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Bayesian networks are normally given one of two types of foundations:

they are either treated purely formally as an abstract way of representing

probability functions, or they are interpreted, with some causal interpreta-

tion given to the graph in a network and some standard interpretation of

probability given to the probabilities speci�ed in the network. In this chap-

ter I argue that current foundations are problematic, and put forward new

foundations which involve aspects of both the interpreted and the formal

approaches.

One standard approach is to interpret a Bayesian network objectively:

the graph in a Bayesian network represents causality in the world and the

speci�ed probabilities are objective, empirical probabilities. Such an inter-

pretation founders when the Bayesian network independence assumption (of-

ten called the causal Markov condition) fails to hold. In x2 I catalogue the

occasions when the independence assumption fails, and show that such fail-

ures are pervasive. Next, in x3, I show that even where the independence

assumption does hold objectively, an agent's causal knowledge is unlikely to

satisfy the assumption with respect to her subjective probabilities, and that

slight di�erences between an agent's subjective Bayesian network and an ob-

jective Bayesian network can lead to large di�erences between probability

distributions determined by these networks.

To overcome these diÆculties I put forward logical Bayesian foundations

in x5. I show that if the graph and probability speci�cation in a Bayesian

network are thought of as an agent's background knowledge, then the agent

is most rational if she adopts the probability distribution determined by the
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Bayesian network as her belief function. Speci�cally, I argue that causal

knowledge constrains rational belief via what I call the causal irrelevance

condition, and I show that the distribution determined by the Bayesian net-

work maximises entropy given the causal and probabilistic knowledge in the

Bayesian network.

Now even though the distribution determined by the Bayesian network

may be most rational from a logical point of view, it may not be close enough

to objective probability for practical purposes. I show in x6 that by adding

arrows to the Bayesian network according to a conditional mutual informa-

tion arrow weighting, one can decrease the cross entropy distance between

the Bayesian network distribution and the objective distribution. This can

be done within the context of constraints on the Bayesian network which

limit its size and the time taken to calculate probabilities from the network,

in order to minimise computational complexity.

This leads to two-stage foundations for Bayesian networks:x4 �rst adopt

the probability function determined by a Bayesian network (this, according

to the logical Bayesian interpretation, is the best subjective probability func-

tion one can adopt given the knowledge encapsulated in the network), and

secondly re�ne the Bayesian network to better �t objective probability (this

process of calibration is required by empirical Bayesianism).1

To start with I shall give an introduction to Bayesian networks and their

foundations in x1, before proceeding to criticisms of the standard interpreta-

tions of Bayesian networks in x2 and x3. The remainder of the paper will be

taken up with my suggestions for new foundations.

x1

Bayesian Networks

Suppose we have a domain of N variables, C1; : : : ; CN , each of which takes

�nitely many values, v1i ; : : : ; v
Ki

i ; i = 1; : : : ; N . A literal is an expression ci of

the form Ci = v
j
i and a state is a conjunction of literals. A Bayesian network

consists of a directed acyclic graph, or dag , G over the nodes C1; : : : ; CN

1See the introduction to this volume for more on the distinction between logical and

empirical Bayesianism. Such forms of Bayesianism are often referred to as `objective'

Bayesian positions, and confusion can arise because physical or empirical probability (fre-

quency, propensity or chance) is often called `objective' probability in order to distinguish

it from Bayesian `subjective' probability. In this chapter I will draw the latter distinction,

using `objective' to refer to empirical interpretations of causality and probability that are

to do with objects external to an agent, and using `subjective' to refer to interpretations

of causality and probability that depend on the perspective of an agent subject.

2



together with a set of specifying probability values S = fp(cijdi) : ci is a literal

involving node Ci and di is a state of the parents of Ci in G, i = 1; : : : ; Ng.2

Now, under an independence assumption,3 namely that given its parents Di,

each node Ci is probabilistically independent of any set S of other nodes

not containing the descendants of Ci, p(cijdi ^ s) = p(cijdi), a Bayesian

network suÆces to determine a joint probability distribution p over the nodes

C1; : : : ; CN .
4 Furthermore, any probability distribution on C1; : : : ; CN can be

represented by some Bayesian network.

Bayesian networks are important in many areas where probabilistic in-

ference must be performed eÆciently, such as in expert systems for arti�cial

intelligence. Diagnosis constitutes a typical problem area for expert systems:

here one is presented with a state of symptoms s and, under the probabilistic

approach to diagnosis, one must �nd p(cijs) for a range of causal literals ci.
5

Depending on the structure of the graph G, both the number of speci�ers

required to determine a probability distribution p and the computational

time required to calculate p(cijs) may be substantially lower for a Bayesian

network under the independence assumption than for a representation of p

which makes no assumptions. Thus Bayesian networks can o�er key prag-

matic advantages over formalisms without an assumption like independence.

There are two main types of philosophical foundations given to Bayesian

networks. One can treat Bayesian networks as abstract structures, and use

machine learning techniques to learn from a database of past case data (for

instance of the symptoms and diagnoses of past patients) a Bayesian net-

work that represents, or represents an approximation to, a target probability

distribution.6 More commonly, Bayesian networks are interpreted . Here the

graph is taken to represent a causal structure, either objective or subjective.

In the former case the graph contains an arrow from Ci to Cj if Ci is a di-

rect cause of Cj, but in the subjective case the graph represents the causal

knowledge of an agent X, with an arrow from Ci to Cj if X believes, or

knows, that Ci is a direct cause of Cj. The speci�ed probabilities are also

given an interpretation, either objective in terms of empirical frequencies,

propensities or chances, or more often subjective in terms of degrees of ra-

2If Ci has no parents, p(cijdi) is just p(ci).
3The Bayesian network independence assumption is often called the Markov or causal

Markov condition.
4The joint distribution p can be determined by the direct method : p(c1 ^ : : : ^ cN ) =QN

i=1 p(cijdi) where di is the state of the direct causes of Ci which is consistent with

c1 ^ : : : ^ cN . Alternatively p may be determined by potentially more eÆcient propaga-

tion algorithms . See [Pearl 1988] or [Neapolitan 1990] here and for more on the formal

properties of Bayesian networks.
5See [Williamson 2000] for more on the probabilistic approach to diagnosis.
6See [Jordan 1998].
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tional belief. Finally the independence assumption is posited as a relation

between the causal interpretation and the interpretation of probability.

In my view the most important limitation of the abstract approach is that

there is often not enough initial data for it to get o� the ground. The abstract

approach requires a database of past case data, but there may simply not

be enough such data to invoke a machine learning algorithm for generating

a Bayesian network. Furthermore, new case data may trickle in slowly and

it may take a while before the learning algorithm yields dependable results.

Even if there is plenty of data, the data may not be reliable enough to gen-

erate a reliable network | in my experience this is a signi�cant problem,

since di�erent people often measure or categorise variables in di�erent ways

even when collecting data for the same database. There is also a diÆculty

when certain variables are not measured at all: diagnostic data, for example,

rarely includes the presence or absence of every possible symptom of a pa-

tient, but just the most signi�cant symptoms, and the symptoms considered

most signi�cant are subject to biases of individual doctors. In sum, the ab-

stract approach is not appropriate for applications which require an expert

system operating right from the outset, but where the data is not available,

is of poor quality, or is subject to mixtures of unknown biases. However the

interpreted approach does not face this sort of problem: an expert can often

from the outset provide qualitative causal knowledge, subjective degrees of

belief and even estimates of objective probabilities, and this information can

be used to construct a Bayesian network right away | no past case data is

required.

On the other hand the interpreted approach also has its problems, largely

to do with the status of the independence assumption.7 In the next two

sections I shall outline these problems with the independence assumption

and then go on to develop a hybrid methodology incorporating aspects of

both the interpreted and abstract accounts: the basic idea behind the hybrid

methodology is to form an initial Bayesian network from expert knowledge,

and to further re�ne this network in the light of new case data. First we shall

tackle the problems with an objective interpretation, and then investigate the

subjective approach in x3.

7One problem that I will not consider here is the knowledge elicitation problem: the

expert may �nd it hard to articulate her knowledge, and the elicitation process can be

quite slow.
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x2

Objective Networks

Under an objective interpretation, the Bayesian network independence as-

sumption makes a substantive claim about the relationship between objective

causality and objective, empirical probability. I will show here that this claim

is highly problematic, rendering an objective interpretation inadequate.

It will be useful to note that the principle of the common cause is a logical

consequence of the independence assumption.8 The principle of the common

cause claims the following. Suppose two variables are probabilistically de-

pendent and neither causes the other, then

� existence: they have one or more causes in common,9 and

� screening: they are probabilistically independent conditional on those

common causes.

We can exploit the link between independence and the common cause

principle because when an objective interpretation is given to both princi-

ples one can �nd many counterexamples to the latter principle which thereby

contradict the former. In e�ect we can translate doubts about probabilistic

analyses of causality in the philosophical literature | such analyses often

appeal to the objectively-interpreted principle of the common cause | into

doubts about the objective interpretation of Bayesian networks. Many of the

counterexamples are well-known and, when considered in isolation, thought

to be so unusual as to be unimportant, or thought to be susceptible to par-

ticular rebuttals. I want to provide a taxonomy of the counterexamples in

order to show that the problem is more widespread than often considered

8This principle is due to Reichenbach (see [Reichenbach 1956], x19, pages 157-167). It is

also often assumed as a basis for statistical experimentation | [Fisher 1935]. One can see

that the principle of the common cause is a consequence of the independence assumption

by generalising the following example in the obvious way. Suppose we have a Bayesian

network with graph A �! B;C �! D. Thus neither B nor D cause the other, nor

do they have a common cause. B and D must then be unconditionally probabilistically

independent since for literals b and d on B and D respectively, their joint probability

p(b ^ d) =
P

a;c p(bja)p(a)p(djc)p(c) = [
P

a p(bja)p(a)][
P

c p(djc)p(c)] = p(b)p(d), where

the �rst equality follows from the direct decomposition of probability in a Bayesian network

(see [Neapolitan 1990] theorem 5.1 for example).
9Existence of a common cause resembles Mill's Fifth Canon of Inductive Reasoning:

`Whatever phenomenon varies in any manner whenever another phenomenon varies in

some particular manner, is either a cause or an e�ect of that phenomenon, or is connected

with it through some fact of causation.' [Mill 1843], page 287.
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and so general that the rebuttals are either too particular or unappealing

when generalised.10

I shall argue against the independence assumption by documenting two

types of counterexample to the principle of the common cause: the causal

variables Ci and Cj may be accidentally correlated , or there may be some

extra-causal constraint which ensures that they are probabilistically corre-

lated.11 There may either be no suitable common cause to account for a

correlation, contradicting the existence condition above, or if there are com-

mon causes, they will not account for all of the correlation, contradicting the

screening condition.

2.1 Accidental Correlations

Christmas trees tend to be sold when most oranges ripen and are sold. Let

C represent the number of Christmas trees sold on any day and O represent

the number of oranges sold on any day (C and O are random variables).

Then p(C > xjO > y) > p(C > x) for some suitable constants x and y. Now

it seems clear that sales of Christmas trees do not cause sales of oranges,

nor vice versa. Hence, some common cause must be found to explain their

probabilistic dependence if the independence assumption is to hold. If there

is a common cause it would have to be something like the time of year or

the season. However, intuitively one does not endow the time of the year

with causal powers, and there are no obvious mechanisms at play underlying

any such causation. Intuitively there is no common causal explanation for

the correlation | it is accidental. If such intuitions are right, then the

independence assumption must fail for this causal scenario.

In order to save the independence assumption one may well be tempted

to maintain that the time of year really is the common cause here. I shall

call this strategy causal extension. The idea is that one tries to extend the

intuitive concept of cause by counting intuitively non-causal variables, like

the time of the year, as causal. In the context of Bayesian networks, causal

extension often takes the form of an assumption that there is a `hidden',

`latent' or `unmeasured' common cause whenever two variables are found to

10A large literature touches on the independence assumption in one way or

another. Thus there are criticisms (for example [Humphreys & Freedman 1996],

[Humphreys 1997], [Lemmer 1993], [Lemmer 1996], [Lad 1999]) and defences (for example

[Spirtes et al. 1997], [Hausman 1999], [Pearl 2000] x2.9.1) of the independence assumption

which I will not cover here. I will however cover the criticisms I believe most telling and

the most viable reactions to these criticisms.
11`Correlation' is occasionally used to denote some kind of linear dependence, but I shall

just use it as a synonym for `probabilistic dependence' here.
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be correlated, even when there is no intuitively plausible common cause.12

Unfortunately, there are a number of diÆculties with the strategy of causal

extension. Firstly, extending the concept of cause creates epistemic prob-

lems. Identifying causal variables and the causal relationships between them

is a hard problem. Any extension of the concept of cause is likely to make

the task harder. In particular, it may be very diÆcult for an expert to pro-

vide a causal graph under the causal extension approach: one is asking the

expert to identify variables that render the independence assumption valid,

rather than to identify the causes and e�ects that she is used to dealing with.

Furthermore, if one increases the number of nodes and arrows that must be

considered in the graph of a Bayesian network then one risks the network

becoming too complex for practical use. The amount of space required to

store a Bayesian network and the amount of time required to calculate prob-

abilities from the network both increase exponentially with the number of

nodes in the worst case. This worst case occurs when the graph is dense

| that is, there are many arrows in the graph. Thus causal extension is a

dangerous tactic from an epistemic and practical point of view.

The second major problem is that by extending the concept of cause we

are liable to lose qualities that are important to causality. Genuine causal

variables tend to have various characteristics in common: for example one

can normally view them as spacio-temporally localised events, and causes and

e�ects tend to be related by physical mechanisms. If we allow variables which

do not have these qualities then we can no longer be said to be explicating the

notion of cause | the extension is ad hoc and the word `cause' loses meaning,

just becoming a synonym for `variable' if the process is pursued inde�nitely.

This is clearly undesirable if we require a genuinely causal interpretation of

the graph in the Bayesian network, as opposed to more abstract foundations.

Elliott Sober produced the following counterexample to the principle of

the common cause:

Consider the fact that the sea level in Venice and the cost

of bread in Britain have both been on the rise in the past two

centuries. Both, let us suppose, have monotonically increased.

Imagine that we put this data in the form of a chronological list;

for each date, we list the Venetian sea level and the going price

of British bread. Because both quantities have increased steadily

in time, it is true that higher than average sea levels tend to

be associated with higher than average bread prices. The two

quantities are very strongly positively correlated.

12See [Binder et al. 1997] and [Pearl 2000] for example.
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I take it that we do not feel driven to explain this correlation

by postulating a common cause. Rather, we regard Venetian sea

levels and British bread prices as both increasing for somewhat

isolated endogenous reasons. Local conditions in Venice have

increased the sea level and rather di�erent local conditions in

Britain have driven up the cost of bread. Here, postulating a

common cause is simply not very plausible, given the rest of what

we believe.13

Here Sober calls the existence of a common cause into question | there is

a causal explanation of the correlation, but it is not an explanation involving

common causes, so in a sense the correlation is accidental. Postulating a

common cause con
icts with intuitions here. In particular there appears

to be no common causal mechanism. We often appeal to non-probabilistic

issues like mechanisms to help determine which correlations are causal and

which are accidental. As Schlegel points out, `we reject a correlation between

sun spots and economic cycles as probably spurious, because we know of no

relating process, but accept a correlation between sun spots and terrestrial

magnetic storms because there is a plausible physical relationship.'14

Besides causal extension, there is a separate line of response one can

make to such counterexamples, that of restriction, whereby one restricts

the application of the independence assumption so that it does not apply

to awkward cases like Sober's.15 This response can take one of two forms,

correlation restriction or causal restriction. Regarding the former, some, such

as Papineau and Price, claim that British bread prices and the Venetian water

level do not have the right type of correlation for the principle of the common

cause to be applied since their correlation can be predicted from the co-

variation within each time-series16 or from determinism within each physical

process.17 They thus attempt to avoid the counterexample to the common

cause principle by restricting the principle itself. However, it should be noted

that they pursue this strategy in the context of a defence of a probabilistic

analysis of causality. Whether or not this move is successful in that context, it

is no help here when thought of in terms of the Bayesian network framework,

for restricting the principle of the common cause restricts the independence

assumption too, and the reduction of a probability function to a Bayesian

network is not possible without full-blown independence. Hence correlation

13[Sober 1988] 215.
14[Schlegel 1974] 10.
15Lakatos called this type of defence `monster-barring'.
16[Papineau 1992] 243.
17[Price 1992] 264.
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restriction is not a viable move when considering Bayesian networks.

The other variety of restriction, causal restriction, is more promising.

Here the strategy is to argue that the variables themselves are not of the

sort to which the independence assumption applies. One may claim that the

correlated variables are not causal variables, although this is rather implau-

sible when it comes to the examples above. Alternatively one may accept

that they are causal, but have not been individuated correctly for the inde-

pendence assumption to apply. For example, the variables may need to be

indexed by time,18 may need to be complete descriptions of their correspond-

ing single-case events, or may need to be properties that can be repeatedly

instantiated.

While it is possible that for any particular counterexample to indepen-

dence there is another way of individuating the variables so that the depen-

dency is removed, it is less clear that one rule of individuation will overcome

all counterexamples. I have used examples which exhibit temporal correla-

tion here because it is easy to see how such variables could be correlated,

but any two events might exhibit accidental correlation, in which case alter-

native individuation will not help. The independence assumption rules out

accidental correlation a priori, and such a restriction does not appear a priori

to be any more plausible applied to one individuation than another. Thus an

appeal to individuation is by no means guaranteed to overcome the problem

of accidental correlation.

Causal restriction also induces epistemic problems of its own. If individu-

ation matters then one has to do a certain amount of analysis before tackling

a problem, making the application of Bayesian networks harder. Further-

more, in a particular problem one may be interested in variables which must

be individuated in a way for which independence does not hold, in which

case the machinery of Bayesian networks cannot be applied at all.

I have illustrated the problem of accidental correlations and introduced

strategies for defending the independence assumption, including causal exten-

sion and causal restriction. These strategies are somewhat less than e�ective

at dealing with the problem, and if they can be made to work will only do

so at an epistemic and intuitive cost. In x2.2 we will see how these strategies

can be applied to other common types of counterexample. Our conclusions

will be much the same. Yet these costs are not ones we have to reluctantly

accept. In the foundations I propose later, we will stick with our intuitive

notion of cause and the individuation of variables will not matter.

18See [Spirtes et al. 1993] page 63 for example.
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2.2 Extra-Causal Constraints

I shall now consider counterexamples to the principle of the common cause

where probabilistic dependencies have an explanation that relates the depen-

dent variables | thus the dependencies are not accidental | but where the

explanation is not causal. There are a number of non-causal correlators: two

causal variables can be correlated

� in virtue of their meaning,

� because they are logically related,

� because they are mathematically related,

� because they are related by (non-causal) physical laws, or

� because they are constrained by local laws or boundary conditions.

Let us look at each of these situations in turn.

First, the meanings of expressions can constrain their probabilities. 'Flu

and orthomyxoviridae infection are probabilistically dependent, not because

they have a common cause, but because '
u is an example of orthomyxoviri-

dae infection | the variables have overlapping meaning.

In response one can advocate a kind of causal restriction. One can argue

that causes should be individuated so as to avoid overlapping meaning, and

that one should remove a node from a Bayesian network if there is another

with related meaning. But this is not always a sensible move for a num-

ber of reasons. One can lose valuable information from a Bayesian network

by deleting a node, since both the original nodes may be important to the

application of the network. Meaning might be related through vagueness

rather than classi�cation overlap, for example if one symptom is a patient's

report of fever and another is a thermometer reading, and it may be use-

ful to consider all such related nodes. In some cases one may even want to

include synonyms in a Bayesian network, for example in a network for nat-

ural language reasoning. Furthermore, removing a node can invalidate the

independence assumption if the removed node is a common cause of other

nodes. Or one simply may not know that two nodes have related meaning:

Yersin's discovery that the black death coincides with Pasteurella pestis was

a genuine example of scienti�c inference, not the sort of thing one can do at

one's desk while building an expert system.

Causal extension is no better a ploy here. One could suggest that a

common cause variable called `synonymy' or `meaning overlap' should be

introduced. But this will not in general screen o� such dependencies, and as
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before we have epistemic cost in terms of identifying dependencies in virtue

of meaning and the likely added complexity of incorporating new variables

and arrows, as well as a commitment to a counterintuitive concept of cause.

Probabilistic correlations can also be explained by logical relations. For

instance, logically equivalent sentences are necessarily perfectly correlated,19

and if one sentence c logically implies sentence d, the probability of d must

be greater than or equal to that of c. Thus one should be wary of Bayesian

networks which involve logically complex variables. Suppose C causes com-

plaints D, E and F , and that we have three clinical tests, one of which

can determine whether or not a patient has both D and E, another tells us

whether or not the patient has one of E and F , and the third tells us whether

the patient has C. Thus there is no direct way of determining p(djc); p(ejc) or

p(f jc) for literals c, d, e and f of C,D, E, and F respectively, but one can �nd

p(d^ ejc) and p(e_ f jc). One might then be tempted (in the spirit of causal

extension) to incorporate C �! (D ^ E); C �! (E _ F ) in one's causal

graph, so that the probability speci�cation of the corresponding Bayesian

network can be determined objectively. In such a situation, however, C will

not screen node D^E o� from node E_F and the independence assumption

is not satis�ed.

This problem seriously a�ects situations where causal relata are genuinely

logically complex, as happens with context-speci�c causality. A may cause B

only if the patient has genetic characteristic C: if the patient has any other

genetic characteristic then there is no possible causal mechanism from A to

B. Then the conjunction A ^ C is the cause of B, not A or C on their own.

However, A may be able to cause D in everyone, so the causal graph would

need to contain a node A ^ C and a second node A. One would not expect

these two nodes to be screened o� by any common causes.

Next we turn to mathematical relations as a probabilistic correlator. By

way of example, consider the application of Bayesian network theory to colon

endoscopy as documented in [Sucar et al. 1993] and [Kwoh & Gillies 1996].

The object is to guide the endoscope inside the colon towards the lumen,

avoiding the diverticulum. A Bayesian network was used to identify the

lumen and diverticulum from the endoscope image. The presence of the lu-

men causes a large dark region to appear on the endoscope screen while the

diverticulum causes a small dark region. The size of the region can be di-

rectly measured, but its darkness was measured by its mean intensity level

together with its intensity variance in the region. A Bayesian network was

constructed incorporating these variables and the independence assumption

was tested and found to fail: the mean and variance variables were found to

19At least according to standard axiomatisations of probability.
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be correlated when, according to the causal graph under the independence

assumption, they should not have been. The problem was that there is no

obvious common cause for this correlation: mean and variance are related

mathematically, not causally. We have that V arX = EX2 � (EX)2, where

V arX is the variance of random variable X, and E signi�es expectation so

that EX is the mean of X. To take the simplest example, if X is a Bernoulli

random variable and EX = x then V arX = x(1 � x), making the mean

and variance perfectly correlated. In the endoscopy case, the light inten-

sity will have a more complicated distribution, but the mean value will still

constrain the variance, making the mean and variance probabilistically de-

pendent. To try to resolve this failure of the independence assumption, at

�rst one of the two correlated nodes was removed (causal restriction). This

gave some improvement in performance but su�ered from signi�cant loss of

information. Next (causal extension) [Kwoh & Gillies 1996] attempted to in-

troduce an extra common cause to screen o� the correlation, but while this

move improved the success rate of the Bayesian network, it raised funda-

mental problems. Firstly it is not clear what the new node represents (it

was just called a `hidden node'), so a causal interpretation may no longer be

appropriate for the graph. Secondly, the distribution specifying probabilities

relating the new node to the other nodes had to be ascertained: this could

only be done mathematically, by �nding what the probabilities should be

if the introduction of the new node allowed the unwanted correlation to be

fully screened o�, and could not be tested empirically or equated with any

objective probability distribution. Therefore the Bayesian network lost both

the objective causal and the objective probabilistic components of its inter-

pretation. An objective interpretation is just not feasible, given extra-causal

dependencies like this.

That extra-causal constraints include physical laws has been exempli�ed

by Arntzenius:20

Suppose that a particle decays into 2 parts, that conservation

of total momentum obtains, and that it is not determined by

the prior state of the particle what the momentum of each part

will be after the decay. By conservation, the momentum of one

part will be determined by the momentum of the other part. By

indeterminism, the prior state of the particle will not determine

what the momenta of each part will be after the decay. Thus

there is no prior screener o�.

The principle of the common cause fails here because there is nothing

obvious that we can call a common cause | the existence component of the

20[Arntzenius 1992] pages 227-228, from [van Fraassen 1980] page 29.
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principle fails. But even if some weird and wonderful common cause could

be found in such quantum situations, independence would still fail because

screening condition would fail. Suppose we consider the spins B and C of

two particles: B and C have values up or down. The two particles are �red

such that one has spin up (represented by literal b) if and only if the other

does (c). Suppose also that either one being spin up is as likely as not,

p(b) = p(c) = 1=2, but that a common cause A is found which explains

the spins, so A �! B;A �! C, and p(bja); p(cja) = x > 1=2. But since

p(bjc) = 1, screening o� is satis�ed if and only if 1 = p(bja ^ c) = p(bja), so

the cause must be deterministic, a wildly inappropriate assumption in the

quantum world. Thus we must conclude that there are quantum constraints

on objective probability which are extra-causal.21

The philosophical literature also contains several examples of how local

non-causal constraints and initial conditions can account for dependencies

amongst causal variables. Cartwright, for instance, points out that

independence is not always an appropriate assumption to make.

. . . A typical case occurs when a cause operates subject to con-

straint, so that its operation to produce one e�ect is not inde-

pendent of its operation to produce another. For example, an

individual has $10 to spend on groceries, to be divided between

meat and vegetables. The amount that he spends on meat may

be a purely probabilistic consequence of his state on entering the

supermarket; so too may be the amount spent on vegetables.

But the two e�ects are not produced independently. The cause

operates to produce an expenditure of n dollars on meat if and

only if it operates to produce an expenditure of 10 � n dollars

on vegetables. Other constraints may impose di�erent degrees of

correlation.22

Salmon23 gives another counterexample to the screening condition. Pool

balls are set up such that the black is pocketed (B) if and only if the white

is (W ), and a beginner is about to play who is just as likely as not to pot

the black if she attempts the shot (S), and is very unlikely to pot the white

otherwise. Thus if we let b, w and s be literals representing the occurrence of

21Note that [Butter�eld 1992] looks at Bell's theorem and concludes (page 41) that, `the

violation of the Bell inequality teaches us a lesson, . . . namely, some pairs of events are not

screened o� by their common past.' [Arntzenius 1992] has other examples and also argues

on a di�erent front against the principle of the common cause assuming determinism. See

also [Healey 1991] and [Savitt 1996] pages 357-360 for a survey.
22[Cartwright 1989] 113-114.
23[Salmon 1980] pp. 150-151, [Salmon 1984] pp. 168-169.
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B, W and S respectively, p(b$ w) = 1 and p(bjs) = 1=2, so 1=2 = p(wjs) 6=

p(wjs ^ b) = 1 and the cause S does not screen o� its e�ects B and W from

each other. As Salmon says:

It may be objected, of course, that we are not entitled to infer

. . . that there is no event prior to B which does the screening. In

fact, there is such an event | namely, the compound event which

consists of the state of motion of the cue-ball shortly after they

collide. The need to resort to such arti�cial compound events does

suggest a weakness in the theory, however, for the causal relations

among S, B and W seem to embody the salient features of the

situation. An adequate theory of probabilistic causality should,

it seems to me, be able to handle the situation in terms of the

relations among these events, without having to appeal to such

ad hoc constructions.24

I would echo this sentiment in the current context: in my view an ade-

quate objective causal-probabilistic interpretation of Bayesian networks should

not have to appeal to ad hoc constructions. Spirtes, Glymour and Scheines

give a causal-restriction defence against Salmon's counterexample by arguing

that the collision should be more speci�cally individuated (in particular the

momentum of the cue ball should be described).25 Again this is less than

satisfactory in the absence of a general theory as to how causes should be

individuated.

A further example: repeatedly pull one of two beads (a blue bead B and

red bead R, otherwise identical) out of a bag. Then p(bjr) = 0 < 1=2 = p(b).

But rather than saying that pulling out the red bead is a preventative of

pulling out the blue bead, the correlation is explained by the set-up of the

repeatable experiment: only one bead is pulled out of the bag in any trial.

Here the set-up constrains the probabilities and isn't the sort of thing that

counts as a cause.

In response to the problem of extra-causal constraints, one might ad-

mit defeat in problems such as the diagnosis of apparatus for the investiga-

tion of quantum mechanical systems,26 or troubleshooting pool players, but

maintain that most applications of intelligent reasoning may be una�ected.

But extra-causal constraints occur just about anywhere, including central

diagnosis problems for example. When diagnosing circuit boards, one may

be constrained by the fact that two components cannot fail simultaneously

24[Salmon 1980] 151 (my notation).
25[Spirtes et al. 1993] 63.
26As [Spirtes et al. 1993] do, pages 63-64.
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Figure 1: Failure of circuitry components.

(F1 ^F2), for if one of them fails the circuit breaks and the other one cannot

fail. Suppose there is a common cause C for the failures as in Figure 1. Then

C fails to screen F1 o� from F2 for p(f2jc^f1) = 0 6= p(f2jc). In medicine the

opposite is the case: failure of one component in the human body increases

the chances of failure of another, as resources are already weakened. In both

these cases the constraints are very general and not the sort of thing one

would want to call causes.

But why not pursue causal extension and include these extra-causal con-

straints in a Bayesian network? Besides the problem of a loss of the causal

interpretation, we have further diÆculties. Knowledge of extra-causal con-

straints is often in some sense super
uous to an intelligent agent's needs.

An agent performing diagnosis, for instance, needs to know about causes

and e�ects because she has to �nd the probabilities of various causes given

some symptoms, but she is not directly concerned with facts about mean-

ing, experimental set-ups or physical laws. Thus if there is a requirement

to keep the agent's language and causal graph small, as in the Bayesian

network formalism where computational complexity is an issue, extra-causal

constraints are the things to leave out. Second, it may be much harder for

domain experts to provide the relevant extra-causal information than the

causal information. In particular, discovering all physical laws which have

correlational consequences on a domain is no mean feat. Third, even if a gen-

eral constraint is identi�ed, it is often diÆcult to say exactly how it should

be connected to the other variables in a causal graph. Should there be an

arrow between the set-up of a pool table and each possible pot, or just some?

Extra-causal constraints are generally symmetric while causal relations are

not. Fourthly, these constraints often vary between cases in the way that

causal laws don't. If the set-up of a pool table is included in a causal graph

and we are interested in predicting the next pot then, since the set-up changes

as play progresses, the causal graph will also have to vary radically from shot

to shot. This obviously complicates the task.
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Figure 2: Christmas tree sales, festivity, spending and orange sales

Note �nally that accidental and extra-causal correlations can combine

to complicate matters. If two variables are accidentally correlated then a

common cause is very unlikely to completely screen o� that correlation. More

plausibly, the common cause would account for part of the correlation, and

there would be a surplus that we might call accidental. An ineÆcient English

bakery might partly explain why the water level rises in Venice (through

global warming) and also partly why bread prices rise in the UK, but the

remaining bulk of the correlation might be completely accidental. Likewise

direct causes of an e�ect may not fully screen it o� from their causes. In

response to our �rst example of accidental correlation, one might put forward

some causal story: high Christmas tree sales (C) causes people to be festive

(F ) which causes people to spend more (S) which causes orange sales to rise

(O), as in Figure 2. But even if this explains some of the correlation (and

this is rather dubious), it will not explain it all, for p(ojc) = 1, but people

spend money on many other occasions in the year and p(ojs) is not much

bigger than p(o). So p(ojc ^ s) > p(ojs).

I hope to have shown that many types of dependency can be invoked to

contest the validity of the objectively-interpreted independence assumption.

Two strategies present themselves if we look for a defence against the coun-

terexamples, causal restriction and causal extension. However each strategy

is subject to epistemological, practical and intuitive diÆculties, rendering an

objective interpretation of Bayesian networks at worst impossible and at best

undesirable.

x3

Subjective Networks

We have seen how problems arise for an objective interpretation of the com-

ponents of a Bayesian network. But there is a further reason why an objective

interpretation is unattractive in practice: one may simply not know of all the

causal variables or causal relations relevant to a domain of interest, and one

may not be able to accurately estimate the corresponding objective proba-

bilities required in the speci�cation of a Bayesian network. In practice our

knowledge is limited, and information in a Bayesian network will often be
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incomplete and inaccurate.

Thus it makes sense to relativise the Bayesian network to an agent's

perspective. In this section we shall suppose that the Bayesian network

expresses the knowledge of a particular agent, X say | that the graph G

is interpreted as X's representation of causality, and that the probability

speci�cation S is interpreted as containing her degrees of belief in literals

conditional on parent states. The independence assumption then links the

agent's picture of causality to her belief function p: if it holds then her belief

function is reducible to her Bayesian network.

Does the independence assumption hold here? There is little reason to

suppose that it might. X's knowledge of causality may be very limited, and

her degrees of belief may wildly di�er from objective probability: according

to strict-subjectivist Bayesian theory X may hold whatever beliefs she likes,

as long as her belief function is formally a probability function. Yet the

independence assumption is a very strong constraint, for it �xes X's belief

function given her Bayesian network, thereby restricting X's subjectivity. If

X's causal knowledge or the degrees of belief in her probability speci�cation

were to change slightly then her other degrees of belief would have to change

correspondingly, leaving no room for subjectivity with regard to these other

beliefs. Therefore a strong constraint like independence does not �t well

with subjectivism, whose appeal is based on the freedom it allows causal

knowledge and degrees of belief.

So how can a subjective interpretation of Bayesian networks be main-

tained? One line of reasoning goes something like this: if independence holds

objectively, and the subjective network is similar to the objective network,

then the subjective distribution determined by the subjective network will

be close enough to objective probability to be put to practical use. Suppose

we require an expert system for diagnosis of liver disease. We may think we

have a fair idea of the causal picture relating this area, and may be able to

obtain estimates of the objective probabilities for a probability speci�cation,

thereby forming a Bayesian network that is in some sense close to an objec-

tive version. If the independence assumption were to hold in the objective

case then one might expect it to hold approximately in the subjective case.

One might further suppose that if independence approximately held in the

subjective case then the probability distribution determined by the subjec-

tive network might approximate objective probability, at least closely enough

for the practical purposes of liver diagnosis.

It is such a position that I want to argue against in this section. There

are two 
aws in the above reasoning. First, as we saw in the last section,

there is often reason to doubt the independence assumption as made of ob-

jective causality and probability. Secondly, even if independence were to hold
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objectively, small di�erences between a subjective network and the objective

network can lead to signi�cant di�erences in the probability distributions

determined by these networks. It is this second claim that I want to argue

for here.

For this argument it will be necessary to consider subjective and ob-

jective distributions and networks simultaneously, and so it will be worth

spelling out the notation and concepts clearly in advance. The objective

probability distribution is p�. We also have an objective Bayesian network

consisting of causal graph G� and the associated probability speci�cation

S�. Independence is assumed to hold of objective causality G� with respect

to objective probability p�, and this has the repercussion that the objec-

tive network (G�; S�) determines p�. Agent X has a subjective Bayesian

network consisting of causal graph G and associated probability speci�ca-

tion S. This subjective network (G; S) determines probability function p

under the independence assumption. The question of whether independence

holds subjectively and p matches X's full belief function is not of concern

here. Instead, we are concerned with the above alternative justi�cation of the

subjective interpretation which claims that if the subjective network (G; S)

closely resembles the objective network (G�; S�) then the function p will be

close enough to objective probability p� to be of practical use. I argue that

di�erences between the objective and subjective networks that are likely to

occur in practice will yield signi�cant di�erences between resulting probabil-

ity distributions.

It will be useful to distinguish two types of di�erence between the sub-

jective and objective networks: di�erences between the causal graphs G and

G� and di�erences between the probability speci�cations S and S�.

3.1 Causal Subjectivity

First I shall argue as follows. Even if we make the assumption that indepen-

dence holds objectively, we assume that X's belief speci�cation S consists

of objective probabilities, and assume that her causal knowledge is correct

(G is a subgraph of G�), then if, as one would expect, her causal knowledge

is incomplete (a strict subgraph), p may be not be close enough to p� for

practical purposes.

There are two basic types of incompleteness. X may well not know about

all the variables (G has fewer nodes than G�) or even if she does, she may

not know about all the causal relations between the variables (G has fewer

arrows than G�).

To deal with the �rst case, suppose G is just G� minus one node C

and the arrows connecting it to the rest of the graph. Even if G� satis�es
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Figure 3: Nodes removed.

independence with respect to p� then G can only be guaranteed (for all p�)

to satisfy independence if all the direct causes of C are direct causes of C's

direct e�ects, each pair D;E of its direct e�ects have an arrow between them

say from D to E, and the direct causes of each such D are direct causes of

E.27 Needless to say, such a state of a�airs is rather unlikely and a failure of

independence will have practical repercussions.

I ran a simulation to indicate just how close the subjectively-determined

distribution p will be to the objective distribution p�, the results of which

form Figure 3. The bars in the background of the graph show the performance

of Bayesian networks formed by removing a single node and its incident

arrows from networks known to satisfy independence. For N = 2; : : : ; 10 I

randomly generated Bayesian networks onN nodes, and for each net removed

a random node, chose a random state of nodes s and calculated p(cjs) for each

literal c not in s. The new networks were deemed successful if their values

for p(cjs) di�ered from the values determined by the original network by less

than 0.05, that is, jp(cjs)�p�(cjs) j< 0:05. For each N the percentage success

was calculated over a number of trials28 and each bar in the chart represents

such a percentage. The bars in the foreground of the graph represent the

27See [Pearl et al. 1990] 82.
28At least 2000 trials for each N , and more in cases where convergence was slow.
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Figure 4: Objective causal graph G�.
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Figure 5: B and its incident arrows removed.

percentage success where half the nodes29 and their incident arrows were

removed.

Such experiments are computationally time-consuming and only practical

for small values of N . While one should be wary of reading too much into a

small data set, the results do suggest a trend of decreasing success rate as the

size of the networks increase. Thus it appears plausible that if one removes

a node and its incident arrows from a large Bayesian network that satis�es

independence, then the resulting network will not be useful, in the sense that

the probability values it determines will not be suÆciently close to objective

probability. Moreover, removing more nodes from a Bayesian net is likely to

further reduce its probability of success, as the graph shows.

This trend may be surprising, in that if one removes a node from a large

causal graph one is changing a smaller portion of it than if one removes a

node from a small graph, so one might expect that removing a node changes

the resulting distribution less as the original number of nodes N increases.

But one must bear in mind that the independence assumption is non-local:

removing a node can imply an independency between two nodes which are

very far apart in the graph. Thus removing a node from a small graph is

likely to change fewer implied independencies than removing a node from a

large graph.

Of course one may complain that such a simulation is unrealistic in some

way. For instance, if one doesn't know about some intermediary cause in

an objective causal graph, one may yet know about the causal chain on

29In fact the nearest integer less than or equal to half the nodes was chosen.
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Figure 6: B removed but its incident arrows redirected.
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Figure 7: Nodes removed - arrows re-routed.

which it exists. Thus if Figure 4 represents the objective causal graph and

one doesn't know about B, one may know that A causes C, as in Figure 6

rather than Figure 5. In this case removing B's incident arrows introduces an

independence assumption which is not implied by the original graph, whereas

redirecting them does not. In simulations I found that while redirecting

rather than removing arrows improved success (see Figure 7) the qualitative

lesson remained: the general trend was still that success decreases as the

number of nodes increases.

There is another way that the simulation may be unrealistic. Some types

of cause may be more likely to be unknown than others, so perhaps one should

not remove a node at random in the simulation. However, if we adjust for this

factor we should not expect our conclusions to be undermined. To the extent

that e�ects are more likely to be observable and causes to be unobservable,

one will be more likely to know about nodes in the latter parts of causal

chains than in the earlier parts. But while removing a leaf in a graph will

not introduce any new independence constraints, removing common causes

can do so. Thus if X is less likely to know about causes than e�ects, her

subjective causal graph is even less likely to satisfy independence than one

with nodes removed at random.

There may be other factors which render the simulations inappropriate,
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based on the way the networks are chosen at random. Here I made it as

likely as not that two nodes have an arrow between them, and as likely as not

that an arrow is in one direction as in another, while maintaining acyclicity.

Thus the graphs are unlikely to be highly dense or highly sparse. I chose

the specifying probabilities uniformly over machine reals in [0; 1]. Roughly

half the nodes (N=2 nodes if N was even otherwise (N � 1)=2 nodes) were

chosen to be symptoms in s and the nodes and their values were selected

uniformly. In the face of a lack of knowledge about the large-scale structure

of the objective causal graph I suggest these explications of `at random' are

appropriate. In any case, the trend indicated by the simulation does not

seem to be sensitive to changes in the way a network is chosen at random.

In sum then, for a G� large enough to be an objective causal graph the

removal of an arbitrary node is likely to change the independencies implied

by the graph, and to change the resulting distribution determined by the

Bayesian network. This much is arguably true whether or not the objec-

tive situation (G�; p�) satis�es independence itself, for if independence fails,

removing arbitrary nodes is hardly likely to make it hold.

Having looked at what happens when agent X is ignorant of causal vari-

ables, we shall now turn to the case where she is ignorant of causal relations.

Suppose then that G is formed from G� by deleting an arrow, say from

node Ci to node Cj. Then G can not be guaranteed to satisfy independence

with respect to p�. For suppose Ci; D1; : : : ; Dk are the direct causes of Cj

in G�. Then the independence of G with respect to p� requires that Ci be

independent of Cj, conditional on D1; : : : ; Dk, which is not implied by the

independence of G� with respect to p�.

The situation is worse if the following condition holds, which I shall call

the dependence principle.30 This corresponds to the intuition that a cause

will either increase the probability of an e�ect, or, if it is a preventative,

make the e�ect less likely. More precisely,

� dependence: if Ci; D1; : : : ; Dk are the direct causes of Cj then Ci and

Cj are probabilistically dependent conditional on D1; : : : ; Dk: there

are some literals ci and cj of Ci and Cj and some state d of D1; : : : ; Dk

such that p�(cjjci ^ d) 6= p�(cjjd), as long as these probabilities are

non-extreme (that is, neither 0 nor 1).

Now if G� satis�es dependence with respect to p�, the arrow between

Ci and Cj is removed to give G as before, and the probabilities are non-

extreme, the independence assumption will de�nitely fail for G with respect

30See [Williamson 1999] for a defence of this principle. Note that the dependence prin-

ciple is a partial converse to the independence assumption.
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to p�. This is simply because the independence of G with respect to p�

requires that Ci and Cj be independent conditional on D1; : : : ; Dk which

contradicts the assumption that dependence holds for G� with respect to

p�. Note that this result only depends on the local situation involving Ci,

Cj and the other direct causes D1; : : : ; Dk of Cj, so that further changes

elsewhere in the graph cannot rectify the situation.31 Note also that this

result does not require that objective causality G� satisfy independence with

respect to objective probability p�. Thus if the dependence principle holds

of causality in the world it is extremely unlikely that independence will hold

of a subjective causal theory.

Of course, we are arguing against independence by appealing to an al-

ternative principle here and the sceptical reader may not be convinced by

this last argument. But we can perform simulations as before to indicate

the general trends. The back row of Figure 8 represents the results of the

same simulation as before (the dependence principle is not assumed to hold),

except with a random arrow rather than a node removed. In this case there

is no clear downward trend, but success rate is uniformly low. If more arrows

are removed, then for all but small N the resulting network is less likely still

to satisfy independence, as the front row of Figure 8 shows, and again we see

a downward trend as the number of nodes in G� increases.

In sum, causal subjectivity can lead to a signi�cant di�erence between

the subjective and objective probability distributions.

3.2 Probabilistic Subjectivity

Turning now to X's degrees of belief, it is not hard to see how p can di�er

from p�. We suppose that the objective situation satis�es independence, and

that X's causal graph G matches the objective causal graph G�. However,

if her speci�cation S di�ers from the objective speci�cation then the prob-

ability function p determined by the subjective network (G; S) would not

be expected to agree exactly with p�. The back row of Figure 9 shows what

happens if one of the nodes has its associated probability speci�ers perturbed

by 0.03, the middle row shows what happens if half the nodes' probabilities

are perturbed by 0.03, and the front rows gives the case where all nodes have

their probabilities perturbed.

In practice probabilistic and graphical subjectivity will occur together,

making it even less likely that p is close enough to p� for practical purposes.

The back row of Figure 10 shows what happens if a node is removed (arrows

31If one or more of the other direct causes or their arrows to Cj are also absent in G,

then independence may be reinstated, although this would be a freak occurrence and the

extra change may break a further independence relation elsewhere in the graph.
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Figure 8: Arrows removed.

Figure 9: Node probabilities perturbed.
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Figure 10: Nodes and arrows removed, node probabilities perturbed.

re-routed), then an arrow is removed, and then one node's probabilities are

perturbed by 0.03. The front row shows what happens if half the nodes then

half the remaining arrows are removed, then half the remaining nodes are

perturbed.

Thus subjectivity in a Bayesian network can lead, signi�cantly often, to

practical problems: the distribution determined by a subjective network may

di�er too much from the objective distribution to be of practical use.

x4

Two-Stage Bayesian Networks

We have seen some of the problems that face interpretations of Bayesian net-

works. The independence assumption can fail for an objective interpretation

because correlations may be accidental or have non-causal explanations. In-

dependence can hardly be expected to hold for a subjective interpretation |

the agent's Bayesian network will generally give rise to a probability function

p which di�ers from her true belief function | but more importantly p is

also likely to di�er from objective probability, which upsets the alternative

justi�cation of subjective networks.
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I want to argue for another view of Bayesian networks, which I believe

rests on �rmer foundations. The view I put forward here initially adopts

a subjective interpretation, where the graph in the Bayesian network is an

agent's representation of causal structure and the probability speci�ers are

her degrees of rational belief. I acknowledge the fact that, according to the

above arguments, the distribution speci�ed by an agent's Bayesian network

may not be close enough to the objective distribution to be of much practical

use, but I argue that it is a good starting point, and can be re�ned to better

approximate reality. This gives a two-stage methodology where stage one is

the representation of X's belief function p by an initial Bayesian network

and stage two is the further re�nement of the network. In terms of founda-

tions, stage one yields a subjective interpretation (but a di�erent subjective

interpretation to those given in x3), while stage two borrows techniques from

the abstract approach in order to deliver a network whose distribution more

closely approximates the objective distribution (and in the process of re�ne-

ment the causal interpretation may be dropped as we shall see).

Two key questions require attention before we can be convinced of these

two-stage foundations for Bayesian networks. Firstly, how can stage one

be justi�ed? I have argued against a strict subjective interpretation, and so

must somehow demonstrate that some other kind of subjective interpretation

of the Bayesian network is a good starting point. I shall do this in the rest of

this section and the next section. Secondly, how can stage two be performed?

I shall discuss the re�nement of Bayesian networks in x6.

I shall interpret X's Bayesian network as her background knowledge: the

causal graph G contains her knowledge of causal variables and their causal

relations, and the probability speci�cation S is her knowledge of conditional

probabilities of causes given parent-states.32 The independence assumption

may then be used to determine X's degrees of belief from her background

knowledge: her full belief function will be the probability function determined

by the Bayesian network on G and S under the independence assumption.

Thus independence is no longer a substantive assumption linking the

agent's causal graph with some pre-determined rational belief function, it is

a logic, used to derive undetermined degrees of belief from those that are

given in X's probability speci�cation.

The central issue then is how we can justify the use of the independence

assumption as a means of determining a rational belief function.

This issue of �nding a single rational belief function given some back-

32I shall leave it open as to whether these probabilities are taken to be estimates of ob-

jective probabilities or informed degrees of belief. It suÆces that they count as knowledge

and may be used to guide X 's other beliefs.
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ground knowledge has received plenty of attention in the literature. Ap-

proaches range from Laplace's principle of indi�erence to Jaynes' maximum

entropy principle. The former says that if X is indi�erent as to which of J

alternatives is true then she should believe each of them to degree 1=J . The

latter explicates and generalises the former as follows. A probability function

over C1; : : : ; CN may be fully speci�ed by specifying values for each of the pa-

rameters xk1;:::;kN = p(C1 = vk11 ^ : : :^CN = vkNN ), where vkii 2 fv1i ; : : : ; v
KN

i g

for i = 1; : : : ; N . We have the constraints that each xk1;:::;kN 2 [0; 1], and

by additivity
P

k1;:::;kN
xk1;:::;kN = 1, together with any constraints implied

by background knowledge. The maximum entropy principle says that in the

absence of any further information X should select a most rational belief

function by choosing the xk1;:::;kN subject to these constraints which max-

imises the entropy

H = �
X

k1;:::;kN

xk1;:::;kN logxk1;:::;kN :

There are several convincing justi�cations for the maximum entropy prin-

ciple. The most well-known involves Shannon's information-theoretic inter-

pretation of entropy as a measure of uncertainty, in which case we maximise

entropy subject to some background knowledge if we determine a probability

function whose informativeness is as close as possible to that of just the back-

ground knowledge itself. A second justi�cation is based on Boltzmann's work

with entropy in physics, and a third involves Paris and Vencovsk�a's demon-

stration that the maximum entropy solution is the only completion to sat-

isfy various intuitively compelling desiderata, such as language invariance.33

Gr�unwald gives a fourth, game-theoretic justi�cation: maximum entropy is

the (worst-case) optimal distribution for a game requiring the prediction of

outcomes under a logarithmic loss function.34

Where does this leave independence and stage one of our two-stage method-

ology? Stage one is justi�ed because the probability function determined by

the independence assumption from the Bayesian network coincides with that

determined by the maximum entropy principle, as we shall now see.

33See [Paris 1994], [Paris & Vencovsk�a 1997], [Paris 1999] and [Paris & Vencovsk�a 2001]

for the details of these justi�cations.
34[Gr�unwald 2000].
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x5

Bayesian Networks have Maximum Entropy

The argument for the identity of the Bayesian network and maximum entropy

functions requires �rst making the constraints imposed by the background

knowledge explicit, and next showing that if we maximise entropy subject to

these constraints then we get the same solution as that determined by the

Bayesian network under the independence assumption.

5.1 Background Knowledge

Agent X's background knowledge consists of the components of a causally

interpreted Bayesian network: a causal graph and the speci�ed probabilities

of literals conditional on states of their parents. We �rst need to formulate

this knowledge in a way that can more formally be applied to the maxi-

mum entropy procedure. Regarding the probability speci�cation, there is no

problem. We can simply maximise entropy subject to the constraints that

certain probabilities, namely those in the Bayesian network speci�cation, are

�xed from the outset. However, the causal graph does not provide obvious

constraints | it is of qualitative form, free from notions like entropy or prob-

ability. Therefore we need some procedure for turning the causal information

into a constraint on probability.

I suggest that the causal interpretation imposes the following constraint.

Suppose we are presented with the components of a Bayesian network involv-

ing variables C1; : : : ; CN and then use these to determine a single rational

belief function p1, whether by independence, maximum entropy or some other

means. Then we �nd out further causal information, namely that there are

some new variables D1; : : : ; DM to be added to the causal graph, and that

these variables are not causes of the current C-variables C1; : : : ; CN . In-

tuitively, this new information should not a�ect our understanding of the

original problem on the C-variables. More precisely, suppose the new infor-

mation takes the form of an extension of the original causal graph where the

D-variables do not cause C-variables, and an extension to the probability

speci�cation incorporating new conditional probabilities of the D-variables

given their parents. If we use this new Bayesian network to determine a new

rational belief function p2 over the larger domain C1; : : : ; CN ; D1; : : : ; DM ,

then the restriction of p2 to the C-variables should agree with p1, the func-

tion based just on the C-variables. I shall call this the principle of causal

irrelevance: learning of the new variables should be irrelevant to degrees of

belief on the previous domain.
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Figure 11: Smoking, lung cancer, bronchitis and chest pains.

This principle is based on an asymmetry of causation whereby information

about causes can lead to information about their e�ects, but knowledge of

e�ects does not provide useful information about causes. This is not to

say that information about the value or occurrence of an e�ect is irrelevant

to the question of what the value of its cause is (which is clearly wrong),

but that information of the form that a variable has an e�ect of unknown

value is irrelevant to its own value. The same need not be true of causes: if

two variables thought to be causally unrelated are found to have a common

cause, one may be wise to suppose that these variables are probabilistically

dependent to a greater extent than previously thought.

Take a simple example: suppose L signi�es lung cancer and B bronchitis.

We know of no causal relations linking the two variables, and have the prob-

abilities p(l); p(b) for each literal l; b involving L;B respectively. We then use

this information to determine a joint probability distribution p1 over L and

B. Suppose we later learn that S, smoking, is a cause of lung cancer and

of bronchitis, and we �nd the probabilities p(ljs); p(bjs); p(s) for each literal

l; b; s involving L;B; S respectively. Then, because S is a common cause, we

might be inclined to form a new belief function p2 over L, B and S which

renders L and B more dependent than they were under p1: p2(ljb) > p1(ljb)

for some literals l and b. The motivation is that if we �nd out b, then we

now know this may be because some literal s has caused b, in which case s

may also have caused l, making it more likely than we would previously have

thought.

Suppose next we learn that each of lung cancer and bronchitis cause chest

pains C, as in Figure 11. If we �nd values for p(cjl ^ b) for each literal c,

l and b, and form a new belief function p3, the causal irrelevance condition

requires that p3 must not di�er from p2, over S, L and B. For example,

p3(ljb) = p2(ljb), for each l and b. The idea here is that if we learn b, then

knowledge of the existence of the common e�ect C does not give us a new

way l may occur and so our degree of belief in l should not change. C is
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irrelevant to S, L and B.

In sum, I shall assume that the process of determining a single rational

belief function is constrained not only by the probability values in the spec-

i�cation of the Bayesian network, but also by the causal graph under the

principle of causal irrelevance. The principle of causal irrelevance is strong

enough to allow causal information to constrain rational belief, and thereby

play a part in our new justi�cation of the independence assumption, yet,

unlike the independence assumption, weak enough to be uncontroversial in

itself.

5.2 Maximising Entropy

The key proposition is this:

Bayesian Networks Maximise Entropy

Given the probability speci�cation and causal graph of a Bayesian

network and the principle of causal irrelevance, the distribution which

maximises entropy is just the distribution determined by the Bayesian

network under the independence assumption.

Proof: The strategy of the proof will be to use Lagrange multipliers

to derive conditions for entropy to be maximised, and then show that the

Bayesian network distribution satis�es these conditions. This straightforward

method is possible for the following reason. The constraints | which consist

of the speci�ed probabilities, certain probabilities �xed by the causal graph

under causal irrelevance, and additivity constraints common to all probability

distributions | are linear and restrict the domain of the entropy function to a

compact convex set in [0; 1]K1� : : :� [0; 1]KN ,35 and on that domain, entropy

is a strictly concave function (as shown below). Thus the problem has a

unique local maximum, the global maximum, and if the Bayesian network

distribution satis�es the conditions for an optimal solution then it must be

the unique global maximum.

We can see that entropy is strictly concave as follows. H is strictly concave

if and only if, for any two distinct vectors a and b of the parameters xk1;:::;kN

and � 2 (0; 1),

H(�a+ (1� �)b) > �H(a) + (1� �)H(b),

�
X

ai log ai+(1��)
X

bi log bi�
X

(�ai+(1��)bi) log(�ai+(1��)bi) > 0

, �
X

ai log
ai

�ai + (1� �)bi
+ (1� �)

X
bi log

bi

�ai + (1� �)bi
> 0

35See [Paris 1994], proposition 6.1, page 66.
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, �d(a; �a+ (1� �)b) + (1� �)d(b; �a+ (1� �)b) > 0;

where d signi�es cross entropy , a measure of distance of probability distribu-

tions, and a, b and �a+(1��)b are non-zero since
P
ai = 1 =

P
bi; � 2 (0; 1).

d is well known to be non-negative and strictly positive if its arguments are

distinct.36 Thus d(a; �a + (1� �)b) is strictly positive if a 6= �a + (1� �)b,

which is true since a and b are distinct and � 2 (0; 1). Therefore H is strictly

concave and the Lagrange multiplier approach will yield the global maximum.

The next thing to do is to reformulate the optimisation problem to make it

suit the Bayesian network framework. This means �nding more appropriate

parameters than the standard xk1;:::;kN mentioned above. Without loss of

generality we can suppose the nodes C1; : : : ; CN are ordered ancestrally with

respect to the causal graph G in the Bayesian network: that is, all the parents

of Ci in G come before Ci in the ordering.37 To make the proof clearer we

shall also suppose that all the probabilities in the speci�cation are positive

| we shall see later that zeros do not a�ect the result. Let ckii represent the

literal Ci = vkii , for ki = 1; : : : ; Ki; i = 1; : : : ; N . The new parameters are

y
k1;:::;ki�1
i;ki

= p(ckii jc
k1
1 ^ : : : ^ c

ki�1
i�1 );

for i = 1; : : : ; N . The main thing to note about this parameterisation is that

by the chain rule of probability,

xk1;:::;kN =
NY
i=1

y
k1;:::;ki�1
i;ki

:

Now we shall translate the entropy formula into this framework (in what

follows we shall minimise negative entropy �H, which is equivalent to max-

imising entropy H):38

�H =
X

k1;:::;kN

xk1;:::;kN log xk1;:::;kN

=
X

k1;:::;kN

2
4 NY
j=1

y
k1;:::;kj�1
j;kj

3
5 NX
i=1

log y
k1;:::;ki�1
i;ki

=
NX
i=1

X
k1;:::;kN

2
4 NY
j=1

y
k1;:::;kj�1
j;kj

3
5 log yk1;:::;ki�1i;ki

36See [Paris 1994] proposition 8.5 for example.
37Recall that such an ordering is always possible because of the dag structure of the

causal graph.
38Note that the existence and uniqueness of a maximum is independent of parameteri-

sation.
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=
NX
i=1

X
k1;:::;ki

2
4 iY
j=1

y
k1;:::;kj�1
j;kj

3
5 log yk1;:::;ki�1i;ki

;

where we make this last step because for each i we can separate out

X
ki+1;:::;kN

2
4 NY
j=i+1

y
k1;:::;kj�1
j;kj

3
5 ;

and these terms cancel to 1 by additivity of probability.

We shall deal with three types of constraints. The speci�cation con-

straints are determined by those values provided in the Bayesian network

speci�cation. Causal constraints are determined by the causal graph under

the causal irrelevance condition. Finally additivity constraints are imposed

by the axioms of probability. While one might suspect that all these con-

straints would lead to a complicated optimisation problem, we will see that

by adopting an inductive approach we will be able to form a Lagrangian

function which only incorporates relatively few speci�cation and additivity

constraints.

Within the new framework we can write the speci�cation constraints as

p(ckii jc
kr1
r1
^ : : : ^ c

krL
rL ) = a

kr1 ;:::;krL
i;ki

;

where the cr1; : : : ; crL involve the parents of Ci, r1; : : : ; rL < i (thanks to the

ancestral order) and i = 1; : : : ; N .39 We also have constraints imposed by

additivity:
P

ki
y
k1;:::;ki�1
i;ki

= 1 for each k1; : : : ; ki�1; i = 1; : : : ; N .

Decomposing the entropy as H =
PN

i=1Hi where

Hi =
X

k1;:::;ki

2
4 iY
j=1

y
k1;:::;kj�1
j;kj

3
5 log yk1;:::;ki�1i;ki

;

we shall prove the proposition by induction on N . The case N = 1 is triv-

ial since the constraints p(ck11 ) = a1;k1 completely determine the probability

distribution over C1: there is nothing to do to maximise entropy and so the

Bayesian network distribution, which satis�es the constraints, maximises en-

tropy. Suppose the induction hypothesis holds for N � 1 and consider the

case for N . It is here that we apply the principle of causal irrelevance to

generate the causal constraints on the maximisation process from the causal

graph. Since the variables are ordered ancestrally, the move from N � 1

to N essentially involves incorporating a new variable CN which is not a

39Note that the r1; : : : ; rL depend on i. I am inclined to avoid any further subscripting

however.
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cause of any of the previous variables C1; : : : ; CN�1. Hence if we maximise

entropy on this new domain and restrict the resulting probability function

to C1; : : : ; CN�1 then by causal irrelevance we must have maximised en-

tropy on this smaller domain. Applying the induction hypothesis on this

smaller domain fC1; : : : ; CN�1g, we see that entropy is maximised if the dis-

tribution is determined by the Bayesian network on C1; : : : ; CN�1. Thus for

i = 1; : : : ; N � 1, the parameters y
k1;:::;ki�1
i;ki

must be �xed to a
kr1 ;:::;krL
i;ki

. Now

H1; : : : ; HN�1 involve only these �xed parameters, so in order to maximise

H all that remains is to maximise HN with respect to y
k1;:::;kN�1

N;kN
, subject

to the speci�cation constraints �xing the values a
kr1 ;:::;krL
N;kN

and the additivity

constraints
P

kN
y
k1;:::;kN�1

N;kN
= 1 for each k1; : : : ; kN�1.

We shall now adapt the speci�cation constraints.

Let bkr1 ;:::;krL = p(c
kr1
r1 ^ : : : ^ c

krL
rL ) and ek1;:::;kN�1 =

Q
j<N y

k1;:::;kj�1
j;kj

be

constants, �xed by having maximised entropy on C1; : : : ; CN�1. Then

a
kr1 ;:::;krL
N;kN

bkr1 ;:::;krL = p(ckNN ^ ckr1r1
^ : : : ^ c

krL
rL )

=
X

ki;i6=r1;:::;rL;N

p(ck11 ^ : : : ^ ckNN )

=
X

ki;i6=r1;:::;rL;N

Y
j�N

y
k1;:::;kj�1
j;kj

;

=
X

ki;i6=r1;:::;rL;N

ek1;:::;kN�1y
k1;:::;kN�1

N;kN
:

We are now in a position to specify the Lagrangian function for the min-

imisation of �HN :

�N =
X

k1;:::;kN

ek1;:::;kN�1y
k1;:::;kN�1

N;kN
log y

k1;:::;kN�1

N;kN
+

X
kr1 ;:::;krL ;kN

�
kr1 ;:::;krL
kN

�

2
4 X
ki;i6=r1;:::;rL;N

ek1;:::;kN�1y
k1;:::;kN�1

N;kN
� a

kr1 ;:::;krL
N;kN

bkr1 ;:::;krL

3
5

+
X

k1;:::;kN�1

�k1;:::;kN�1

2
4X
kN

y
k1;:::;kN�1

N;kN
� 1

3
5

=
X

k1;:::;kN

�
ek1;:::;kN�1y

k1;:::;kN�1

N;kN
log y

k1;:::;kN�1

N;kN
+

�
kr1 ;:::;krL
kN

h
ek1;:::;kN�1y

k1;:::;kN�1

N;kN
� a

kr1 ;:::;krL
N;kN

bkr1 ;:::;krL
i
+
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�k1;:::;kN�1

h
y
k1;:::;kN�1

N;kN
� 1=KN

i �
:

By Lagrange's theorem,40 in order to �nd conditions for a minimum

we must �rst check a constraint quali�cation. Enumerate the constraints

f1; : : : ; fJ . Form a matrix A by letting each row i consist of the partial

derivatives
@fi

@y
k1;:::;kN�1

N;kN

; 1�kj�Kj ; j = 1; : : : ; N:

Finally check that the rank of A is J | this is easily done and I shall avoid

the details here.

Entropy is maximised if the partial derivatives of the Lagrangian are zero,

@�N

@y
k1;:::;kN�1

N;kN

= ek1;:::;kN�1

h
1 + log y

k1;:::;kN�1

N;kN
+ �

kr1 ;:::;krL
kN

i
+ �k1;:::;kN�1 = 0

Given any such equation we can eliminate the Lagrange multiplier �k1;:::;kN�1

by �nding another equation involving k0N 6= kN ,

@�N

@y
k1;:::;kN�1

N;k0
N

= 0

(there will always be another such equation since CN has at least two values),

and substituting to give a new equation

�
kr1 ;:::;krL
kN

� �
kr1 ;:::;krL
k0
N

= log y
k1;:::;kN�1

N;k0
N

� log y
k1;:::;kN�1

N;kN

We next eliminate the multiplier expression on the left-hand side by �nding

another such equation involving k01; : : : ; k
0
N�1 such that k0r1 = kr1; : : : ; k

0
rL

=

krL. There will always be another such equation unless L = N � 1, in which

case the constraints uniquely determine the Bayesian network distribution,

and entropy is trivially maximised. This then gives

log y
k1;:::;kN�1

N;k0
N

� log y
k1;:::;kN�1

N;kN
= log y

k0
1
;:::;k0

N�1

N;k0
N

� log y
k0
1
;:::;k0

N�1

N;kN
:

Finally, all we need do is note that in the Bayesian network distribution the

constraints are satis�ed and the independence assumption implies that

y
k1;:::;kN�1

N;kN
= y

kr1 ;:::;krL
N;kN

= a
kr1 ;:::;krL
N;kN

;

y
k0
1
;:::;k0

N�1

N;kN
= y

k0r1
;:::;k0rL

N;kN
= y

kr1 ;:::;krL
N;kN

= a
kr1 ;:::;krL
N;kN

;

40See for example [Sundaram 1996] x5.2.1
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in which case we substitute into our condition:

a
kr1 ;:::;krL
N;k0

N
� a

kr1 ;:::;krL
N;kN

= a
kr1 ;:::;krL
N;k0

N
� a

kr1 ;:::;krL
N;kN

;

and �nd that it clearly holds. Thus the Bayesian network distribution is the

entropy maximiser, as required.

All that remains is to point out what happens when speci�ers may be

zero. There are two (compatible) scenarios: if some a
kr1 ;:::;krL
j;kj

= 0 for j < N

then the corresponding ek1;:::;kN�1 =
Q
j<N y

k1;:::;kj�1
j;kj

, which by the induction

hypothesis is
Q
j<N a

kr1 ;:::;krL
j;kj

, vanishes. This eliminates entropy terms and

constraints equally, leaving fewer partial derivative conditions. These condi-

tions are satis�ed as above. The second scenario is that some a
kr1 ;:::;krL
N;kN

= 0.

In this case the Lagrangian and partial derivatives are as before, the con-

straints are satis�ed as before, but when substituting zeros in the partial

derivatives we make use of the convention, common when dealing with the

cross entropy measure, that 0[log 0� log 0] = 0 log 0=0 = 0. Thus the condi-

tions are satis�ed by null speci�ers. 2

Thus we see that the independence assumption can be justi�ed after all.

The important thing to remember is that under the two-stage foundations,

the independence assumption is neither a fact of causality nor even an as-

sertion about an agent's knowledge. It is a mechanism that can be used

to derive new probability statements from those in the agent's background

knowledge. Independence is justi�ed because as a logic it coincides with

maximum entropy, which has well known justi�cations.

x6

Stage Two

Given background knowledge consisting of a causal graph G and associated

probability speci�cation S, we can represent the rational (maximum entropy)

belief function p by the Bayesian network on G and S. This is stage one of

the two-stage methodology. However, while p is rational given background

knowledge, it may not bear a close enough resemblance to objective probabil-

ity to be put to practical use. If that is the case then we need to transform

the Bayesian network into one which more closely approximates objective

probability. This is stage two of the two-stage methodology. Bayesian net-

works may be applied to medical diagnosis for example, or fault-�nding in

aeroplanes. In such high risk scenarios it is not suÆcient that any deci-

sions are deemed reasonable given a lack of relevant information: it would
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be negligent not to collect enough relevant information to reliably model the

objective situation.

Thus the next step is to re�ne the Bayesian network in the light of new

information, in order to achieve greater reliability. Many of the algorithms

from the extensive literature on learning Bayesian networks from data41 can

be applied here. In the rest of this section I will summarise my own ideas

in this respect | these are simple techniques which I believe have a clear

justi�cation that coheres well with the entropy-based approach of the last

section.42 First I shall deal with the case where new causal information

comes to be known. After this I shall address the following questions. What

sort of information should one collect in order to best re�ne the network?

How one can limit the complexity of the network?

6.1 Causal Information

Suppose our agent X �nds out that Ci causes Cj. I suggest that she should

just add an arrow from Ci to Cj to her initial causal graph (if there is no ar-

row there already), and she should ensure her specifying probabilities p(cjjdj)

take this new parent into account. There are two possible justi�cations of

this adding-arrows strategy. One can apply the arguments of the last section.

If X learns of the new causal link and the corresponding probabilities then

her background knowledge now includes an extended causal graph and prob-

ability speci�cation, in which case she should maximise entropy by adopting

the new Bayesian network formed by adding the arrow and the speci�ers.

The second possible justi�cation relies on the dependence principle43 as

opposed to causal irrelevance, as follows. Suppose we start o� with Bayesian

network (G; SG), where G is X's causal graph and SG is her associated prob-

ability speci�cation, whose entries we shall assume agree with the objective

probabilities p�(cijdi). Then we add an arrow from Ci to Cj and change the

speci�ed probabilities to give a new network (H;SH). We measure the im-

provement of the new network over the old by how much closer its induced

probability function pH is to the objective probability function p� than pG,

according to the usual measure of distance between probability functions,

41See [Jordan 1998] and [Buntine 1996] for good surveys.
42Some related work: the Kutat�o algorithm of [Herskovitz 1991] also has an entropy-

based justi�cation. However it involves minimising entropy and poses signi�cant computa-

tional problems in the worst case. [Jitnah 1999] employs mutual information as I do, but

as a technique for probabilistic inference given a Bayesian network rather than a means

for deriving the network itself.
43Recall that the dependence principle says that a direct cause changes the probability

of its e�ect conditional on the e�ect's other causes.
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cross entropy. Then we have the following facts:

Improvement of Adding Arrows

(i) the new network is no worse a network than the initial network;

(ii) the new network is a better network if and only if Cj is probabilis-

tically dependent on Ci, conditional on Cj's other parents D.

In particular, if the dependence principle holds then the fact that Ci is

a cause of Cj entails that the two nodes are conditionally probabilistically

dependent and thus that the probability distribution represented by the new

network is closer to the target objective distribution than that of the old

network: we are justi�ed in adding an arrow from Ci to Cj.

Proof: For simplicity (but without loss of generality as we shall see

shortly) we shall assume that pG and pH are strictly positive over the atomic

states c1 ^ : : : ^ cN .

For (i) we need to show that d(p�; pH) � d(p�; pG) � 0, where d is cross

entropy distance. So,

d(p�; pH)� d(p�; pG) =
X
s

p�(s) ln
p�(s)

pH(s)
�
X
s

p�(s) ln
p�(s)

pG(s)

=
X
s

p�(s) ln
pG(s)

pH(s)
;

where the s are the atomic states, and bearing in mind that pH(s) > 0. Now

for real x > 0; ln(x) � x� 1. By assumption pG(s)=pH(s) > 0, so

X
s

p�(s) ln
pG(s)

pH(s)
�
X
s

p�(s)

"
pG(s)

pH(s)
� 1

#

=
X
s

p�(s)
pG(s)

pH(s)
� 1;

and thus we need to show that

X
s

p�(s)
pG(s)

pH(s)
� 1:

Now since we are dealing with Bayesian networks,

pG(s)

pH(s)
=

Q
p�(ckjd

G
k )Q

p�(ckjd
H
k )
;

for each literal ck consistent with s, where dGk is the state of the parents of

C according to G which is consistent with s, and likewise for dGk . But H is
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just G but with an arrow from Ci to Cj, so the terms in each product are

the same and cancel, except when it comes to literals cj involving node Cj.

Thus
pG(s)

pH(s)
=

p�(cjjd
G
j )

p�(cjjd
H
j )

=
p�(cjjd)

p�(cjjci ^ d)
;

where we just let d be dGj and ci the remaining literal in dHj . Substituting

and simplifying,

X
s

p�(s)
pG(s)

pH(s)
=
X

p�(ci ^ cj ^ d)
p�(cjjd)

p�(cjjci ^ d)

=
X

p�(cjjd)p
�(djci)p

�(ci):

Consider the new set of variables fCi; Cj; Dg where Ci and Cj are as before

and D takes as values the states of the parents of Cj according to G. Form

a Bayesian network T incorporating the graph Ci �! D �! Cj (with spec-

ifying probabilities determined as usual from the probability function p�).

Then since T is a Bayesian network,
P
p�(cjjd)p

�(djci)p
�(ci) =

P
pT (ci^ cj ^

d) = 1 by the additivity of probability. Thus
P

s p
�(s)pG(s)=pH(s) = 1 so

d(p�; pH)� d(p�; pG) � 0, as required.

Let us now turn to (ii). From the above reasoning we see that

d(p�; pH)� d(p�; pG) < 0, ln
pG(s)

pH(s)
<

pG(s)

pH(s)
� 1

for some atomic state s. But lnx < x� 1, x 6= 1, and

pG(s)

pH(s)
6= 1,

p�(cjjci)

p�(cjjci ^ d)
6= 1, p�(cjjci ^ d)� p�(cjjd) 6= 0;

where the ci; cj; d are consistent with s. Therefore, d(p
�; pH)�d(p

�; pG) < 0 if

and only if there is some ci; cj; d for which the conditional dependence holds.

The assumption that pG and pH are positive over atomic states is not

essential. Suppose pH is zero over some atomic states. Then in the above,

X
s

p�(s) ln
pG(s)

pH(s)
=

X
s:pH(s)>0

p�(s) ln
pG(s)

pH(s)
+

X
s:pH(s)=0

p�(s) ln
pG(s)

pH(s)
:

The �rst sum on the right hand side is � 0 as above. The second sum is

zero because each component is, as we shall see now. Suppose pH(s) = 0.
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Then
QN
k=1 p

�(ckjd
H
k ) = 0 so p�(ck ^ d

H
k ) = 0 for at least one such k, in which

case p(s) = 0 since by the axioms of probability, p(u) = 0 ) p(u ^ v) = 0.

Now in the sum read p�(s) ln pG(s)=pH(s) to be p
�(s) ln pG(s)�p

�(s) ln pH(s).

In dealing with cross entropy by convention 0 ln 0 is taken to be 0. There-

fore p�(s) ln pG(s)=pH(s) = 0 ln pG(s) � 0 = 0. The same reasoning ap-

plies if pG is zero over some atomic states. Likewise, if p�(s) is zero then

p�(s) ln pG(s)=pH(s) is zero too. 2

This justi�es the adding-arrows approach if X learns of a new causal link

amongst the current variables. If she learns of a new variable CN+1 that is

causally related to one or more of the other variables, and she also learns the

probabilities p(cN+1jdN+1), then we can apply the above argument (or equally

the arguments of x5) to show that X's new network should be constructed

from her old network by adding the new node and causal arrows to her graph

and the new probabilities to her speci�cation.

Finally note that the above argument only requires that the added arrow

links conditionally probabilistically dependent nodes. As we have discussed

in x2, nodes need not be causally related to be probabilistically dependent.

Therefore, if our agent is presented with information to the e�ect that two

nodes are conditionally dependent, she is justi�ed in adding the correspond-

ing arrow to her network, regardless of whether those nodes are causally re-

lated. But as a result of this generalisation, the graph in the agent's Bayesian

network need no longer be causally interpreted: the Bayesian network be-

comes an abstract tool for representing a probability function.

6.2 Mutual Information

We now have a strategy for changing the network when causal information

or other probabilistic dependencies are presented to the agent. But is there a

strategy for seeking out a good arrow to add? By adding arrows we increase

both the size of the speci�cation required in the Bayesian network (the space

complexity) and the time taken to calculate probabilities from the network

(the time complexity) | is there a means of limiting these complexities to

prevent the network from becoming impractical? I shall address both these

questions in this section.

The key to limiting complexity consists in �nding constraints C such that

Bayesian networks satisfying C have acceptable complexity, and then ensuring

that (i) the current network satis�es C, and (ii) an arrow is only added to

the current network if the resulting network continues to satisfy C. Consider

by way of example the following constraints.
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� C1: no node has more than K parents, for some constant K. This

bound on the number of parents serves to restrict the space complexity

of a Bayesian network. For instance if K = 0 then the discrete network

(no arrows) is the only available network, if K = 1 then all networks

satisfying C1 have graphs that are forests, and if K = N � 1 there is no

restriction at all on the networks. It is easy to see that if all variables

are binary, the complexity of a network satisfying C1 is less than or

equal to (N �K + 1)2K � 1, a value that is linear in N .

� C2: the Bayesian network has space complexity of at most �. Now if

� = N the only network to satisfy C2 is the discrete network and if

� = 2N � 1 any network satis�es the constraint. Depending on the

problem in hand and available resources we will want to choose an

appropriate value for � or K which balances the range of networks

available with their complexity.

� C3: the graph is singly-connected. Having a singly connected graph

ensures that the Bayesian network can be used to calculate required

probabilities eÆciently (in time linear in the number of nodes N). Note

however that a singly-connected network can have space complexity up

to 2N�1 +N � 1 on binary-valued nodes, so in practice this constraint

may best be used with another which limits space complexity.

In sum, if we �x some constraints C the goal then is to �nd a constrained

network (a Bayesian network satisfying C) which gives a good approximation

to the target objective distribution p� (using cross entropy as a measure of

degree of approximation).

We shall associate a weight with each arrow in a Bayesian network as

follows. In order to weigh the arrows going into a node Ci we enumerate the

parents of Ci as D
1; : : : ; Dk. Then for j = 1; : : : ; k we weigh the arrow from

Dj to Ci by the conditional mutual information,

I(Ci; D
jjfD1; : : : ; Dj�1g) =

X
ci;d;dj

p�(ci ^ d ^ d
j) log

p�(ci ^ d
jjd)

p�(cijd)p�(djjd)
;

where d ranges over the states d1 ^ : : : ^ dj�1. Then:

Max-Weight Approximation

The network subject to constraints C which a�ords the closest approx-

imation to p� (according to the cross entropy measure of distance) is

the network satisfying C whose arrow weights are maximised.
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Proof: The distance between the probability function p determined by

X's Bayesian network and the target function p� is

d(p�; p) =
X
s

p�(s) log
p�(s)

p(s)

=
X
s

p�(s) log p�(s)�
X
s

p�(s) log
NY
i=1

p�(cijdi)

where the ci and di are consistent with s,

=
X
s

p�(s) log p�(s)�
X
s

p�(s)
NX
i=1

log p�(cijdi)

=
X
s

p�(s) log p�(s)�
X
s

p�(s)
NX
i=1

log
p�(ci ^ di)

p�(ci)p�(di)
�
X
s

p�(s)
NX
i=1

log p�(ci)

= �H(p�)�
NX
i=1

I(Ci; Di) +
NX
i=1

H(p�jCi)

where H(p�) is the entropy of function p�, I(Ci; Di) is the mutual information

between Ci and its parents and H(p�jCi) is the entropy of p� restricted to

node Ci. The entropies are independent of the choice of Bayesian network so

the distance between the network and target distributions is minimised just

when the total mutual information is maximised.44

Note that

I(A;B) + I(A;CjB)

=
X
a;b;c

p�(a ^ b ^ c)

"
log

p�(a ^ b)

p�(a)p�(b)
+ log

p�(a ^ cjb)

p�(ajb)p�(cjb)

#

=
X
a;b;c

p�(a ^ b ^ c) log
p�(a ^ b)p�(a ^ b ^ c)p�(b)p�(b)

p�(a)p�(b)p�(b)p�(a ^ b)p�(c ^ b)

=
X
a;b;c

p�(a ^ b ^ c) log
p�(a ^ b ^ c)

p�(a)p�(c ^ b)
= I(A; fB;Cg):

By enumerating the parents Di of Ci as D
1; : : : ; Dk, we can iterate the

above relation to get

I(Ci; Di) = I(Ci; D
1) + I(Ci; D

2jD1)+

44This much is a straightforward generalisation of the proof of [Chow & Liu 1968] that

the best tree-based approximation is the maximum weight spanning tree.
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I(Ci; D
3jfD1; D2g) + : : :+ I(Ci; D

kjfD1; : : : ; Dk�1g):

Therefore,

NX
i=1

I(Ci; Di) =
NX
i=1

X
j

I(Ci; D
jjfD1; : : : ; Dj�1g);

and the cross entropy distance between the network distribution and the

target distribution is minimised just when the sum of the arrow weights is

maximised. 2

Note that this result is independent of choice of enumeration of the vari-

ables, as can be seen from the proof.

There are various ways one might try to �nd a constrained network with

maximum or close to maximum weight, but perhaps the simplest is a greedy

adding-arrows strategy: start o� with the discrete graph and at each stage

�nd and weigh the arrows whose addition would ensure that the dag struc-

ture and constraints C remain satis�ed, and add one with maximum weight.

If more than one best arrow exists we can spawn several new graphs by

adding each best arrow to the previous graph, and we can constantly prune

the number of graphs by eliminating those which no longer have maximum

weight. We stop the algorithm when no more arrows can be added.45

Given this algorithm and its justi�cation, we now have answers to our

two questions of this section. We seek out a good arrow to add by �nding

the arrow with maximum conditional mutual information weight. We limit

the complexity of the network by imposing constraints on the network.

Thus in stage two of the two-stage methodology we can improve the

causal network obtained in stage one by adding arrows | these arrows link

causally related variables or more generally probabilistically dependent vari-

ables, and a good strategy is to add the weightiest arrow which does not

violate constraints on the complexity of the network. The conditional mu-

tual information weighting is a measure of conditional dependence and so in

e�ect the strategy is to add an arrow between two nodes that are most (condi-

tionally) dependent. The resulting graph will not necessarily re
ect the true

causal relations amongst the variables, and so stage two corresponds more

closely to the abstract foundations for Bayesian networks than any causal

interpretation.

45See [Williamson 2000b] and [Williamson 2000] for analyses of the performance of this

algorithm, which turns out to be remarkably e�ective for a greedy approach.
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x7

Conclusion

While the independence assumption poses signi�cant problems for a straight-

forward objective or subjective interpretation of Bayesian networks, indepen-

dence can be though of as a means of determining a rational belief function

from an agent's background knowledge. Thus Bayesian networks can be

given �rm foundations by adopting a two-stage approach, whereby one �rst

adopts a subjective causal interpretation which may then be dropped as the

network is re�ned in order to better approximate a target objective proba-

bility function. These foundations appeal to information-theoretic notions

and assumptions about causality which are somewhat less contentious than

the independence assumption. Stage one is justi�ed by maximum entropy

considerations while an adding-arrows strategy for stage two can be justi�ed

by minimising cross entropy relative to the objective distribution. This ap-

proach is not subject to many of the problems that beset the objective or

subjective interpretations considered in x2 and x3: we do not need to worry

about individuation of variables, and stage two can be used to compensate

for the presence of accidental and extra-causal dependencies and any discrep-

ancies between the subjective network and an objective causal network. The

advantage over the abstract approach is that we don't require a database

of past case data to determine a network | stage one makes use of causal

and probabilistic background knowledge. The two-stage methodology can

be viewed as a way of integrating background knowledge (including qual-

itative causal knowledge) with machine learning techniques (of which the

adding-arrows strategy is one example).46
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