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" 1. Introduction

In a famous essay oa caunsality, Bertrand Russell (1913) asserts the
following. 4o

“All philosophers, of every school, .imagine that causatlon is one
of the fundamental axioms or postulates of science, yet, oddly enough,.
in advanced, sciences such as gravitational astronomy, the word
‘cause’ never occurs . . . . The law of causality, I believe, like much
that passes muster among philosophers, is a relic of a bygone age,
surviving, like the monarchy, only because it is erroneously supposed
to do no harm . ... The principle ‘same cause, same effect,” which
philosophers imagine to be vital to science, is therefore utterly otiose.
As soon as the antecedents have been given sufficiently fully to en-
able the consequent to be calculated with some exactitude, the an-
tecedents have become so complicated that it is very unlikely they
will ever recur. Hence, if this were the principle involved, science
would remain utterly sterile . ... No doubt the reason why the old
‘law of causality’ has so long continued to pervade the books of
philosophers is simply that the idea of a function is unfamiliar to
most of them, and therefore they seek an unduly simplified statement.
There is no question of repetitions of the ‘same’ cause producing the
‘same’ effect; it is not in any sameness of causes and effects that the,,
constancy of scientific law consists, but in sameness of relations. And
even ‘sameness of relations’ is too simple a phrasg sameness of dif-
ferential equations’ is the only correct phrase.’ 1(1 Q - mv\

Perhaps the most amusing thing about this passage from Russell is
that its claim about the use of the word ‘cause’ in physics no longer

.. holds. Contrary to the days when Russell wrote this essay, the words

‘causality’ and ‘cause’ are commonly and widely used by physicists
in their most advanced work. There is scarcely an issue of Physical
Review that does not contain at least one article using either ‘cause’
or ‘causality’ in its title. A typical sort of title is that of a recent
volume edited by the distinguished physicist, E. P. Wigner, “Dis-
persion relations and their connection with causality” (1964). Another
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6 PATRICK SUPPES

good example is the recent article by E. C. Zeeman (1964), “Causality
implies the Lorentz group”.! The first point [ want to establish, then,
is that discussions of causality are now very much a part of con-
temporary physics. The reasons for this are, I think, very close to the
reasons why notions of causality continue to be an important in-
gredient of ordinary talk, and undoubtedly will remain so.

At the end of the passage quoted from Russell, there is an emphasis
on replacing talk about causes by talk about functional relationships,
or more exactly, by talk about appropriate differential equations.
This remark is very much in the spirit of classical physics, when the
physical phenomena in question were felt to be much better under-
stood at a fundamental level than they are today. One has the feeling
that in contemporary physics the situation is very similar to that of
ordinary experience, namely, it is not possible to apply simple funda-
mental laws to derive exact relationships such as those expressed in
differential equations. What we are able to get a grip on is a variety
of heterogeneous, partial relationships. In the rough and ready sense
of ordinary experience, these partial relationships often express causal
relations, and it is only natural to talk about causes in very much the
way that we do in everyday conversation.

From the standpoint of the philosophical analysis of causality
probably the most confusing episode in the history of thought was the
reign of Newtonian mechanics, from the beginning of the eighteenth
century until the end of the nineteenth. The apparent universality
and certainty of this mechanics led Kant and other philosophers
into a mistaken notion of causality. The overwhelming empirical
success of Newtonian mechanics, particularly in accounting for the
motions of the solar system, inevitably yoked the notions of causality
and determinism. In the heyday of classical mechanics in the nine-
teenth century, it was impossible to talk about causes without think-
ing of them.as deterministic in character. Perhaps the clearest ex-
pression of this view is to be found in Laplace’s treatise on probability.

1 Asadditional evidence, the following five titles are cited: B. Ferretti,
“On the possibility of a macroscopically causal quantum-relativistic
theory” (1963); M. Gell-Mann, M. L. Goldberger, and W. E. Thirring,
“Use of causality conditions in quantum theory’’ (1954); W. Schiitzer
and J. Tiomno, “On the connection of the scattering and derivative
matrices with causality”” (1951); Yu. M. Shirokov, “Microcovariance and
microcausality in quantum theory” (1963); and N. G. van Kampen,
“S-matrix and causality condition” (1953).
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The famous passage on the deterministic character of the universe is
the classical statement of the nineteenth-century position, but this

" classical statement is very much at variance with the notions of

causality used in ordinary talk, and even with those developed in
practice by Laplace in applying probability theory.

It is an important point to establish for the subsequent discussion
that the everyday concept of causality is not sharply deterministic in
character. All of us have said things like the following on one occasion
or another: “His reckless driving is bound to lead to an accident”.
What we mean in asserting such a statement is that the probability of
the person’s having an accident is high, and his own manner of driving
will be at least a partial cause of the accident. The phrase ‘is bound
to’ means that the probability is high of having an accident. The
phrase ‘lead to’ conveys the causal relation between the reckless
driving and the predicted accident. If the person in question does not
have an accident over an extended period of time, his reporting the
fact in conversation would naturally lead to head-shaking and the
remark, “It is hard to believe. His driving is a sight to behold. I can’t
understand why he has not yet had a serious accident”.

There are a large number of phrases in English that convey causal
notions in the same sort of way as the phrase ‘is bound to‘lead to’.
A common example is the phrase ‘due to’. A teacher finds that she
must say to a student, “Due to your own laziness you will in all
likelihood fail this course”. There is, of course, the natural and widely
used ‘because’. A mother says to a child, “Because it is getting
colder today, we probably won’t be able to go to the circus tomor-
row”. Or, a mother says, “The child is frightened because of the
thunder”, or at another time, “The child is afraid of thunder’’. She
does not mean that on each and every occasion that the child hears
thunder, a state of fright ensues, but rather that there is a fairly high
probability of its happening; and when it does, of course, the cause
of the fright is the thunder. If a tired saleswoman says, “I've been
standing all day and my feet are killing me”, she does not mean to
imply that absolutely every time she is standing at work for a long
time, her feet will bother her at the end of the day. It is rather that
this will happen with a high probability, and “the’ cause of the pain
is the prior event of standing a good part of the day. In this last ex-
ample we have a familiar case in which the ubiquitous connective
“and” is used to connect two statements, the first of which expresses
the cause of the event described by the second. When the causal anal-
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ysis is partial it is perhaps particularly natural to use ‘and’ rather
than ‘because’.

It is easy to - manufacture a large number of additional examples of
ordinary, causal language, which express causal relationships that are
evidently probabilistic in character. One of the main.reasons for this
probabilistic character is the open-textured nature of analysis of
events 55;;;);%{2/ dinary language. Thgg_gmpleteness and clos-
ure Condlmwﬂwmw
part of ordinary talk. Thus in describing a causal relation in ordinary
circimstances, we do not explicitly state the boundary conditions or
the limitations on the interaction between the events in question and
other events that are not mentioned. In contrast, in classical physics
it is standard to state the boundary conditions of the system and to
enumerate explicitly all the forces operating on the system at a given
time. It is this very lack of knowledge of causes that leads naturally
to the introduction of probability concepts in the expression of causal
relationships. As Laplace remarked for different reasons, probability
theory is dq‘:sngned to discover and to analyze partial causes in complex

“¥tuations for which a complete causal_analysis | is not feasible. La-~
place had in mind applications of systematic physxcal theory tp, such
complexsituations, but it is for precisely the same reason that prob-
ability concepts are so natural in ordinary talk about causes. A eom-
plete causal analysis is far too complex and subtle, and not to the

"point for, which ordinary talk is designed.

T Itis interesting to note in the present context that the analysis of
causes in legal contexts given in the recent book by Hart and Honoré
(1939) seems closer to classical physics than to ordinary talk about
causes, with respect to the role of probability concepts. The reason
seems clear. It.is characteristic of legal analysis, as well as of classical
physics, not to be satisfied with open-ended, probabilistic results. A
jury is not permitted to render the verdict that the accused probably
committed the crime, In a civil suit concerning breach of contract the
judge cannot say, “It seems likely that a breach of contract did occur,
but it is net certain, and therefore, we shall apply the following ex-
pected utility rule in the award of damages”. In other words, the law
uses in practice a fiction yery similar to that enshrined in classical
physics. It is significant that in the rather long and detailed discussion
of causation in the book by Hart and Honoré there is scant mention
of probability questions.!

1 In discussion of this passage at two seminars on causality I gave at
the London School of Economics (Spring, 1966), it was pointed out that
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The omission of probability considerations is perhaps the single .

greatest weakness in Hume’s famous analysis of causality. As is well
known, Hume said that the relation between cause and effect has
three essential characteristics, namely, contiguity, succession in time,
and constant conjunction. In other words, causes and their effects are
contiguous in space and time, a cause precedes its effect in time, and
causes are followed by their effects in a constant fashion. The impor-
tant passage on constant conjunction in the Treatise on Humman Nature
(Selby-Bigge edition, 1888, pp. 86 —87) is the following.
“ “Tis easy to observe, that in tracing this relation, the inference
" we draw from cause to effect, is not deriv’d merely from a survey of
these particular ob}ects and from such .a penetration into their
one upon the other.
o object, which implies the existence of any otheryif we
ider these objects in themselves, and never look beyond the ideas

which we form of them. Such an inference wou'd amount to knowl- |

edge, and wou’d imply the absolute contradiction and impossibility
of conceiving any thing different. But as all distinct ideas are sepa-
rable, ‘tis evident there can be no impossibilitmed. ‘When we
pass from a present impression to the idea of any object, we might
possibly have separated the idea from the impression, and have sub-
stituted any other idea in j

“ “Tis therefore by
existence of one object f &t of another. The nature of experience
is this. We remember to have had frequent instances of the existence
of one species of objects; and also remember, that the individuals of
another species of objects have always attended them, and have
existed in-a regular order of contiguitf and succession with regard to
them. Thus we remember to have seen that species of object we call
flame, and to have felt that species of sensation we call heat. We like-
wise call to mind their constant conjunction in all past instances.
Without any farther ceremony, we call the one cause and the other
effect, and infer the existence of the one from that of the other. In all
those instances, from which we learn the conjunction of particular
causes and effects, both the causes and effects have been perceiv'd

in civil damage cases, as for example, those concerned with automobile
accidents, there is sometimes a judgment allocating blame between the
two parties. However, as far as I know, the allocation is meant Lo reflect
a judgment on the proportional share of the blame and is never formu-
lated in explicit probabilistic terms. Above all, the concept of expected
blame, corresponding to the concept of expected utility, is not used.

ENCE only, that we can infer the
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by the senses, and are remember’d: But in all cases, wherein we reason
concerning them, there is only one perceiv’'d or remember’d, and the
other is supply’d in conformity to our past experience.
“Thus in advancing we have insensibly discover’d a new relation
btwixt cause and effect, when we least expected it, and were entirely
‘mploy’d upon another subject. This relation is their CONSTANT
CONJUNCTION. Contiguity and succession are not sufficient to
make us pronounce any two objects to be cause and effect, unless we
perceive, that these two relations are preserv’d in several instances.”
Hume follows this passage with an analysis of why the concept of
constant conjunction is the appropriate one to replace the fallacious
idea of a necessary connection existing between a cause and its effect.
The claim being made here is that in restricting himself to the concept
of constant conjunction, Hume was not fair to the use of causal
notions in ordinary language and experience. Roughly speaking, the
modification of Hume's analysis I propose is to say that one event is
“the cause of another if the appearance of the first event is followed
-with a high probability by the appearance of the second, and there is

no third event that we can use to factor out the probability relation-
‘ship between the first and second events.

It is the objective of this monograph to work out the technical de-
tails of this fundamental idea and to apply the results to some of the
typical philosophical problems that arise in discussions of causality.
Section 2 develops an analysis of causal relations among events within
a standard probabilistic framework. Section 3 examines how much of
this analysis can be retained when only qualitative probability rela-
tions are used, and Section 4 develops a qualitative causal algebra.
Section 5 analyzes causal relations among quantitative variables or
properties, and as might be expected, uses as a central concept the
probabilistic concept of random variable. In Section 6, the final
section, a large number of problems about causality are discussed,
some more extensively than others, but they range from problems
about the direction of time to those about the freedom of the will.

2. Causal relations among events

Reasons for defining causality in terms of probability have already
been given. The deepest and in many ways the most substantial reason
lies in the wide use of probabilistic causal concepts in ordinary talk;
but after a formal theory of causality has been defined in terms of
probability notions, I shall examine some systematic applications of
the theory to various branches of science. The point will be to see in
what way causal notions of a probabilistic sort occupy an intuitive
and natural place in scientific work.

The formal theory itself is a complex and subtle matter. We must
consider a number of examples and counterexamples in order to test
the intuitive correctness of the definitions. It should be emphasized
that the deterministic concept of cause prominent in classical physics
simply occupies the place of a special case in the theory to be outlined
here. Roughly speaking, we obtain the deterministic theory by letting
all the probabilities in question be either 1 or 0. After working out
most of the details of the definitions given here in lectures at Stan-
ford, I discovered that a closely related analysis of causality had been
given in an interesting series of articles byllvml (1961, 1962),
and the reader is urged to look at Good’s articles for a development
similar to the one given here, although worked out in rather different
fashion formally and from a different viewpoint.

We shall consider later various philosophical caveats that can be
made against the underlying formal machinery taken for granted
here. For example, to what extent is it necessary to assume that a
cause precedes its effect in time} Is it possible to define the direction
of time in terms of causality? In the present discussion the direction of
time is assumed prior to the definition of any causal concepts. More-
over, David Armstrong has indicated in several conversations on these
matters that he feels that the notion of event already requires some
causal concepts; yet it will soon be clear that the notion of event, as
part of standard probability theory, is essential to the definition of
causal concepts given here. Without attempting to settle any of these

Le..
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matters definitively at this point, 1 think we can certainly agree that
the use of causal concepts in the definition of events can be separated
from ordinary or scientific talk about the causes of the events them-
selves. I shall be in a position to discuss these rather delicate epistemo-
logical issues with greater precision after the formal developments
have been completed.

For the definitions and theorems of this section we assume the
events referred to are all subsets of a fixed probability space, that the
events are instantaneous, and'that their times of occurrence are in-
cluded in the formal characterization of the probability space. (The
philosophically unsatisfactory aspect of treating all events as in-
stantaneous rather than as “‘chunks” of time will be discussed later.)
We write ‘P(A;)’ for the probability of event A occurring at time ¢/,
‘P(A¢|B;.) for the probability of A occurring at time ¢ given that
event B occurred at time ¢, and so forth, in the standard notation of

probability theory. A review of probability concepts is given in the
Appendix. '

Prima facie causes.

The first definition characterizes prima facie causes.! A number
of remarks about this definition follow some illustrative examples of
its application.

Definition 1. The event B, is a prima facie cause of the event A, if
and only if ’ ' :

M <y,
' ' (i) P(By) >0,
(iii) P(A(|By) > P(A,).

A familiar application of Definition 1 gives rise to 2 x 2-contin-
gency tables. A classical example is the following study of the efficacy
of inoculation against cholera (Greenwood and Yule, 1915, cited in
Kendall and Stuart, 1961). The data from the 818 cases studied are
as follows,

Not attacked Attacked Totals

Inoculated 276 3 279
Not-inoculated 473 66 539
Totals 749 | 69 | 818

1 The term prima facie was suggested by Jaakko Hintikka and is
certainly more appropriate than my own use of naive in the lectures
given at Vaasa, Finland in the summer of 1966.
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These data clearly show the efficacy of inoculation, for the mean prob-
ability of not being attacked is 749/818 = 0.912, whereas the condi-

““tional probability of not being attacked, given that an individual was

inoculated, is 276/279 = 0.989. Here A; is the event of not being
attacked by cholera and By the event of being inoculated. As statis-
ticians would put it, these data show that inoculation is positively
associated with exemption from attack; ‘measures of association’ is
the term commonly used in the statistical literature for measures of
the causal relationship exhibited here and required by Definition 1.
In discussing measures of association, it is important to emphasize
that from a causal standpoint the temporal order of the events is
assumed. For example, even though measures of association are com-
monly defined in such a way that the relation could be symmetric, no

“one proposes that interpretation of the measure be that attacks of

cholera cause earlier inoculations. The ordinary intuitive simple order-
ing of causal events is assumed and used in any interpretation of
such data.

It should be clear that within many conceptual frameworks no
positive results about causality can be inferred. A familiar example
is provided by the standard coin-tossing experiment in which past
outcomes have no effect on future ones. Let h, be the event of a
head on trial n, {,, the event of a tail on trial m, and so forth. Then
for a fair coin used in a properly conducted experiment, for m < n

M P(hy) = P(lp) = P(hnlhm) = P(hultm)
= P(lp|hm) = P(ln|lm) = 1/2.

The only past events are hy, and ¢, so that for this conceptual frame-
work there are no prima facie causes, as we may infer directly from
the equations (1). It is important to emphasize that the determination
of a causal relationship between events or kinds of events is always
relative to some conceptual framework.

There are at least three different kinds of conceptual frameworks
within which it seems appropriate to make causal claims. Within each
of these, a rather different basic probability measure will be used in
any application of Definition 1. One conceptual framework is that
provided by a particular scientific theory; the second is of the sort
that arises in connection with a particular experiment or class of ex-
periments; and the third is the most general framework expressing
our beliefs with respect to all information available to us.

Learning theory example. To illustrate a theoretical conceptual
framework, we may take as an example of suitable complexity the
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theory of linear learning models set forth in Estes and Suppes (1959a).
For simplicity, let us assume that on every trial the organism can
make exactly one of two responses, A, or A,, and after each response
it receives a reinforcement, E;, or E,, of one of the two possible
responses. A learning parameter 6, which is a real number such that
0 < 6 < 1, describes the rate of learning in a manner to be made
definite in a moment. A possible realization of the theory is an ordered
triple ¥ = < X, P, 6 > of the following sort. X is the set of all se-
quences or ordered pairs such that the first member of each pair is
an element of some set A and the second member an element of some
set B, where A and B each have two elements. Intuitively, the set A
represents the two possible responses and the set B the two possible
reinforcements. P is a probability measure on the o-algebra of cylinder
sets of X, and 6 is a real number as already described. (Actually there
is a certain arbitrariness in the characterization of possible realizations
of theories whose models have a rather complicated set-theoretical
structure, but this is a technical matter into which we shall not enter
here.) To define the models of the theory, we need a certain amount
of notation. Let A; , be the event of response A¢ on trial n; Ej ,
the event of reinforcement Ej; on trial n, where i, j = 1, 2; and for
rin X let x, be the equivalence class of all sequences in X which are
identical with x through trial n. We may then characterize the theory
by the following set-theoretical definition.

A triple ¥ = < X, P, 0 > is a linear learning model if and only if
the following two axioms are salisfied:

Al If P(Eg,nAy ntn.y) >0 then
P(Ai,n+l|Ei,nAt',111’n-1) = (1 — OP(A¢,nltn,) + 6.

A2. If P(Ej nAp ntny) >0 and i - j then
P(Ay,nn1lEs,nAp,nTn1) = (1 — O)P(Aq pnlTn.1).

As is clear from the two axioms, this linear response theory is intui-
tively very simple. The first axiom just says that when a response is
reinforced, the probability of making that response on the next trial
is increased by a simple linear transformation. The second axiom
says that if some other response is reinforced, the probability of mak-
ing the response is decreased by a second linear transformation. In
spite of the simplicity of this theory, it gives a reasonably good
account of a number of experiments, and from a mathematical stand-
point it is by no means trivial to characterize asymptotic properties
of its models.

A probabilistic theory of causality 15

The theoretical models of the theory of linear learning are deter-
mined by three types of parameters. First, a numerical value for the
learning parameter 6 must be selected; second, the initial probability
of an A, response must be selected, that is, the probability P(4, );
and third, a reinforcement schedule must be chosen. One of the sim-
plest reinforcement schedules that has been much studied experi-
mentally is the case of simple noncontingent reinforcement. On every
trial the probability of an E; reinforcement, independent of any
preceding events, is 7. Once x is selected, then the probabilistic char-
acter of the model is determined uniquely. If, for example, we set
6@ = P(A,,)) = = = 1/2, then a unique model of the theory is deter-
mined, and all probability questions that can be asked meaningfully
have a unique numerical answer.

Within this framework we may then ask causal questions in the
sense of Definition 1. For example, is an earlier response a prima facie
cause of a later response of the same kind; is an earlier reinforcement
of a response a prima facie cause of that response occurring on a
subsequent trial? We shall consider the analysis of causal relations
only at asymptote; that is, when n approaches co. This simplification
is just a convenient simplification in the mathematics, and is not
critical to the conceptual distinctions being made. Nine typical
asymptotic predictions in terms of » and 6 are the following:

P(Al,nﬂ) =

1-—-96 .
P(Ay n14lAy,m) = m[?ﬂ(l —0)40) + 6n

0
P(Ay niy|Ag,n) =1 — 2_98 20 —m(1—6)+6)] - 01 —)

P(A1,n+1|E1,n) =(1—0n-+86
P(Al,nﬂlEz.n) = (1 -0

2
( ) P(Al,nﬂlEl,nAl,n) =

[22(1 — 6) + 6] + 6

2 -0
1-8 |
P(Ay,n1Ey nAgn) =1 — 28 [20 == (1 — 6) + 0)
1—60

P(Ay,n11)Eg,ndym) = 5—— [22(1 — 6) + 6]
26 |

1—0
P(A;,n1lEqnAgn) =1 — 5.6 20 —=m) (1 —6) + 0] — 6.

The derivations of these nine expressions are to be found in Estes and

2
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Suppes (1959a) and Suppes and Atkinson (1960). As an example of
how the derivations proceed from the axioms, we may take as typical
the derivation of P(A,, n41|E;,nA,n) When n — oo.

Even this simple example is not exactly obvious. To begin with, we
need an asymptotic expression for a certain second moment, defined
as follows:

Va,n = 2 P(Ay,n|Tn)*P(Tn-y)-
Tn-1
We proceed recursively, applying the axioms to appropriate cases:
Vann = 2 2 2 PlA; n1|Ei,ndg,0n2n)? P(E;,n|Ag,n%n-1)

e  P(Aj,al2n ) P(En)
= 3:;7-1 {[(1 — O)P(Ay nltny) + 012 + (1 — O)P(Ay,nlTny)?
(1-) - P(zn1)

= (1 — 0)2V,,5 + 270(1 — O)P(A;,4) + n6?.

-Now it may be shown that lim V,, = V, exists, whence at
n—+00
asymptote, i.e., as n > oo

Ve,nty = Vz,n ’
and therefore from the above recursive expression,

a2z (1 — 6) + 0]

6] Ve = 29

using the fact that

4) lim P(Ayn) ==.
n— w

We are now ready to find the asymptotic probability .
P(A; n+1)Ey,nA1,n) as a function of # and #. We begin by applying
elementary probability theory, and by using (4) as well as the fact
that P(E; |Wy.,) = n for any past event Wy, with P(W,_) > 0.

1
P(A;,n11lEy nAy,n) = n Z P(Ay,n+1lE1,nAy,n%n-1)P(A1,0lTn-1)

Tn+1
- P(xp-1)

1
=;ZKuwwmmmv+ﬂ

o  P(Ay altn ) P(@ny)
(1—6)

Vz,n + 0’

and so, using (3), as n - oo
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1—0
P(A|,n+1Eq,ndy,0) = 59 [27(1 — 0) + 6] + 0,

as desired. The approach used here applies with minor modification
to the derivation of the other conditional probabilities in (2).

If we take both 6 and = to be numbers strictly between 0 and 1,
then on the basis of these nine expressions we may establish in-
equalities justifying the following statements in terms of Definition
1. (It is to be remembered that the expressions and following state-
ments hold without restriction only at asymptote.)

. Ay, is a prima facie cause of A, p4,.

. Ag,n is not a prima facie cause of A pty.

. Ey,n is a prima facie cause of A, y4,.

. E,,n is not a prima facie cause of A, ,4,.

- The event E; ,A,, 5, is a prima facie cause of response A, 4, ,.
- The event E, ,A, 5 is not a prima facie cause of A, .

OO N e

The inequalities that will establish the statements just made are
straightforward. The two cases that are somewhat more sophisticated
are the cases in which a like response but unlike reinforcement is
given on the preceding trial or an unlike reinforcement but like re-
sponse is given. The relevant theoretical equations are the seventh
and eighth equations of (2). In the first of these two cases an inference
about prima facie causation depends upon the relative value of 6
and =, as the following argument shows.

From the seventh theoretical equation of (2), it is clear that in
order to assert that the joint event E, ,A, , is a prima facie cause of
Ay,n+1, We need to establish that the following inequality holds:

1 —

6
5 _g 20— A —-0]>n,

which is equivalent to:
2-0010—n)>21 —a) (1 — 0%+ 0 — 62,
which in turn, after some simplification, is equivalent to
(2r —1)60 >3x — 2,
so that in order for the causation to hold theoretically, we must have
n — 2

0>2n—1’

1
provided n £ %
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This inequality is satisfied, for example, by n = .9 and 8 = .9, but
not by @ = .7 and 6 = .1. Our general causal assertion in this case
is thus:

7. The joint event E; A, » is a prima facie cause of A, 4, if and
3n — 2
2 — 1
is a prima facie cause for all permissible values of 6.

By a similar approach we may establish from the eighth equation this
theoretical causal statement:

8. The joint event Ey ,A,,, is not a prima facie cause of A; a4,
for any permissible values of 8 and =, i.e., any values strictly between
0 and 1.

The comparison of these last two causal statements is instructive
in that we immediately see that a like preceding reinforcement is
causally more important than a like preceding response, as intuitively
we would expect.

The analysis of the kind of causal statements that can be made
‘within this particular theoretical framework will be continued later,
but at this point I want to move on to the consideration of the closely
related causal statements that can be made in connection with a
particular experiment or class of experiments designed to test the
theory. In the present case, I shall draw upon data reported in Suppes
and Atkinson (1960, Chapter 10). Data are reported there for all of
the nine theoretical quantities defined by (2).

In the experiment to be reported here, the subjects were thirty
undergraduates from introductory courses at Stanford University.
The experimental apparatus may be described as follows (Suppes and
Atkinson, 1960, p. 81).

“The subjects, run in pairs, sat at opposite ends of an 8 x 3-foot

table. Mounted vertically on the table top facing each subject was

a 50-inch-wide by 30-inch-high black panel placed 22 inches from

the end of the table. The experimenter sat between the two panels

and was not visible to either subject. The apparatus, as viewed from
the subject’s side, consisted of two silent operating keys mounted

8 inches apart on the table top and 12 inches from the end of the

table; upon the panel, three milk-glass panel lights were mounted.

One of these lights, which served as the signal for the subject to

respond, was centered between the keys at a height of 17 inches

from the table top. Each of the two remaining lights, the reinforcing
signals, was at a height of 11 inches directly above one of the keys.

1 1
only if 8 > , provided z # > and if » = ) the joint event

A probabilistic theory of causality 19

The presentation and duration of the lights were automatically
controlled. The subjects were not visible to one another and could
not see one another’s responses or panel lights.”
Each pair of subjects was read instructions, of which the following is
an excerpt (pp. 196 —197):
“This experiment is a game in which you will be playing against
each other. The game is similar to a real-life situation in that what
you gain or lose depends not only on what you do, but also on what
someone else — your opponent — does....”

“¢To keep things straight I will call you “Player A” and you
“Player B”'. The experiment for each of you consists of a series of
trials. The top center light on each of your panels will go on for
two seconds to indicate the start of each trial. When this light goes
on, you will each press one or the other of the two keys in front of
you. That is, Player A will press either his A, or his A, key; Player
B will press his B, or B, key. Then wait until one of the lower lights
goes on. If the light above the key you pressed goes on, your
prediction was correct; if the light above the key opposite the one
you pressed goes on, you were incorrect . . ..

‘“ ‘Being correct or incorrect on a given trial depends on the key

* you press and also on the key the other player presses. With some
combinations of your key choice with the other player’s key
choice, you may both be correct; with other combinations, you
may both be incorrect . . ..

“ “Your job, then is to obtain as many correct responses as you
possibly can. ... The trials move along rapidly, and you must
make your key choice as soon as the signal light goes on. That is,
when the signal light goes on, press one or the other key and re-
lease it before the signal light goes off. Then wait until one of the
lower white lights goes on. If the light above the key you pressed
goes on, you are correct; and if the light above the key opposite

[T}

from the one you pressed goes on, you are incorrect’.

¢ The experiment was then carried out as follows (p. 197):

“After the instructions were read, 240 trials were run in contin-
uous sequence. Fifteen reinforcement schedules were used. Each
was constructed randomly, with the restriction of exactly 144
E,'s and 96 E,’s. Both members of a subject-pair received the same
schedule of E,’s and E,'s. Further, once a given schedule had been
used for a subject-pair, it was not used again in that particular
experimental group. Thus, within each group two subjects received
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identical reinforcement schedules; and across groups each schedule

was represented exactly once”.

It is evident from the statement about the number of E; rein-
forcements that the value of n in the experiment was set at .6. Using
a pseudomaximum-likelihood estimate of §; which will not be de-
. scribed here but is discussed in detail in Suppes and Atkinson (1960),
the estimated value of 0 for the data was determined as .19. Using
these values of # and 0, the theoretically predicted and observed rela-
tive frequencies corresponding to the nine conditional probabilities
given in (2) are shown in Table 1.

Because the observed data and the predicted values of the asymptot-
ic quantities are very close indeed, all of the qualitative statements
about prima facie causes derived from the theory also apply to the
experimental data themselves. In the case of P(A,|E;A,) the in-
equality derived earlier is supported by the data, but not as strongly
as theoretically predicted. '

The experimental probability measure used in order to decide
within the second framework of analysis what sort of causality state-
ments are appropriate is not the only probability measure that could
be derived from the experiment, but it is certainly the most common
one. It is the measure that is derived simply from the relative fre-
quency data themselves. Such a measure can be justified as being
the maximum-likelihood estimate of the true experimental prob-
abilities. This is a technical point that need not be expanded upon
here. Because of the large number of experimental observations,
essentially the same probabilities shown as ‘“‘observed” in Table 1
would be obtained by any other standard method of estimation. In
the present instance the experimental probabilities justify precisely

Table 1. Comparison of observations and predictions of the linear model
over the last 100 trials of the experiment

Asymptotic Predicted Observed
P(A)) .600 .596
P(A,lAY) 634 .641
P(A,|A,) .49 532
P(AE)) .676 667
P(A,E,) .486 489
P(A4E A)) 710 715
P(ALEA,) .625 602
P(A,|E,A,) .520 535

P(A|E,A,) 435 A13
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the same qualitative causal statements as the theoretical predictions
shown in Table 1, but in general this would not be the case. It is easy
enough to produce data which lead to a clash between the causal
statements derived from the theory and those observed in a given
experiment.

Let us now turn to the third and most general framework within
which we might apply Definition 1. This is the framework expressing
our beliefs with respect to all information available to us. In the case
of the particular experiment we have been discussing, it is, I think,
hard to derive from our general beliefs any quantitative probabilistic
predictions that would lead to an additional set of causal statements
or causal predictions as an application of Definition 1. On the other
hand, it is easy enough on the basis of general beliefs to have certain
hypotheses about the behavior of subjects, and not to be content
with the evidence offered against these hypotheses, either by the ex-
periment itself or the supporting theoretical analysis. In the present
case, for example, we might hold with many cognitive psychologists
that the kind of reinforcement theory expressed in the linear model is
simply not appropriate for the analysis of human behavior; and
therefore, even though the predicted and observed values shown in
Table 1 are extremely close, a deeper and more adequate general
theory would assume that subjects are using hypotheses that are
being tested and rejected over the course of the experiment. Such a
theory, we might argue, will provide ultimately a more adequate anal-
ysis of this kind of experiment. In particular, we might hold that we
certainly are not prepared to accept the subject’s own preceding
responses as causes of a response. In this case, we might say that even
though the conditional probabilities indicate the appropriate rela-
tions for Definition 1, a better explanation is to be found. That search
for a better explanation takes us to Definition 2, which provides a
criterion for judging prima facie causes as spurious.

Spurious causes.

The intuitive idea of a spurious cause is that an earlier event may
be found which accounts for the conditional probability of the effect
just as well. Formally we have the following preliminary definition.

Let By be a prima facie cause of Ay. Then By is a spurious cause of Ag

~ifand only if there is al” < ' and an event Cy- such that P(ByCy) >0and

%) P(A4|ByCy) = P(A|Cy) -
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It is to be admitted at once that (5) defines spurious causes in too
simple a manner. Subsequently we shall want to elaborate on this
definition. Questions can be raised even about the simplest examples
of the definition. Some discussions argue for an equation in which
By, the complement of By, is included in the defining equation, so
~ that (5) is replaced by

(6) P(A4|ByCy) = P(Ay|ByCy)

provided, of course, that P(B;Cy) > 0. However, under the provi-
sion just made, we may show that (5) and (6) are equivalent, simply
as a consequence of elementary probability theory, and thus we do
not need to bring in the complement of B, in defining the spurious-
ness of By.. To show the equivalence, first let us suppose that (5) holds.
Then from obvious relations for conditional probabilities, we have:

) P(A4|Cy) = P(A{|ByCy) P(By|Cy)
: + P(A¢|ByCy) P(By|Cy)

~ whence, using (5), we have from (7)
(8)  P(AyByCy) (1 — P(By|Cy) ) = P(A4|ByCr) P(By|Cy),

but of course,
1 — P(By|Cy) = P(By|Cy) ,

and so the desired result follows from (8).
Now assume that (6) holds, then from (6) and (7) we have

P(A4|Cr) = P(Aq|B¢Cy) [P(By|Cy) + P(By|Cy))
= P(A¢|B¢Cy),
as claimed.

It is a temptation to make the temporal inequality in the prelimi-
nary definition weak (" < #') rather than strict (' < ) and thereby
permit By and Cg to occur simultaneously. However, it is easy to
show that without the introduction of some other restriction, this
weakening will not do, because it would permit us to show that every
cause is spurious. Let " = {' and let C;» = Cp = By. Then for any
By with P(By) >0

P(A¢|ByCy) = P(A4|Cy) .

Now if we impose the natural requirement that By £ C,, we can still
show any event is spurious if we permit the weak temporal inequality
and if we can find any other event D, distinct from B, such that
P(ByDy) > 0; for we may then take
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Ct’ = Bt' N Dt' ’
and obviously (5) holds for this definition of C;, because
Cy = By N Cy.

However, this last example suggests a real defect of the preliminary
definition. Suppose that

P(A¢|By) > P(A4|ByCy) .

It hardly seems reasonable to call By spurious when it alone predicts
the occurrence of A, with higher probability than does the joint event
By N Cy. 1t is apparent that this inequality is consistent with the
preliminary definition. In the revised definition it seems intuitively
sound to require that its negation hold, i.e., to impose the weak in-
equality

P(A¢|BeCy) = P(A4|By) .

Even with the inequality imposed it still seems desirable to impose
the strict inequality ¢” << #'. The reason for this is that we would
make spurious any causes that are not maximal if we permitted
t" = t'. Thus, for example, if B, were a prima facie cause that was
not spurious in the sense being defined, but if there were an event
Cy such that By £ Cp, P(ByCy) > 0 and

P(A;|B:Cy) > P(Ay4|By),

then B would not be the maximal cause of A; at time #’. It seems
clearly desirable, however, to distinguish spurious from nonmaximal

- causes. These various remarks about spurious causes are brought

together in the following definition.

Definition 2. An evenl By is a spurious cause in sense one of A, if
and only if By is a prima facie cause of Ay and there is a I" < ' and
an event Cy such that

(i) P(ByCy) >0,
(ii) P(A¢|ByCp) = P(A4|Cy),
(iii) P(A¢B(Cy) = P(A4|By) .

I am still not certain that the three conditions of Definition 2 are
precisely the right ones. I am particularly uneasy about (ii), be-
cause there seem to be some arguments in favor of replacing it by
the inequality

P(AByCy) < P(AdCy) ,
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so that By is spurious if the other conditions are satisfied and the
occurrence of By after C;- actually lowers the probability of A,
When the strict inequality holds, one is inclined to call By a negative
cause of A, after the earlier occurrence of Cy, rather than a spurious
cause. My intuition is that spurious should mean no real influence at
all, either positive or negative, and therefore I shall stand by condi-
tion (ii) for the present, but with no strong feeling of correctness about
the decision.

We may define a prima facie cause that is not spurious as genuine.
Familiar examples of both spurious and genuine causes are easily
produced. Some simple artificial examples may be clarifying. Con-
sider first the three-state Markov chain whose transition matrix is

n+1
n \ 0 1 2

0 0 1/2 1/2

1 1/3 0 2/3

2 1/4 3/4 0.
Here every prima facie cause is genuine. Now consider the transition-
matrix /

0 1 2

0 0 1/2 1/2

1 1/4 3/4 0

2 1/4 0 3/4.

The process has the Markov property; but according to Definition 2,
and also, I believe, according to intuition, the event of being in either
state 1 or state 2 is a spurious cause of being in state 0 on the next
trial, because P(0,) = .2 as n —> oo and

P(on“n—lon-z) = P(0n|2n-10n-z) = P(onlon-z) = 1/4-

I realize that the application of causal terminology to these simple
Markov examples makes some people uneasy, and I shall want to
explore this problem in some detail later. For the moment I remark
only that this uneasiness probably comes from the very strongly felt
need to identify what seem to be ultimate causes and not to use
causal terminology at all in dealing with processes that intentionally
catch only a partial aspect of the real world.
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A deeper problem may be raised about Definition 2 and its intuitive
adequacy for characterizing spurious causes. Definition 2 makes a
prima facie cause spurious if there exisfs an earlier event that glijyi-
nates the effectiveness of the cause when that event occurs. ﬁ'l):lid'g
that condition (iii) imposes a rather strong constraint on this earlier
event. But an intuitively appealing alternative approach is to drop
(iii) and demand a partition of the past before the spurious cause such
that for every element in the partition, conditions (i) and (ii) hold.
Intuitively this amounts to requiring that jf we can observe a certain
kind of earlier event, t__hgx knowledge of the spurious cause is predic-
tively uninformative. The existential requirement is now moved from
a demand for an event to a demand for a kind of event or property.
For formal purposes we note that a partition of the sample space or
universe is a collection of pairwise disjoint, nonempty sets whose
union is the whole space. For our purposes we shall also require that a
partition s, consists of events that can be defined by references to
times no later than t.

Definition 3. An event By is a spurious cause of A in sense two if
and only if By is a prima facie cause of A, and there is a t” < t' and a
partition sy such that for all elemenls Cy- of 7

(i) P(ByCe) >0,
(i) P(A¢|ByCy) = P(A4|Cy).

It is probably intuitively evident that spuriousness in sense two
implies spuriousness in sense one, but explicit statement and proof
of the theorem are perhaps desirable.

Theorem 1. If evenl By’ is a spurious cause in sense two of Ay, then
By’ is a spurious cause in sense one of A,.

Proof: What we need to prove is that the two conditions of Def-
inition 3, holding as they do for all events C;- that are clements
of the partition s, imply that for some C;- in &~ condition (iii) of
Definition 2 is satisfied. The simplest proof seems to be a reductio ad
absurdum. Suppose that for every Cg- of my- ’

(9) P(Ay|ByCr) < P(A4|By) .
Now by elementary probability theory

1
P(Ay|By) =

Z P(A¢|By-Cy) P(By|Cer) P(Cyr)

t') at~

whence using (9)

rue’

.
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P(A,|By)
o | 2. PBHICAP(Cy)
P(Br)

< P(A¢By) ,

P(A4|By) <

P(By)

which is a contradiction. Q.E.D.

It is easy to construct examples to show that the converse of the
theorem does not hold.

It may be worthwhile to examine the application of Definition 3
to the linear learning theory considered earlier. Perhaps the most in-
teresting conceptual point is whether earlier responses become spuri-

ous causes of later responses. We know from our earlier ana at

Ay 15 @ prima facie cause of Agny1, and this result can be easily
generalized to show that Ay, is a prima facie cause of Ayp for
m < n. As has already been indicated, the intent of the linear learn-
ing theory with the single parameter 0 is to make only reinforcements
causally relevant. A direct application of Definition 3 would suggest
that we look at the partition made up of the two events Ej,,.1 and
E3 ».1. Condition (iv) is readily satisfied in the context carried over
from our earlier discussion (noncontingent reinforcement with = =
.6 and 0 estimated as .19). In particular,

P(AynEfna) >0

for i, j = 1, 2. But the cquality expressed in condition (v) is not
satisfied in either of the two possible cases. Fori = 1, 2

(10) P(Ann|AgaEqn1) > P(Agat1|Egn-)-

The veritication of (10) involves tedious arguments in terms of in-
equalities and will therefore be omitted here.! Thus, contrary to
our initial hope, Ay, has not been shown to be spurious.

The general assumption about events thus far has been that they
are instantaneous. However, any serious probabilistic analysis must

1 For example, at asymptote,

P(A 1.n+liAl.nEl.n«l) =

1 (1— 0 [271(1—6) +6)
(1—~0)n+0! 2—0

+ [26(1—0)t - 8x(1—0)|n + 83(1—g) -+ 027

and
P(Ay,n41)E1,n1) = (1= 07 +6(1—0) + 0z
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deal with joint events like Ay, 5E1,n.1 Which occur not at an instant,
but only if the appropriate atomic events occur at n and n-1, In other
words, we assume that the class of instantaneous events is closed
under intersection and complementation of events, which themselves
may occur at different times. Keeping these remarks in mind, we
may search for much more elaborate partitions of the past in order
to render A; , spurious. The natural partition to consider is the finest
one possible that may be defined solely in terms of the reinforcements
preceding Ay 5. In this case, we shall not initially analyze the situa-
tion at asymptote, for as n - oo, P(ry) =0 for every z, and
therefore it is not possible to satisfy condition (i) of Definition 3.
For the noncontingent reinforcement schedule we are considering,
as long as 0 < &, 6, P(Ay3,1) < 1, it is straightforward to show that
for every zg,n.1 and for i =1, 2

(11) P(AynTEn-1) >0
and
(12) P(Ayn1lAi,0%E,n1) = P(Ag n+11TE,n 1)

where Tg .1 is the equivalence class of past histories z'5.1 all of
which have exactly the same reinforcement sequence as z,.1. In
other words Zg, -1 is a unique sequence of reinforcements from trial
1 to trial n-1. On the basis of (11) and (12) we may then assert that
Ay,p is a spurious cause in the second sense of A pi1.

What about the asymptotic case? The intuitive situation seems
clear. As we consider longer and longer finite strings of preceding
reinforcements, the effects of the immediately preceding response
become smaller and smaller. This intuition may be shown to be
correct, and it suggests a useful generalization of Definition 3. We
may define an event as an e-spurious cause of A; when its effegt on
the probability of occurrence of the event A; is less than e.,This
definition permits us to rule out as significant genuine causes events
that play only a minor role.

Definition 4. An event By is an e-spurious cause of A if and only
if there is a t” <t and a partition s such that for all elements Cy-
Of b 24

@ ! <t,
(ii) P(By) >0, : )
(i) P(AdBr) > P(Ay),
(iv) P(ByCy) >0,
(V) |P(A¢|ByCy) — P(AgCr) | <ee.
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In terms of this definition we may show in the asymptotic learning
case that for any € > 0 there exists a partition of strings of imme-
diately preceding reinforcements of finite length which show that
Ay¢,n is an e-spurious cause of Ay 4.

It is also easy to think of many physical examples of causes that
are e-spurious for very small epsilon. Although the explicit considera-
tion of quantitative variables is outside the framework of this section,
classical examples of e-spurious causes are to be found in the theory
of motion of the planets. The moons of Jupiter, for example, are
e-spurious causes, for extremely small €, of the motion of Earth, or
any of the planets except Jupiter. They are even e-spurious causes
of the motion of Jupiter for fairly small e.

Tacit use of the concept of e-spurious causes is essential to many
branches of science in designing and appraising the outcome of ex-
periments aimed at testing theories. It is important to distinguish
e-spurious causes from random errors of measurement and sampling.
Random errors of measurement and sampling do not lead to rejection
. of a theory but provide a framework for showing how discrepancies
between observed and predicted results may be explained. Causes
that are e-spurious, on the other hand, do lead to rejection of the
theory or hypothesis in question under any strict interpretation of
the statistical analysis of the data; but when € is small, we know that
the discrepancies unexplained by the theory are of relatively small
order. In many practical cases, information about the magnitude of
€ is much more important than the knowledge that a theory is sig-
nificantly deviant from the facts. (For an empirical application of
these ideas see Suppes and Rouanet (1964), and for a working out
of the statistical theory, Kraemer (1965).)

Direcl causes.

The concept of an indirect cause is of less importance but similar in
structure to the concept of a spurious cause. In this case, however,
it is somewhat more natural to define direct rather than indirect
causes. Of course, a prima facie cause is indirect if it is not direct.

Definition 5. An evenl By is a direct cause of A, if and only if By
is a prima facie cause of A, and there is no t" and no partition -
such that for every Cy- in oy

O t<t<t,
(ii) P(ByCy) >0,
(iii) P(A¢|CrBy) = P(A4|C).
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The conditions of Definition 5 are almost precisely those of Definition
3 except that now timne t” comes between { and ¢’ rather than before ¢

Indeed, the symmetry of the conditions in Definitions 3 and 5 sug-
gest that causes By and Cy of A, with & < t’, could have the fol-
lowing relation. Event By is a spurious cause of A; because of the
prior partition {C;, Z‘:}, and concurrently C, is an indirect cause
of A, because of the later partition { By, By}. If this line of reasoning
worked, one has the feeling we might be able to show that in many
circumstances there is a natural linking of spurious and indirect
causes. The following theorem shows, however, that this cannot
happen.

Theorem 2. Let By and Cy be prima facie causes of Ay, with t" << ',
Then it cannot be the case that jointly Cy is an indirect cause of Ay
because of the partition {By, B‘:}, and By is a spurious cause (in sense
two) of Ag because of the partition {Cy-, Cyp}.

Proof: To simplify notation I drop the temporal subscripts in the
proof. I derive a contradiction from the hypothesis that C is an

indirect cause of A because of {B, E} and that B is a spurious cause
of A because of {C, C}. From the hypothesis about C we have

1 P(A|BC) = P(A|B),
@ P(A|BC) = P(A|B);
and from the hypothesis about B we have

3) P(A|BC) = P(A[0),
) P(A|BC) = P(A|C).

From (1) and (3), and the hypothesis that B and C are prima facie
causes of A, we have

(3) P(A|B) = P(A|C) > P(A).

From elementary probability theory

®) P(A|C) = P(A|BC)P(BIC) + P(A|BC)P(BIC),
which, using (3), we may rewrite

) P(A[C) (1 — P(B|C)) = P(A|BC) (1 — P(B|C)).

Now from the joint hypothesis about B and C, and the definitions of
spurious causes and direct causes, we have

® P(BC), P(BC), P(BC) >0,
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whence from (7) and (8) we infer

© P(A|BC) = P(4]0),
but then from (2) and (9

(10) P(A|C) = P(A|B),

" but since
P(A|B) > P(4),

we must have, in view of (8),

(n P(A|B) < P(4),
and so from (10) and (11)

P(AIC) < P(4),
which contradicts (5). Q.E.D.

Direct causes that have any degree of remoteness in time violate
Hume’s criterion of contiguity. The existence of such causes has been
‘a subject of debate, dogma, theory, and experimentation in almost
every branch of human thought. Within physical theories the idea
of direct causes remote in time has not been as prominent as analysis
of the problem of action at a distance — with the action being pro-
mulgated instantaneously. However, the theory of relativity has made
any sharp separation of spatial remoteness from temporal remoteness
impossible, because the concept of instantaneous action at a distance
is not relativistically meaningful. It should be emphasized, however,
that the concept of direct remote causes is quite consistent with
relativity; and the definitions given can be modified to become rela-
tivistically invariant, although I shall not pursue this technical point
here. But as Maxwell pointed out many years ago, most of us are
particularly bothered by remote direct causes, once remoteness in
both space and time is required by finite speeds of propagation of
energy. This is what he said in the final paragraph of his Treatise
on Eleclricily and Magnetism (3rd edition, 1892).
“But in all of these theories the question naturally occurs: —
If something is transmitted from one particle to another at a
istance, what is its condition after it has left the one particle and
before it has reached the other? If this something is the potential
energy of the two particles, as in Neumann’s theory, how are we
to conceive this energy as existing in a point of space, coinciding

ML}%%
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neither with the one particle nor with the other? In fact, whenever

energy is transmitted from one body to another in time, there

must be a medium or substance in which the energy exists after
it leaves one body and before it reaches the other, for energy, as

Torricelli remarked, ‘is a quintessence of so subtile a nature that

it cannot be contained in any vessel except the inmost substance

of material things.” Hence all these theories lead to the conception
of a medium in which the propagation takes place, and if we admit
this medium as an hypothesis, I think it ought to occupy a prom-
inent place in our investigations, and that we ought to endeavour
to construct a mental representation of all the details of its action,
and this has been my constant aim in this treatise.”
The conceptual viewpoint expressed by Maxwell is so persuasive
that most physical theories were field theories rather than action-at-a-
distance theories, once electromagnetic concepts came to the fore.
Although this is true in physics, it is profoundly not true in many
other parts of science, especially any part that emphasizes historical
knowledge of the phenomena studied.

It is a widespread scientific dogma that all aspects of historical
knowledge can be replaced ultimately and in principle by a suffi-
ciently deep structural knowledge of the current state of the phenom-
ena in question. This is the dogma so well expressed in the famous
quotation of Laplace mentioned earlier. The depth of general con-
viction that this dogma asserts a fundamental truth about the char-
acter of the real world is difficult to overestimate.

In terms of distinctions already drawn the matter can be put this
way. Within many theoretical or strictly experimental frameworks
the existence of direct remote causes will be affirmed with great
certainty and assurance; but within the framework of fundamental
beliefs about the general character of the universe their existence
will be strongly denied.

An example whose general nature is familiar to everyone may be
drawn from psychiatry. Almost all psychiatrists, whether or not they
are followers of Freud, will assert that early childhood experiences
causally determine major aspects of the character and nature of every
adult human being. For practical purposes various kinds of knowledge
about the past childhood of an adult are regarded as useful in under-
standing his current behavior and in making qualitative predictions
about his future behavior. However, it is unlikely that any psy-
chiatrist believes that a direct unmediated link with the past of

3
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several years earlier is the causal mechanism. Rather, almost certainly
everyone believes in at least a vague way that if the current states of
the memory, of other parts of the nervous system, and of other organs
of the body were known and understood in a theoretical way, then
knowledge of the past by other means of observation could be dis-
-pensed with. There rightly is considerable skepticism of carrying out,
in anything like the framework of contemporary science, the fun-
damental investigations required for this structural knowledge. But
just as rejection of action at a distance was a fundamental tenet of
Cartesian physics in the seventeenth century, embraced even by

. Newton, so is the rejection of remote temporal action a fundamental
tenet of almost all contemporary views of the universe.

If the assessment of the extent to which remote temporal action is
rejected is approximately correct, it is appropriate to ask why a con-
cept of remote direct causation is needed. The best answer perhaps can
be given by looking at the comparable status of the concept of prob-
ability in the nineteenth century. Laplace’s famous statement on the

" deterministic character of the universe was made in his treatise on
probability, not, as one might expect, in his treatise on celestial

‘mechanics. For Laplace, probability was a tool' of analysis and pre-

_- diction which enabled scientists systematically to take account of
their ignorance of complex causes. The concept of remote direct
causation is a tool of a similar kind and is essential for practical and
scientific analysis of many sorts. Its usefulness will not disappear in
the foreseeable future in disciplines ranging from political history
to meteorology.

A simple theoretical example of remote direct causation may be
found in linear learning theory. For the noncontingent reinforcement
schedule with 0 < 6, m, P(A1,1) < 1, we may show that for every

~m < nand fori =1, 2 E¢, is a direct cause of Ay, in the sense of
Definition 5. Qualitatively a remote reinforcement has a direct causal
effect, but quantitatively an important aspect of the remoteness is
that the effect of the remote cause decreases essentially geometrically,
where the parameter of the geometric distribution is 1 — 6. As an
example that is algebraically simple, if k > h then

P(A; n|Er,n1E1,n-2- - - Eyn k) — P(Ay,nlE1,n-1E1,0-2 - - E1,n-1)
= (1m) [(1-6)% — (1-B)].

In the case of linear learning theory the simple concepts of response
and reinforcement used are not structurally rich enough to permit us
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to define a memory mechanism in which the current residual effect
of past reinforcements might be stored. Looked at another way, the
theory is too simple to enable us to define any methods of memory
reduction of the past. The unique past Zg , of reinforcements is
need¢WTor the most precise prediclions of response behavior,

On the other hand, the geometrical fading away of the past suggests
an e-lype definition of direct cause. A cause is e-direct when its

irreducible effect is greater than or equal to e with respect to any later

%tl_t{l_/_on. The formal delinition requires a change only in the final
condilion of Definition 5.

Definition 6. An event By is an e-direct cause of A; if and only if
By is a prima facie cause of Ay and there is no 1" and no partition ny
such that for every Cy in my

i r<t<t,
(ii) P(B;Cy) >0,
(iii) | P(A¢|Cy-Br) — P(A¢|Cr)< e

The relation between Definitions 5 and 6 may be expressed in the
following theorem whose proof is obvious.

Theorem 3. If for some € > 0 an event By is an e-direct cause of Ay,
then By is a direct cause of Ay, but the converse does not hold in general.

Supplementary causes.

Related to the notion of a direct cause is the concept of two prima
facie causes supplementing each other in producing a given effect.
Definition 7. Events By and Cg are supplementary causes of A; if
and only if
(i) By is a prima facie cause of Ay,
(ii) Gy~ is a prima facie cause of Ay,
(iii) P(B¢Cyr) > 0,
(iv) P(A¢|ByCy) > max (P(A¢|By), P(A|Cy)).
Note that the definition does not require that times t' and {* be
distinct, although in many cases they will be. A simple example of
supplementary causation is provided by linear learning theory. Like
reinforcements work together as supplementary causes. Thus, for
every trial n, reinforcements E;,.; and Ey,._2 are supplementary
causes of Ay, .

In analogy with Definition 6, we can also define e-supplementary
causes.
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Definition 8. Events By and Cy are s-supplementary causes of A,
if and only if ‘
(i) By is a prima facie cause of Ay,
(ii) Cy- is a prima facie cause of A,,
(iii) P(B¢Cy) > 0,
(iv) P(A4|ByCy) — max (P(A¢|Br) , P(ACe)) = e,

In many practical contexts we are interested only in e-supplementary
causes, i.e., causes which combine to yield a significantly better
quantitative prediction of the occurrence of a given event. Medicine
provides many such examples. For instance, in the case of many
diseases the quantitative study of the body temperature of patients
would no doubt yield statistically significant but not e-significant
predictions about the course of the disease.

Sufficient causes.

As a limiting case of the probabilistic analysis given here, we may
- define sufficient or determinate causes as causes that produce their
effects with probability one. '

Definition 9. An event By is a sufficient (or determinate) cause of
Agif and only if By is a prima facie cause of Ay and

P(AyBy) = 1.

Casual inspection of the definition of spurious causes suggests the
speculation that in a chain of sufficient or determinate causes only
the first member of the chain is a genuine cause, if, indeed, there
is a first member. If this speculation were correct, if the universe
were without beginning and Laplacean in character, we would be
faced with the conclusion that there are no genuine causes. It is not
to the point in the present context to deny this paradoxical conclusion
by denying that the universe is .aplacean. As I emphasize throughout
this monograph, the theory of causality advanced here is not meant
to be tailored to the latest physics. It is designed to provide a frame-
work for the analysis of causality in a wide variety of theories and,
hopefully, in a way that will usually fit the intuitions about causality
that go with a given theory.
* The spectre to be laid to rest here is that because

P(A(|By) = 1
and also
P(A|Cr) =1,
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with (" <2 ', we must have a determinate cause like B, be spurious.
The following theorem shows that this can never happen.

Theorem 4. No sufficienl (or determinale) cause can be spurious
(in sense lwo).

Proof: To make the proof complete, the first thing to prove is a
relatively familiar fact about conditional probability.

(1) If P(A|B) = 1 and P(BC) > 0 then P(A|BC) = 1.
Suppose, by way of contradiction, that
2) P(A|BC) < 1.

Now from (2) and the definition of conditional probability, we
have at once

3) P(ABC) < P(BC).
Adding P(ABC) to both sides of (3) and simplifying we have
“) ' P(AB) < P(BC) + P(ABC) .

We now take conditional probabilities with respect to B, and divide
both sides of (4) by P(B), for by the hypothesis of (1), P(B) >0,
and thus we obtain
P(A|B) < P(C|B) + P(ACIB),
but
P(C|B) + P(AC|B) < 1

and by hypothesis of (1)
PAB)y =1,

whence we have derived the absurdity that 1 << 1. Thus (1) is
established.

Now assume that By is a sufficient cause of A, and suppose,
contrary to the theorem, that there is a partition m;- that renders
By spurious according to Definition 3. Then by virtue of (1), for
every event Cy- in my-,

()] P(Ay|ByCe) = P(AJCy) = 1,
but then since ‘
P(A) = > P(Ai|Ce) P(Ce)

"”
we have that
PA) == 1,
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which contradicts the hypothesis that B, is a sufficient cause of A,
and thus that By is a prima facie cause of A, for the definition of
prima facie cause requires that

P(A4|By) > P(Ay) . Q.E.D.

The most crucial assumption in the proof is the requirement of
Definition 3 that for every event Cy- in ;-

P(ByCy) >0.

An omniscient God might object to this aspect of the definition of
spurious, but for limited human knowers it seems wholly defensible.
What must be recognized, of course, is that in dealing with deter-
ministic classical physics a probability measure must be imposed
from outside that framework itself even to apply the definitions. For
the classically minded it is easy enough to provide that interpretation
in terms of the Laplacean idea that probability is the expression of
ignorance. Only a God who knows everything would have a distri-
bution that assigns only probability one or zero to any event, and
only such a distribution could never satisfy the conditions of Def-
inition 3.

-The causal concepts introduced thus far by no means exhaust the
list of essential distinctions, nor have the relations holding between
the concepts been pursued as thoroughly as possible. If the direction
of analysis that has been started is correct, then what is needed is a
work of larger scope replete with scientific examples drawn from
many domains.

There is also need for a more systematic general theory of causality
than I have been able to set forth heve. It is clear that the definitions
introduced thus far and related definitions not stated here may be
used to classify stochastic processes in terms of their causal properties.
For example, any process that is a chain of infinite order will contain
direct causes of unbounded temporal remoteness. In any Markov
process that is not of zero order, some events must have genuine
prima facie causes; but in many continuous-time Markov processes
there are no direct causes at all. In other words, from the standpoint
developed here the general theory of causality, in its mathematical
aspects at least, is a theory about the causal classification and
characteristics of stochastic processes.

The definitions of prima facie causes and the like given above
correspond closely to what is either explicit or implicit in the investi-
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gation of causal relations in the more empirical branches of science.
From a philosophical standpoint many different sorts of objections
may be raised about the adequacy of these definitions. The more
general issues are discussed later. Two objections, however, of a
more narrow scope and greater definiteness have been brought to
my attention by my students, Edward Bolton and Deborah Rosen.

Concepl of occurrence. The first objection is to having as causes or
effects events that did not occur. In ordinary contexts, when we say
that B is a cause of A, we take this assertion to imply that at the
very least B and A actually occurred. In the standard set-theoretical
versions of probability theory used as a conceptual framework in
the discussion thus far, there is no way to indicate the actual oc-
currence of an event™#liss Rosen gave the following example to
show the reason for insisting on some notion of occurrence. Accepting
the current data about the relationship between smoking and lung
cancer, we might very well be led to say that John’s smoking three
packs a day of unfiltered cigarettes in his teen years is a prima facie
cause of his getting cancer at the age of 60, but then John may die
prematurely in his twenties as the result of an automobile accident.
Our causal statement then seems peculiar in terms of ordinary
distinctions, although if we replace ‘is’ by the subjunctive ‘may be’,
and thus say that smoking may be a cause of his getting cancer, the
demand for the actual occurrence of either cause or effect is much
weakened. I expand on this matter later.

/\ 1 have remarked elsewhere (Suppes 1966) that this inability to ex~

press what actually occurs is a difficulty for Bayesian theories of
rational beliefs and rational change of belief. The typical Bayesian
attitude is to say that new information is absorbed by condition-
alization on the event That occurred. In the artwlMLeugd to 1
try to give some reasons why conditionalization is not a sufficient
device. At a logical level there 1s a different point to be made. It is
that the mere ability to pass from a probability measure P to a con-
ditional measure P4 does not provide a method of indicating that
the event A rather than, for example, event B occurred. An additional
formal apparatus must be added to the standard axioms of probability
to express systematically the idea of an event’s actually occurring.
Some axioms of occurrence have been given by Domotor (1969) for
another purpose, and it is easy to derive his axioms from those given
below, but not conversely. It is obvious that the concept of the oc-
currence of an event is formally similar to the concept of & prupUSl—

—
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tion’s being true. The four axioms given below assume the algebra of
evenls as given in the usual set-theorclical fashion. The new ad-
ditional concept of occurrence is expressed by a one-place predicate
©. From the four axioms we can derive Huntington’s five axioms
(1934) for formalizing the “informal” part of Whitehead and Rus-
sell's Principia Mathematica (1925). The predicate ‘@ corresponds to
his predicate ‘C’, where C(z) is interpreted to mean that proposition
x is true,
Axioms of Occurrence

Aziom 1. If ©A then @(A U B).

Azxiom 2. If ®A and @B then Q(A N B).
Aziom 3. OA or OA.

Aziom 4. If ©A then it is not the case OA.

I shall only prove two theorems about these axioms.

" Theorem 5. The Axioms of Occurrence imply Huntinglon’s eight
axioms.

Proof: His first three axioms are closure axioms that are immedi-
ately satisfied. Since A UB = BU A, we infer at once that if
‘ O(A U B) then ©(B U A), which is Huntington’s fourth axiom. His

" Axiom' 5 is just Axiom 1 here. His Axiom 6 asserts that if @A then
it is not the case ©A, but this is just the contrapositive of Axiom 4

above. His Axiom 7 asserts that if it is not the case @A then OA,
and this is equivalent to Axiom 3 above.
His Axiom 8 may be expressed in the notation used here as follow

(1) If &(A U B) and G(A) then @B.

To derive (1) from the axioms given here it is convenient first to prove:
2) If (A U B) then @A or OB.

Suppose the consequent is false. We then have

not ©A and not @B,
whence by Axiom 3

©A and OB,
and thus by Axiom 2

6(A N B).
Since AN B = A_U——& we can then infer

6(A U B),
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which together with Axiom 4 and the hypothesis of (2) yields a
contradiclion. Thus (2) is established. We may now immediately
derive (1). From the hypothesis that ®(A U B) and (2) we infer

OA or @B,

and from the hypothesis OA by Axiom 3, not @A, whence by follendo
ponens, OB, as desired. Q.E.D.

Huntington proves a large number of theorems from his axioms
that will not be discussed here. It is worth remarking, however, that
the following four theorems correspond to four of the five axioms for
the propositional calculus given by Whitehead and Russell. (Their
fifth axiom was derived from these four by Bernays.)

@((A_U;i) U 4)

64 U (4 U B)

6((A U B) U (B U A))

O[(A UB) U [(CU A) U (CU B)]).

The proofs of these four assertions in the present context are quite
simple. They just depend on noting that @X follows at once from

Axiom 1 and that each of the events, such as A U A U A, is identical
to X.

Because the explicit need for a concept of occurrence is not usually
admitted in discussions of the foundations of probability, and because
some philosophers might want to try to define the concept of occur-
rence in terms of causal concepts (a 'similar sort of thing has been
tried — without formal success — for the direction of time), an
explicit impossibility proof seems desirable.

Theorem 6. The concepl of occurrence satisfying Axioms 1 —4 above
is not definable in ferms of standard probabilily concepts. Moreover,
it is not definable in terms of the causal concepts sel forth in Definitions
1—8.

Proof: The standard formal theory of probability is stated ex-
plicitly in the Appendix in Definitions A1—A17, but no formal
details are needed for the proof. We use Padoa’s method for proving
the independence of concepts (for an exposition, see Suppes (1957,
Chapter 8)). Take any probability space X = (X, &, P) in which X
has more than one element, say a and b. In both models keep X, &,
and P fixed. In one model, for any event A in &, @A if and only if

+ a €A, In the second model for any event A in §, @A if and only if
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b e A. Obviously both © and @’ will satisfy the Axioms of Occurrence,
but @ # @', and thus O is not definable in terms of X, & and P.

Because all the causal concepts of Definitions 1 —8 are definable
in terms of a fixed probability space, by the argument just given
these causal concepts also cannot be used to define 0. Q.E.D.

As part of the definiens we may add to the causal definitions
previously given the clause that the two events in question, namely,
the cause and the effect, both occurred, although reasons for not
doing this are given below.

There is a rather interesting question about the theoretical use of
the notion of occurrence. In the kind of theoretical application
considered earlier in which the theory is applied to a linear learning
model, it might be objected that in such theoretical investigations no
notion of occurrence is required. It seems to me that the point is
moot, and in any case, no harm is done by introducing into the
formal definition the requirement that the cause and effect both
occur. In making causal statements in a theoretical framework we
may always make them explicitly conditional: if the events in
question occur then so and so will be the case. For example, instead
of simply saying that A, , is a prima facie cause of Aj1,n+1, We may
wish to make the more restrictive statement: If A; , and Aj 51
occur, then A; , is a prima facie cause of Ay ,41. It is also convenient
to omit the explicit occurrence requirements, even as an hypothesis,
and simply say that By is a polential prima facie cause of A;. When
both events occur the potential becomes actual.

I have already remarked on the possible use of the subjunctive
rather than the indicative to avoid problems of occurrence. There is
much in ordinary usage to sanction this change. Many readers
probably would be more comfortable if in the initial definition of
prima facie causes (Definition 1), ‘is’ were replaced by ‘may be’, or,
as another solution, ‘cause’ were replaced by ‘causal tendency’. Still
another alternative is to replace ‘prima facie cause’ by ‘potential
prima facie cause’. However, the search for an exact match to
ordinary usage can be difficult to terminate. For example, in much
ordinary usage existence of the events, or at least of the potential
cause, seems implied even when the subjunctive is used. A wife says
to her husband, ““Eating too many clams may be the cause of your
stomachache.” We immediately infer that indeed the event of eating
clams has occurred, and the may be refers to uncertainty, or at least
politeness, in making a causal claim.
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The language of pofential causes may be the most reasonable
formulation, especially if it is usually coupled with interpretation of
the algebra of events as kinds of events rather than as particular
happenings. The extensive use of kinds or classes of events rather
than individual events in many scientific investigations of causal
relations is one of the strongest arguments against introducing the
concept of occurrence explicitly in the formal definitions. More is
said on this point in Section 6.

It is beyond the scope of my endeavor here to push these con-
siderations further, but they certainly do warrant a much more
careful analysis than I have given them. Having discussed the logic
of occurrence this extensively, I shall subsequently ignore it except
for an occasional aside. ,

Improbable consequences. The second objection raised by Mr.
Bolton and Miss Rosen is more fundamental and more important to
deal with directly in the standard probability framework. The
objection is of the following sort. A course of events may begin, in
the middle of which a curious event may occur with improbable
consequences. From an intuitive standpoint the curious event that
occurred in the middle of the course of events is actually the cause of
a subsequent event but not one that we would have admitted as
being a cause if we had evaluated the probability of occurrence at
the beginning. By the “beginning” I mean at least a time no later
than the actual occurrence of the event to which causal powers are
are being attributed. There is a tangle of problems here and it will be
important to be explicit in the analysis.

To modify slightly Miss Rosen’s example, suppose a golfer makes a
shot that hits a limb of a tree close to the green and is thereby
deflected directly into the hole, for a spectacular birdie. l.et the event
to be explained, A, be the event of making a birdie, and let By be
the event of hitting the limb earlier. If we know something about
Mr. Jones’ golf we can estimate the probability of his making a
birdie on this particular hole. The probability will be low, but the
seemingly disturbing thing is that if we estimate the conditional
probability of his making a birdie, given that the ball hit the branch,
that is, given thal event B; occurred, we would ordinarily estimate
the probability as being still lower. Yet when we see the event
happen, we recognize immediately that hitting the branch in exactly
the way it did was essential to the ball’s going into the cup.

Two different observations may be made about this kind of
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example. The first is that By can be a prima facie cause of A4, i.e.,
' < tand '

P(A,;|By) > P(Ay),
_and yet an event Cp-, with t' <C {" < t, may occur such that

P(A4|Ce By) < P(Ay).

A simple numerical example of this phenomenon is the following.
Let the conditional probability of A orA be given by the matrix

A A
BC 4 6
BC 9 .1
BC | 5 5
BC | 6 4

and let the conditional probability of C or C be:

C C
B 5 5
B 5 5

and let P(B) = .5. Then it is easy to check that P(A) = .6, P(A|B)
= .65 and P(A|BC) = .4. It is important that the occurrence of
C and the reduced probability of A occurring does not render I3 a
spurious cause. The difficulties of accurate economic, political or
social predictions from an analysis of potential causes are to a con-
siderable extent due to the continued intrusion of unanticipated
events. This is just another way of saying that our theoretical
analysis of causal structures in these domains is as yel rather super-
ficial.

The second observation is this. The definitions of causal concepts
given can easily be relativized to conditional probabilities expressing
some background information. Thus Definition 1 could be changed
to read: By is a prima facie cause of A, with respect to the informa-
tion Cy if and only if

(i)' < I,
(ii) P(ByCy) >0,
(iii) P(A¢|BpCy) > P(A|Cy).
Such relativization can be useful, especially in theoretical contexts.
In practical applications if €y has occurred, then we may insist that
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M P(Ag) = P(A4|Cy),

from the requirements of coherence on the probability measure P
that takes account of this occurrence. This measure P must satisfy the
following additional axiom of occurrence:

If 0A then P(A) = 1.

From this axiom, the theorem on total probability and the assertion
that C occurred, (1) follows immediately!.

This axiom was not stated as part of the general axioms of occur-
rence, because in theoretical contexts especially the measure P
remains the same regardless of what events actually occur. Indeed,
if we simultaneously adopted this axiom and the requirement that
both A; and By must occur in order to assert that By is a prima facie
cause of A;, the probabilistic viewpoint of this monograph would not
be applicable, because we would then have P(A4;) = P(By) = 1.
Of course, if A; and By are interpreted as kinds of events, even after
the fact the probabilities are not one, but are estimated relative
frequencies or posteriori Bayesian estimates, and direct problems of
occurrence do not arise.

Negalive causes.

In the literature of causality there has been a fair amount of dis-
cussion of negative causes. It should be clear how prima facie and
genuine negative causes can be defined in purely prebabilistic terms.
The intuitive idea of a negative cause is that it tends to prevent an
event from happening, and this concept can be expressed by little
more than the reversal of inequalities in the earlier definitions.
Formally, I consider only prima facie negative causes.

Definition 10. The event By is a prima facie negative cause of A,
if and only if

it <t
(ii) P(Br) >0,
(i) P(ABr) < P(Ay).

To us an example discussed earlier, inoculation is a negative cause of
cholera, or, to put the matter in explicit event-language, the event of
being inoculated for cholera is a negative cause of the event of getting

1 This discussion is related to the problem of total evidence in inductive
inference. IYor a more detailed statement see Suppes (1966).
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cholera. To generalize on this example, the theory and practice of
preventive medicine concentrates on certain types of negative cau-
sation.

Because events form a Boolean algebra, it is easy to give a neces-
sary and sufficient condition on events’ being negative causes in
terms of their complements’ being causes.

Theorem 7. By is a prima facie negative cause of A, if and only if
By is a prima facie cause of Ay,

Proof: Assume first that By is a prima facie negative cause of A;.
We note first that (omitting subscripts in the proof)

) P(A) = P(A|B)P(B) + P(A|B)P(B),
whence on the assumption that

) P(A) > P(A|B),

we must have A

® P(B) >0,

for otherwise we would have P(B) =1, and therefore P(A) =
P(A|B). It then follows at once from (1), (2) and (3) that

P(A) < P(A|B),

whence B is a prima facie cause of A.

The argument in the other direction is analogous and will be
omitted. Q.E.D.

It is perhaps worth noting that if A occurs and if P(A,|By)
> P(A;) with t' <<, then either a prima facie cause or a prima facie
negative cause of A must occur. Indeed, the occurrence of one of
the two does not depend on the occurrence of A,.

Alternative approaches. This is a good point at which to review
some alternative approaches to causality. Donald Davidson has put
to me the good question of how to explain that the relation of cau-
sality, as it involves probability, is different from the geometrical
relation of one object being on top of another, for example. According
to this line of argument, the concept of causality in no way depends
for its definition or axiomatic characterization on any probabilistic
concepts. Probability enters only in inferring from evidence the
presence of a causal relation. The answer to this view is already
given by Hume in his insistence on constant conjunction of the cause
and effect. What has been done here is to generalize this concept of
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constant conjunction to a probabilistic relationship. What is impor-
tant to emphasize is exactly what Hume emphasized. The notion of
frequent co-occurrence is at the very heart of the idea of causality,
as it is not in the case of geometric concepts. It is not a matter of
presenting evidence for causality by offering probabilistic consider-
ations but it is part of the concept itself to claim relative frequency

of co-occurrence of cause and effect. When we put the matter this

way in terms of relative frequency, we are of course speaking in terms
of kinds of events. We can by the usual process reduce this discussion
of kinds of events to an analysis of particular events.

It is my own assessment that the relationship of frequent co-
occurrence is inextricably part of the notion of cause. There are at
least two other viewpoints that have had prominence in the philo-
sophical literature and that need to be considered as alternatives.
One is the notion of causal relations being necessary relations, which
Hume criticized in such a devastating Tashion. In spite of the histor-
ical importance of this concept, going back at least to Aristotle, and
its reinstitution in various forms by many philosophers, I shall not
try to enlarge upon Hume’s negative critique.

A more modern and modest approach, generated undoubtedly
from the necessary notion of causality but conceptually now distinct
from it, is the definition of causes in the context of theory; on this
view, the laws of the theory determine the analysis of causes. For
example, causal notions in classical physics are determined by the

. fundamental physical laws of phenomena whether they be mechan-

ical, optical, or electromagnetic in nature.

I do think a case can be made for this lawlike concept of cause in
systematic scientific contexts, but I am skeptical that it will work
for the less theoretical and more empirically oriented sciences. Per-
haps more importantly, as far as I can see there is no reason that the
“theory-laden” concept of cause cannot be considered a special case
of the probabilistic concept made central in the present analysis. The
special position of classical deterministic physics has already been
mentioned. The causal analysis of classical physics can be regarded
in quite a direct way as a limiting case of probabilistic analysis, one
in which all the probabilities are either zero or one. And, as I have
already observed, once we turn to the consideration of data in sup-
port of these deterministic theories, probabilistic considerations
enter at once through errors of observations, and the propagation of
these errors in future predictions.
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One of the more detailed and sophisticated discussions of the law-
like theory of causality is to be found in papers by Coleman (1966)
and Malinvaud (1966) in a volume edited by Herman Wold (1966a).
Wold’s own contribution to this volume on causality provides a good
general discussion of the place of causal notions in current social
science, especially economics (Wold, 1966b).

Malinvaud develops an axiomatic theory of causality based on the
theory of graphs. assumes that the causal relation is transitive )
and antisymmetricz®some of his examples do not require that the
cause precede the effect in time. In a deterministic setting, the tran-
sitivity and antisymmetry are easy to accept, but it seems to me that
his explicit assumptions are too weak to serve as a genuine charac-
terization of causality. In spite of the examples that can be given to
show the use of causal notions in nontemporal settings, for example,
the classical economic laws of supply and demand, it still seems to me
that the fundamental concepts of causality imply temporal order, and
that Malinvaud has not imposed sufficient structure to yield a satis-
factory characterization of causality. Malinvaud does use the general
notion of a function to replace the unsatisfactory syntactic notion of
a law and he imposes a realistic”coherence condition' on functional
relationships in order to have a causal structure,

Coleman’s article presents an excellent general d'scggion of the
mathematical representation of causal relations among continuous
variables in continuous time. Let x,, 3, ..., x5 be n functions of
time and let the relationships between these functions be expressed
as a system of equations of the form

d.’l.‘l
7[-— = fl(.’tl, x2, ooy xn)’

d:tz
W = fz(xl, T2y o o vy :l‘n),
dxy,
—dT = fu(T1, Tz, . . ., Tp)-

The analysis of causality that accompanies these equations does not
satisfy our restriction on causes preceding effects in time, and there

A probabilistic theory of causality 47

effect as a limiting case introduced for purposes of mathematical
simplicity. I shall not pursue these matters further here, but the
reader is urged to have a detailed look at the three articles just men-
tioned if he wishes to obtain a more detailed and systematic overview
of the lawlike or functional approach to causality. Probably the issue
of most importance that is least satisfactorily dealt with in the dis-
cussion in this monograph is the view stemming from the functional

approach that two events or properties can mutually cause each ng%ﬁlr 5

other. In classical physics and elsewhere it is quite common to see the
viewpoint expressed that one variable x affects y and also y in turn
affects  without any temporal sequence implied. I also would con-
cede that the issues here are deeper than one simply of an assumption
introduced for mathematical simplicity. I do think the insistence on
the temporal order of cause preceding effect can be held to, but a
detailed analysis of the issues would take us too far afield. It might
be mentioned that much of the controversy in recent years in econo-
metrics about the relative virtues of recursive models and inter-
dependent systems, as they are called, centers around this issue. The
volume edited by Wold provides an introduction to the controversy

‘and some references into the econometric literature. A related anal-

ysis directed toward political science, but fully cognizant of a much
broader literature on causality, is the article by Alker (1966), and
a useful introductive reference in sociology is the book by Blalock
(1961).

One approach that fits in naturally with the differential-equation
characterization is to adopt the viewpoint of non-standard analysis
(Robinson, 1966) and require that a cause precede its effect at least
infinitesimally in time. Conceptually it appears that a natural ex-
tension of the definitions given here could be worked out, but I shall
not pursue the technical details.

Some further remarks about the functional or lawlike approach to
causality in a probabilistic setting are to be found at the end of Sec-

tion 5.
b
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.with, .of.course, P+ q+r + s = 1. Thus, clause (ii) of Definition 15
is satisfied by this distribution if r > (¢ + 1) (s + r). On the other
hand, regress causality is satisfied only if s = 0, for

P(X?.3|Y=1)'= : ,
p+s
" but v
P(X > 3]Y = 2) =0. Q.E.D.
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