties of the various explications of conditional and unconditional epistemic inde-

pendence as completely as possible.

There is another specific reason. It is arguable that causal dependence and inde-

pendence is basically a kind of conditional epistemic dependence and independence12, a

view which I share and tried to support since my (1980).13 This entails that one can derive

the properties of causal dependence from those of conditional epistemic dependence.

Thus, again, it is important to know the latter, both for inferring the properties of causal

dependence and for checking the plausibility of these inferences and thus of that view.14

This reason applies equally to probabilistic and to NCF-independence, since in my view a

theory of deterministic causation can be best spelled out in terms of NCFs in strict parallel

to a theory of probabilistic causation.15

The two reasons given are not independent, of course; they rather mesh, because it is

quite plausible that the epistemic skeleton is provided not by conditional epistemic

dependence in general, but more specifically by causal dependence. In fact, the theory of

Bayesian networks is developed just from this assumption.16

So, what more can be said about conditional epistemic independence beyond Theo-

rems 4 and 5? A lot; indeed there is no point in summarizing here all the known results.

Therefore I confine myself to presenting only the results most relevant to the purposes

just mentioned.

There are, first, some quite strong partial completeness results. In order to under-

stand them, we need

Definition 6: A list of total causes17 is a set of conditional independence statements for

which there is a linear ordering X1, X2, ... of all variables in I such that the list contains for

each variable Xs  exactly one statement of the form Xk  ⊥ {X1, ..., Xk-1} - J / J for some

J ∑ {X1, ..., Xk-1}. A semi-graphoid is then said to be generated by a list of total causes iff

it is the closure of that list under the semi-graphoid conditions (G1-5); analogously,

graphoids may be generated in this way.
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In this special case the semi-graphoid properties suffice to characterize conditional

probabilistic independence. This was shown by Geiger and Pearl (1990) by proving

Theorem 6: For each semi-graphoid ⊥ generated by a list of total causes there is a pro-

bability measure P such that ⊥P  = ⊥ .18

Concerning NCFs Hunter (1991) proved the corresponding

Theorem 7: For each semi-graphoid ⊥ generated by a list of total causes there is a NCF κ

such that ⊥κ = ⊥ .19

Interestingly, this immediately entails the further

Theorem 8: Each semi-graphoid generated by a list of total causes is the same as the gra-

phoid generated by that list.

This is so simply because ⊥κ is already a graphoid according to Theorem 5.20 It should

be possible, it seems, to prove this also directly without recourse to an interpretation of

⊥ in terms of probabilities or NCFs.

The appropriateness of the term "list of total causes" and the impact of these theo-

rems gets a bit more perspicuous when we give them a slightly different form. We first

need to know how the relation between causal and epistemic dependence is to be specified.

The relation for which I have argued in (1980, 1983, and 1990b) is stated in

Definition 7: Assume a linear temporal ordering of the variables in I. Then the variable X is

potentially directly causally relevant to the variable Y iff X precedes Y and X and Y are

epistemically dependent conditional on M, where M = {Z ∈ I | Z precedes Y and Z ≠ X},

i.e. not Y ⊥P X / M in the probabilistic case and not Y ⊥κ X / M in the deterministic case.

It is quite obvious that this explication grew out of Suppes' basic work (1970), and its

main content is rather self-explaining. Still it requires some comments:
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The definition is relative to a given set I of variables and to a given P or κ. This may

seem unwelcome, but it is unavoidable, I think, and I just stick here to that relativization.21

Another issue not discussed here is how the explication is to be modified when the

temporal ordering is assumed to be only weak and not linear so that simultaneous va-

riables are allowed.

Since we are considering causal relations only between variables, it is adequate to

speak of causal relevance or dependence; it is only events or facts of which one can say

that one causes the other. For the same reason the qualification "potential" is appropriate.

The condition that not Y ⊥P X / M only says that there is some possible M-state condi-

tional on which X and Y are dependent; but this need not be the actual one. This makes

clear that actual causal relations cannot be studied purely on the level of variables.22

Moreover, it is obvious that the definition can characterize only direct causal de-

pendence (as relativized to the given set I of variables). If X were only indirectly causally

relevant to Y, then the set of variables preceding Y and different from X would contain all

the variables mediating between X and Y and would thus render X and Y conditionally

independent. The simplest and indeed the right thing to say is that (direct or indirect) cau-

sal dependence is the transitive closure of direct causal dependence; but there are counter-

arguments which are not easily dissolved.23

Finally, it must be emphasized that the probabilistic part of the explication is ade-

quate only if P is strictly positive; if it is not, if it contains deterministic ingredients, so to

speak, conditional probabilities required for causal judgment may be undefined. In this

case, one has, in my view, to resort to Popper measures or rather something more com-

plicated which is, in effect, a combination of probability measures and NCFs.24 This view

is related to my more complicated view of deterministic causation. There is a long-

standing tendency25, particularly in statistical literature, to equate deterministic causal de-

pendence with functional dependence in the mathematical sense. This is not false, but it is
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not the basic sense of deterministic causation and it requires favorable circumstances and

some steps of reasoning to reduce causal to functional dependence.26

So, let us accept Definition 7 for the sequel, and let us assume that the linear order-

ing X1, X2, ... of the variables in I is their temporal ordering. On this basis we can intro-

duce

Definition 8: A list of direct causes27 is just any set of pairs <Xi, Xk> with i < k or of

conditional dependence statements corresponding to such pairs according to Definition

7. A graphoid is then said to be generated by a list of direct causes iff it is the closure

under the graphoid conditions (G1-6) of the complementary set of independence

statements, i.e. of the statements Xk ⊥ Xi / {X1, ..., Xi-1, Xi+1, ..., Xk-1} for all pairs <Xi,

Xk> with i < k  which are not in the list.

There is an obvious one-one-correspondence between lists of total causes and lists

of direct causes: If J is the conditioning set of the entry for Xk in a given list of total cau-

ses, then J consists just of all the variables directly causally relevant to Xk according to the

corresponding list of direct causes, i.e. Xi ∈ J iff <Xi, Xk> is in that corresponding list; so,

J may well be called a total cause of Xk.28 The important fact about this correspondence,

of which the proponents of Definition 6 were of course fully aware, is that the

independence statements associated with corresponding lists mutually imply each other.

The entry Xk  ⊥ {X1, ..., Xk-1} - J / J for Xk in a given list of total causes entails with the

help of (G4) that Xk ⊥ Xi / {X1, ..., Xi-1, Xi+1, ..., Xk-1} for each Xi ∈ {X1, ..., Xk-1} - J, i.e

for each Xi with i < k such that <Xi, Xk> is not in the corresponding list. Conversely, the

latter independencies jointly imply the former with the help of the special graphoid

property (G6). These implications entail that the graphoid generated by a list of direct

causes is the same as the graphoid generated by the corresponding list of total causes.

Combining this observation with Theorems 6, 7, and 8, we finally get
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Theorem 9: For each graphoid ⊥ generated by a list of direct causes there is a probability

measure P such that ⊥P = ⊥ and a NCF κ such that ⊥κ = ⊥ .

This entails the further side result that each set containing for all Xi, Xk with i < k either

Xk ⊥ Xi / {X1, ..., Xi-1, Xi+1, ..., Xk-1} or its negation is consistent, i.e. that any hypothesis

about a direct causal dependency or independency is logically independent of any set of

other such hypotheses. This is noteworthy because it says that causal hypotheses are

acceptable and rejectable without logical constraints by the others and thus facilitates them

to play the fundamental role attributed to them.

What has been done by deriving Theorem 9 is simply to more fully explicate the in-

tended causal content of Theorems 6 and 7. If the relation between direct causal depend-

ence and conditional epistemic dependence is as specified in Definition 7, these theorems

are fully satisfying to the extent in which the important epistemological functions men-

tioned above are performed just by the causal independencies among the conditional epis-

temic independencies. In that case, we need to know only the graphoid properties (G1-6)

and can even restrict the use of (G6) to the transition from the given list of direct causes to

the corresponding list of total causes.

This is, in my view, the most important partial completeness result. But there are

others as well: about so-called saturated independence statements the three relata of which

have to add to some fixed set of variables, about special probability measures like normal

distributions or binary distributions, for the case that so-called deterministic variables are

allowed, with respect to other independence notions, concerning stronger completeness

notions, etc. Since there is no point in repeating them here, I refer the reader to Geiger and

Pearl (1988), and Geiger (1990), and Geiger, Verma, and Pearl (1990).29

Still it is not wholly clear whether among the conditional epistemic independencies

only the causal ones and their implications are epistemologically fundamental. I am not

going to discuss that question; but it is clear that in the case of doubt it would be episte-
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mologically important to know further properties of conditional independence and to have

a general completeness result. So let us finally turn to this issue.

I already mentioned that the old completeness conjectures about graphoids and se-

mi-graphoids have turned out to be false. The first one to show this and thus to confirm

Pat Suppes' remark in his review was Studeny (1989a), p.15. Making essential use of

information theoretic means Studeny was able to prove the following quite complex pro-

perty for each probability measure P:

(S1) K ⊥P K',  L ⊥P L' / K,  L ⊥P L' / K', and K ⊥P K' / L ≈ L' if and only if L ⊥P L',

K ⊥P K' / L,  K ⊥P K' / L', and L ⊥P L' / K ≈ K'.

Surprisingly, this property does not apply to NCFs; a counter-example is given in the

appendix. Thus, the analogy between probability measures and NCFs is not complete.

Indeed, it is not clear to me how information theoretic notions may be transferred to NCF

theory and whether this makes any sense.

In (1989b) Studeny mentions a further property which is also about two pairs of

sets of variables and the eight independencies built from them and which holds only for

strictly positive probability measures:

(S2) if K ⊥ K' / L ≈ L',  K ⊥ K' / L,  K ⊥ K' / L',  L ⊥ L' / K ≈ K',  L ⊥ L' / K, and

L ⊥ L' / K', then K ⊥ K' and L ⊥ L'.

Of course, (S1) and (S2) hold also when all statements are further conditionalized on

some constant set M of variables. The fact that after several years of unsuccessful search

these new properties were found was certainly a slight sensation.

But it came even worse. Having tasted the flavor of the new properties, Geiger and

Pearl (1988), p. 41, mention a whole new family of properties applying to strictly positive

probability measures, namely:

(S3) Let J = {X0, ..., X2n-1}, and suppose that for each i = 1, ..., 2n:
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(a) Xi ⊥ J - {Xi-1, Xi, Xi+1} / {Xi-1, Xi+1} ,

(b) Xi-1 ⊥ Xi+1 / Xi ,

(c) Xi-1 ⊥ Xi+1  (subcripts taken modulo 2n).

Then ⊥ {X0, X2, ..., X2n-2} and ⊥ {X1, X3, ..., X2n-1}. Here, ⊥ K means that K is

totally independent, i.e. that each member of K is independent of the rest of K.

This is an awfully complicated condition, and apparently one must even fear that it pro-

vides a new, logically independent property for each n .

Studeny (1992), p. 382, presents a further, simpler family of properties applying to

all probability measures:

(S4) Let {X0, ..., Xn-1} be n variables (n ≥ 4). Then X0 ⊥ Xi / Xi+1 holds for all i = 1,..., n-

1 if and only if X0 ⊥ Xi+1 / Xi  holds for all i = 1,..., n-1 (subscripts taken modulo

n).

As is proved in the appendix, (S4) applies as well to NCFs. The fear concerning (S3) is in

fact realized with respect to (S4). For, Studeny (1992), p.383, has a beautiful proof of

Theorem 10: (S4) for n is logically independent of all properties of probabilistic conditio-

nal independence of the form "if K1 ⊥ L1 / M1, ..., Kr-1 ⊥ Lr-1 / Mr-1, then Kr ⊥ Lr / Mr"

with r < n.

Studeny concludes from this theorem that there is no finite axiomatization of all the pro-

perties of probabilistic conditional independence.30

Thus the situation looks pretty confusing, if not hopeless. But two observations

slightly reduce the confusion. First, there is still another property which holds for all

strictly positive probability measures as well as for all NCFs:
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(S5) If L ⊥ L' / K ≈ K' ≈ M and if three of the four independencies K ⊥ K' / M,

K ⊥ K' / L ≈ M,  K ⊥ K' / L' ≈ M, and K ⊥ K' / L ≈ L' ≈ M hold, then the fourth

holds as well.

This time I have explicitly added a constant conditioning set M. The proof of (S5) is given

in the appendix. Clearly, (S5) is a generalization of (S2).

Secondly, we have

Theorem 11: For each n, (S3) is entailed by (G1-6) and (S5).

Again, the proof is given in the appendix. Hence, (S5) deprives (S3) of its logical inde-

pendence, and we need not worry about (S3) any more.

To summarize: What we have so far for probabilistic conditional independence are

the old semi-graphoid conditions (G1-5), the special law (B) for binary variables, and the

new properties (S1) and (S4), the latter being in fact a whole family. Additionally we have

(G6) and (S5) applying only to strictly positive measures.31 NCFs behave in a somewhat

simpler way; conditional independence with respect to them is uniformly characterized by

(G1-6), (S4), and (S5), since we do not have to distinguish different kinds of NCFs. So

the situation is still quite complicated; and having been wrong once, I shall not dare a new

conjecture.

However, a completeness theorem has not yet been shown to be impossible. If such

a theorem were feasible, it seems more likely that it would be provable with respect to

NCFs, since NCFs are mathematically much simpler than probability measures. In

particular, since the condition (B) does not apply to NCFs, one may expect that the models

one has to find in a completeness proof can be restricted to binary variables. Such a result

concerning NCFs may even help with the probabilistic case, provided the alleged

homomorphism between NCFs and infinitesimal probability measures still holds.

Indeed, there is hope - at least in principle. The following claims look at least plau-

sibe: For each finite set I of variables taking only finitely many values a number n can be
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effectively specified so that any finite truth-functional compound p of conditional inde-

pendence statements built from subsets of I is made false by a NCF taking values only up

to n, if p is made false by some NCF at all. And similarly, for each such set I a number n

can be effectively specified so that any such statement p is made false by a probability

measure taking only fractions with denominators up to n as values, if p is made false by

some probability measure at all. If these claims were true, then one would have to check

only finitely many NCFs or probability measures in order to determine the validity of

such a statement p. Thus, the set of all valid statements of this form would be decidable

and hence, a fortiori, recursively axiomatizable. As Studeny admits, this would not con-

tradict Theorem 10, since finite axiomatizability is only a special case of recursive axiom-

atizability. So, if these claims were true, the existence of a complete characterization of

conditional independence would be assured. One would only have to find it.

Appendix

A counter-example to (S1) for NCFs: Let X, Y, Z, and W be four binary variables

assuming, respectively, the states A, A', B, B', C, C', D, and D; and let the NCF κ be

defined for the 16 conjunctions built from these states by the following matrix:

κ C ↔ D C  ↔  D ' C'  ↔  D C' ↔ D'

A ↔ B0 1 1 2

A  ↔  B'2 6 6 10

A' ↔  B8 5 5 2

A' ↔ B'7 7 7 7

We then have Z ⊥κ W, X ⊥κ Y / Z, X ⊥κ Y / W, and Z ⊥κ W / {X,Y}, but nothing of

X ⊥κ Y, Z ⊥κ W / X, Z ⊥κ W / Y, and X ⊥κ Y / {Z,W}.
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Proof of (S4) for NCFs: I state the proof only for n = 4 binary variables X0, X1,

X2, and X3 assuming, respectively, the states A, A', B, B', C, C', D, and D. Let a NCF κ be

given and define

E1 = A ↔ B ↔ C ↔ D, F1 = B ↔ C ↔ D,

E2 = A ↔ B ↔ C ↔ D', F2 = B ↔ C ↔ D',

E3 = A ↔ B ↔ C' ↔ D, F3 = B ↔ C' ↔ D,

E4 = A ↔ B ↔ C' ↔ D', F4 = B ↔ C' ↔ D',

E5 = A ↔ B' ↔ C ↔ D, F5 = B' ↔ C ↔ D,

E6 = A ↔ B' ↔ C ↔ D', F6 = B' ↔ C ↔ D',

E7 = A ↔ B' ↔ C' ↔ D, F7 = B' ↔ C' ↔ D,

E8 = A ↔ B' ↔ C' ↔ D', F8 = B' ↔ C' ↔ D',

and xrs = min (κ(Er), κ(Es)) - min (κ(Fr), κ(Fs)).

Then X0 ⊥κ X1 / X2 implies that

κ(A | C) = κ(A | B ↔ C) = κ(A ↔ B ↔ C) - κ(B ↔ C) = x12 =

κ(A | B' ↔ C) = κ(A ↔ B' ↔ C) - κ(B' ↔ C) = x56,

and similarly that

κ(A | C') = x34 =x78.

In the same way, X0 ⊥κ X2 / X3 and X0 ⊥κ X3 / X1 imply that

κ(A | D) = x15 =x37.

κ(A | D') = x26 =x48.

κ(A | B) = x13 =x24.

κ(A | B') = x57 =x68.
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Clearly, we cannot say anything about the order of the κ-values of the Er and the Fr except

that κ(Er) ≥ κ(Fr) for each r. But whatever this order is, we find that

x12 = x56 is between x15 and x26 (this is to include the case where the first is equal 

to one of the latter two),

and similarly that

x34 = x78 is between x37 and x48,

x15 = x37 is between x13 and x57,

x26 = x48 is between x24 and x68,

x13 = x24 is between x12 and x34, and

x57 = x68 is between x56 and x78.

As is easily confirmed, these inequalities imply that the considered xrs are in fact all the

same. So we have arrived at the conclusion that

κ(A | B) = κ(A | B') = κ(A | C) = κ(A | C') = κ(A | D) = κ(A | D') = κ(A).

Since the same reasoning applies to A', we have X0 ⊥κ Xi for i = 1,2,3. (G5) applied to

this and the premises yields X0 ⊥κ {Xi, Xj} for i ≠ j = 1,2,3; and from this the desired

result finally follows with the help of (G4).

I assume that the same proof goes through, though in a still clumsier way, when

more than four and not necessarily binary variables are considered.

Proof of (S5): Let A, A', B, B', and C vary over states taken, respectively, by K, K', L,

L', and M. The first premise says that

(*) P(A ↔ A' ↔ B ↔ B' | C) P(A ↔ A' | C) =

P(A ↔ A' ↔ B | C) P(A ↔ A' ↔ B' | C).
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Now suppose that, say, the first three of the four mentioned independencies hold for P.

This means that the last three terms of (*) factor out with respect to A and A'. Hence, since

divisions by 0 cannot do any harm due to strict positivity, (*) implies that

P(A ↔ A' ↔ B ↔ B' | C) factors out in the same way; i.e. for each given B and B' there

are functions fBB' and gBB' such that for all A and A' P(A ↔ A' | B ↔ B' ↔ C) =

fBB'(A) gBB'(A'). Summing up over all A' or A, respectively, shows that fBB' and gBB' can

be chosen in a normalized way so that fBB'(A) = P(A | B ↔ B' ↔ C) and gBB'(A') =

P(A' | B ↔ B' ↔ C). Hence K ⊥P K' / L ≈ L' ≈ M. The same proof applies, if three other

of the four independencies are given; and the analogous proof goes through for NCFs.

Proof of Theorem 11: We have to show that the conclusion of (S3) follows from

the premises of (S3) with the help of (G1-6) and (S5). So assume (a), (b), (c) of (S3).

Take subscripts always modulo 2n, and let's simplify the notation by writing, e.g., i ⊥ J -

 {i-1, i, i+1} / {i-1, i+1} for Xi ⊥ J - {Xi-1, Xi, Xi+1} / {Xi-1, Xi+1}. The assumptions first

imply:

(d) {i+1,..., j-1} ⊥ {j+1,..., i-1} / {i, j} for all i, j = 0,..., 2n-1 with i + 2 ≤ j.

This can be proved by induction: For j = i + 2, (d) is the same as (a). Now suppose that

(d) holds for all i and j = i + k (k ≥ 2). Thus we have

{i+1,..., i+k-1} ⊥ {i+k+1,..., i-1} / {i, i+k} and

{i+2,..., i+k} ⊥ {i+k+2,..., i} / {i+1, i+k+1}.

These two independencies imply with the help of (G4) and (G6)

{i+1,..., i+k} ⊥ {i+k+2,..., i-1} / {i, i+k+1}.

Thus, (d) holds also for i and j = i+k+1.
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Moreover, (a) - (d) entail:

(e) i-1 ⊥ i+1 / j for each j ≠ i-1, i, i+1.

For, (a) implies i ⊥ j / {i-1, i+1}, (d) implies i-1 ⊥ i+1 / {i, j}, (b) says that i-1 ⊥ i+1 / i,

(c) says that i-1 ⊥ i+1, and these four independencies yield (e) with the help of (S5).

Now let k be an even index, K = {k, k+2,..., k+2m} for some m, L = {k+2m+2, ..., k-

2} the set of the remaining even indices, i = k-1, and j = k+2m+1. The next step is to

show that

(f) K ⊥ L / j .

This can be seen in the following way: For each l ∈ L, we have l ⊥ l+2 / j because of (e)

and l ⊥ {l+4,..., k-2} ≈ K / {l+2, j} because of (d) (weakened by (G3)). These two

independencies imply l ⊥ {l+2,..., k-2} ≈ K / j with the help of (G5) and thus l ⊥ K / {j,

l+2,..., k-2} with (G4). Repeated application of (G5) to this for each l ∈ L yields (f).

Finally, we can infer for K, L, i, and j as just specified:

(g) K ⊥ L .

For, (a) implies i ⊥ j / K ≈ L with (G3+4), (d) implies K ⊥ L / {i, j} with (G3), and (f)

says that K ⊥ L / j and, by reversing the roles of i and j, also that K ⊥ L / i. All this entails

(g) with the help of (S5). Since (g) holds for each even index k, the even numbered

variables are completely independent. The same reasoning applies, of course, to the odd

indices.

Notes

* I am grateful to Judea Pearl, Dan Hunter, Azaria Paz, and in particular to Milan Studeny for vari-

ous helpful comments on a first draft of this paper.
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1 The precise nature of the objects of probability, whether objectively or subjectively interpreted, is

a deep and philosophically highly important issue which is still very open. Here it is irrelevant, and so I

use "event" and "proposition" exchangeably.

2 As Studeny (1989a) has noted, (G3-5) may be integrated into one property: J ⊥ K ≈ L / M  iff

J  ⊥  K  / L  ≈  M  and J ⊥  L / M .

3 This is proved in Dawid (1979) and (1980), and in my (1980) where strict positivity is replaced

by a slightly weaker condition and where extensions to infinitely many variables may be found.

4 This is the label which I have originally used in my (1988) in order to avoid false associations.

More suggestive terms are "disbelief function" (Shenoy, 1991) and "ranking function" (Goldszmidt and

Pearl, 1992).

5 In (1988) I allowed the range to consist of ordinal numbers and therefore talked of ordinal condi-

tional functions; but this generality is not needed here.

6 Setting κ(Ø) = ∞ is a reasonable convention. But ∞ should not be assigned to possibilities and

consistent propositions in my view because it causes all rules of belief revision to fail.

7 ~A of course denotes the complement of A relative to Ω.

8 A fuller motivation and explanation of this concept and the ensuing theory may be found in my

(1988).

9 See my (1988), sect. 7, and my (1990a), Theorem 2.

10 For proof see my (1988), sect. 6, and Hunter (1991).

11 For instance, the various forms of idealism stand and fall with a (in my view still lacking) satis-

fying explanation of what "dependent" precisely means in their slogan "the world is mind-dependent".

12 This view is an old one, of course. It was Hume's revolutionary thesis that causation is an epist-

emological notion, which he so convincingly elaborated in his (1739), Book I, Part 3. The importance of

conditionalizing was emphasized at least by Mill who explicitly relativized causal statements to the ob-

taining circumstances or ceteris paribus clauses; cf. his (1843), Vol. I, Book III, Ch. 5.

13 Cf. in particular my (1990b). One may say that causal dependence is rather a kind of conditional

metaphysical dependence. I do not object, but I think the proper view is the following: Causal dependence
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as conceived by a given subject is definable in terms of conditional epistemic dependence according to the

epistemic state of that subject; and objective causal dependence can be best understood as an objectifica-

tion of that epistemic dependence; cf. my (1993a).

14 This importance is well demonstrated in the remarkably rich statistical theory of causal inference

and prediction presented in Glymour et al. (1991) and Spirtes et al. (1992), who build their theory on just

two properties of causal dependence, the screening off and the common cause principle, generalized later

on to the Causal Markov and the Causal Minimality condition (cf. Glymour et al., 1991, pp.156ff., and

Spirtes et al., 1992, pp. 53ff.). Starting one step earlier, namely from the definition of direct causal de-

pendence mentioned below, one may derive both the screening off and the common cause principle; cf.

my (1993b), sect. 4. Spirtes et al. do not take that step, I think, because the consequences are safer than

the definition from which they are derived.

15 This view is to some extent elaborated in my (1991), sect. 3.

16 Cf. Pearl (1988), sect. 3.3.

17 The usual term is "causal list". Here I prefer to speak of lists of total causes, because, according

to the explication given later on, this is what they are in contrast to the lists of direct causes introduced

below.

18 To be precise: Geiger and Pearl (1990) showed for this special case that conditional probabilistic

independence is completely characterized by so-called d-separability, a notion applying to directed acyclic

graphs; it is not introduced here, but it is utterly useful for graphically presenting and computationally

managing conditional indpendence; cf. Pearl (1988), pp. 119ff., and Spirtes et al. (1992), pp. 71ff. And

Verma and Pearl (1990) showed that for a given list of total causes the relation of d-separability is

identical with the semi-graphoid generated by the list. For an alternative characterization of d-separation

see also Lauritzen et al. (1990).

19 In his proof, Hunter (1991) also proceeds via the equivalence of semi-graphoids and d-separability

in this case; but the rest of the proof is quite different, because the probabilistic construction used by Gei-

ger and Pearl (1990) does not carry over to NCFs.

20 Theorem 8 follows only from Theorem 7 and not from Theorem 6. If we look at the proof of the

latter by Geiger and Pearl (1990), we find that the probability measure which they construct in order to

prove their existence claim is not strictly positive so that its independence relation is not a graphoid.

Spirtes et al. (1992) have another proof of Geiger and Pearl's theorem in which they construct a suitable
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strictly positive measure, i.e. joint multi-variate normal distribution; cf. their lemma 3.5.7., pp. 397ff.

So this yields a probabilistic way to Theorem 8.

21 In the case of I, the obvious move to get rid of that relativization is to consider the ill-defined set

of all variables whatsoever. Mathematically, this can be approximated by studying and comparing the

causal relations within smaller and larger sets of variables. Verma and Pearl (1991), Pearl and Verma

(1991), and Spirtes et al. (1992), ch. 6, 10, and 11, have found several remarkable results about the way

in which statistical data about a smaller set can be indicative of causal relations within a larger set of vari-

ables.

22 In my (1990b) I proceeded on the more fundamental level of events or states of affairs on the

basis of which the causal relations between variables can be defined.

23 Cf. my (1990b).

24 Cf. my (1988), sect. 7.

25 Remember the old polemics of Russell (1912/13).

26 Cf. my (1993a).

27 Where "cause" is now short for "potential causal dependence".

28 Apart from the fact already mentioned that one should not apply the term "cause" to variables.

29 If I do not want to discuss special probability measures and their independence relations, why am

I considering strictly positive probability measures? Because they are not very special and because they

have a distinguished role with respect to both purposes motivating the search for the properties of condi-

tional independence: If we are interested in causal independence, then, as already mentioned, only strictly

positive measures are suitable for a probabilistic theory of causality; and if we consider the wider epistem-

ological purposes, strictly positive measures are particular suitable as well, as is clear at least since Car-

nap (1950) has postulated strict positivity in his regularity axiom.

30 In his auxiliary lemma 1 (p. 380) Studeny (1992) constructs suitable models with the help of

measures which are not strictly positive. Therefore, his proof of Theorem 10 does not show that it holds

also for conditional independence w.r.t. strictly positive measures. For the same reason it does not seem

to carry over to NCFs.

31 Studeny (1993), §5, mentions two further properties:

If J  ⊥  K  / L , J  ⊥  L  / K , J  ⊥  K  / M , and L  ⊥  M , then J  ⊥  K  ≈  L ; and
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if J  ⊥  L  / K , K  ⊥  L  / J , J  ⊥  K  / M , and L  ⊥  M , then J  ≈  K  ⊥  L .

These are clearly weakenings of (G6), but in contrast to (G6) they hold for all probability measures.
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