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JIM WOODWARD

CAUSAL INTERPRETATION IN SYSTEMS OF EQUATIONS®

Individual equations or systems of equations are commonly used in
the econometrics and causal modeling literature to make causal claims.
Consider, for example. a linear regression equation with n independent
variables X, ..., X,, and an error term U.

(l) Y=a|X|+-'-+a,,X,,+U

For example, with n = 2, ¥ in (1) might be interpreted as measuring the
height of individual plants in some population, and X; and X as the
amount of water and fertilizer that these plants receive. Discussions of
regression tell us that an equation like (1) can be used for several ditfer-
ent purposes. It can be used simply to describe or represent the pattern
of correlations among ¥, X,..... X, but it can also be used to make o
represent a causal claim. In the latter case (1) is understood as claiming
that X,..... X, are causes of ¥ and that U represents the combined influ-
ence of all the other causes of Y besides X,. ..., X, that are not explicitly
represented in (1). I will call this the natural causal interpretation of (1),
My interest in this essay is in what causal claims of this sort mean - both in
the case of individual equations and systems of equations. What is it that
we should understand (1) as claiming when we give it its natural causal
interpretation? What conditions must be satistied i (1) can regarded as
making a true causal claim?

I distinguish this interpretive issue. as I shall call it. from issues about
the conditions under which one can reliably estimate the cocllicients in
(1). The latter issues are epistemological in character - they have to do net
with what (1) means. but rather with when and how one can determine the
values of the coefficients in (1). Textbooks in econometrics have a great
deal to say about such estimation problems. For example. a familiar result
is that if the distribution of the error term satisties various conditions, one
of which is that the error term is uncorrelated with cach of the independent
variables X,. then Ordinary Least Squares (OLS) estimators for the coct-
ficients will have various desirable properties like unbiasedness. One ol
my themes in what follows will be that a substantial amount of recent dis-
cussion, both among philosophers and econometricians, has run together
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interpretive and epistemological issues in connection with equations like
(1). Conditions that have to do with reliable estimation such as those re-
garding the uncorrelatedness of the error term mistakenly have been taken
as conditions which equations like (1) must satisfy if they are to have a
causal interpretation.

The interpretive account I will be defending has a long history, although
it often has been ignored or misunderstood in recent discussion. The basic
themes can be found in econometricians like Frisch (1938) and Haavelmo
(1944), who emphasize the notions of invariance and autonomy and the
role of hypothetical experiments in causal interpretation. Among contem-
porary writers, Judea Pearl (1993, 1995, 1997) has articulated many of the
ideas I will be describing in a particularly clear and compelling way. The
notion of an intervention, on which I rely below, can be found in Pearl’s
work and also in the work of Clark Glymour and his collaborators (Spirtes
et al. 1993).

While the ideas that follow are certainly not original, there are a number
of reasons why they are worth the attention of philosophers. First, many of
the philosophers (e.g., Cartwright 1989, 1995: Humphreys 1989; Papineau
1991; Irzik 1996; Hausman 1998) who have recently discussed causal
modeling techniques have taken a very different view of the interpretive
issues. Second, a number of the ideas on which I will rely, such as the
connection between causation and manipulation, are regarded as unprom-
ising starting points for understanding causation by many philosophers. In
illustrating how these ideas may be used to provide a distinctive account
of the content of causal models, I hope to persuade philosophers that this
assessment is mistaken. Indeed, the ideas about hypothetical experiments
and invariance described below are useful and suggestive not just in un-
derstanding causal models, but in understanding causal and explanatory
claims in many other areas of science.

My discussion is organized as follows: Section 1 develops the basic
- ideas of invariance and of an ideal experimental manipulation or interven-
tion and applies these to individual regression equations. Section 2 applies
these to systems of equations. Section 3 compares these ideas with some
other accounts advocated by philosophers and social scientists. Section 4
draws some general morals.

The account that I will be pursuing can be motivated by appealing to a
common sense idea about the relationship between causation and manipu-
lation — that whatever else may be true of causes, they are potential handles
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or means for manipulating their effects. If we apply this thought o an
equation like (1) we are led to the following suggestion: the causal ¢laim
represented by (1) is true, if and only if we (or nature) were to conduct
an ideal hypothetical experiment in which the values of any of the rhs
variables X; or U were manipulated within some range. ¥ would change
in just the way represented by (1). Thus, for example, if X, were changed
in such an experiment by amount ¢ X; but none of the other rhs variables
in (1) were changed, then ¥ would change by amount «,d X;. Similarly,
changes in the value of U that do not change the values of the variables X,
should also change the value of ¥ in the way that (1) describes. To employ
standard terminology (cf. Woodward 1997) the relationship (1) should be
invariant under such manipulations of X, and U it should remain stable or
continue to hold under such changes. If, on the contrary. under an experi-
mental manipulation that sets the variable X; to some particular value A;
the coefficient a; or any other coefficient in (1) changes or if the functional
form of (1) changes, then (1) is not invariant under this manipulation and
(1) does not correctly describe the causal relationship between X, and ¥ for
this value of X;. (See below for a discussion of what the italicized phrise
means.) Since. as we shall see, there are several varieties of invariance
relevant to the causal interpretation of systems of equations. I will call the
notion just described level invariance. since it has to do with whether (1)
is invariant under interventions that appropriately change the levels of it
independent variables, including U.

1.1. Interventions

The connection between causation and manipulation just deseribed is very
rough: it needs to be qualitied and stated much more carcfully 1t it is 10
be remotely defensible. The remainder of this section attempts to do this,
First. what do we mean by an ideal hypothetical experiment? Clearly not
all ways of manipulating X; for the purposes of determining whether X,
causes ¥ will satisfy the conditions for such an experiment. For example,
if the event M which changes X; also directly causes a change in ¥, then
changes in X; might be accompanied by changes in ¥ in a way that satisfies
(1) even though there is no causal relationship at all between X, and V. A
similar possibility will be present if the event A which changes X, ulso
changes one of the other variables X, (j # i) which is also a cause of ).
or if the change in X; produced by the manipulation is merely correlated
with changes in other causes of ¥. What we need to do is to define the
notion of an ideal experimental manipulation so as to exclude these and
other possibilities.
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A serviceable approximation to the notion we want is this: an ideal
experimental manipulation M of X with respect to ¥ (or for the purposes
of determining whether X causes V) is an exogenous change in the value
of X which changes the value of Y if at all only through X and through
whatever variables are causally between X and Y and not through some
other route. Moreover, M must not be correlated with changes in Y that
proceed through some other route (that, is through a route that does not go
through X and those variables are causally between X and ¥). I will call a
process or event which changes X in a way that satisfies these conditions
an intervention on X with respect to Y. We assume that if it is true that
Y changes or would change under such an intervention on X in the way
specified by some putative causal relationship, this can only be because
the relationship really is causal. On the other hand, if a relationship fails
to be invariant under any interventions at all on its independent variables

~(i.e., in the variables it represents as causes) the causal facts are not as the
relationship represents them as being.

There are now a number of characterizations of the notion of an in-
tervention in the philosophical literature which are broadly similar to the
notion just described, although they differ in detail (see, e.g., Cartwright
and Jones 1991; Meek and Glymour 1994; Pearl 1995: Hausman 1998).
Fortunately, most of what I will have to say in what follows will not turn
on these details — the reader can simply think of an intervention on X
with respect to ¥ as a process that satisfies whatever conditions he or she
thinks must be satisfied in an ideal experimental manipulation of X for the
purposes of determining whether X causes Y.

1.2. Clarification

There are a number of other respects in which connection between causa-
tion and intervention advocated above requires clarification. As a point of
_ departure, 1 should emphasize that the above remarks are put forward as
an account of what it is for a particular kind of equation or mathematical
relationship — namely, a regression equation of form (1) — to correctly
represent a quantitative causal relationship. They are nor put forward as
a completely general account of what it is for a relationship to be causal.
Obviously, it can be true that X; causes ¥ even if (1) is not invariant under
interventions on X;. This will happen if the relationship between X; and
Y is causal but does not conform, in its quantitative behavior. to (1) - for
example, if the relationship is nonlinear. However., it would be a mistake to
conclude from this that the account offered above fails to capture what
must be true for an equation like (1) to describe a causal relationship.
While (1) says, when interpreted causally, that each of the independent
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variables X; causes Y. it does not just say this. Rather it makes a much
more specific quantitative claim about the causal relationship between X,
and Y. The ideas sketched above are put torward as an account of how this
quantitative claim is to be understood. Although [ believe that the general
outlines of the account sketched above can be extended (with appropriate
modifications) to other sorts of causal relationships. I will not try to argue
for this contention here.'

A second important point. which is implicit in my discussion above,
is that a relationship such as (1) may be invariant may correctly describe
the results of hypothetical interventions - for some range of values of its
independent variables that are set by interventions but not others. In fact. it
seems plausible that many if not almost all of the relationships described
by regression equations in the social and biological sciences will behave
in this way. For example. even if it is true that (1) is invariant under some
range of interventions on the amount of water that a plant receives it is
clearly not invariant under all such interventions — one cannot make a
plant grow arbitrarily tall by putting arbitrarily large amounts of water on
it. A similar point holds for many other social. biological and physical
relationships that we regard as causal. Consider the relationship between
the restoring force F exerted by a particular kind of spring and its extension
X. This may closely conform to Hooke's law (2) I = —kX but only
for (interventions that will produce) a certain range of extensions, If one
stretches the spring too much. (2) will break down.?

One possible response to these observations is that if there are any val-
ues of their independent variables produced by interventions for which (1)
and (2) fail to be invariant. then they do not represent genuine causal rela-
tionships. Bona-fide causal relationships. it may be said. must be invariant
under all possible interventions that set their independent variables to all
possible values. Given the connection between causation and manipulation
defended above. this position seems unreasonably stringent and unmotiy -
ated. As the examples of (1) and (2) above show. as long as a relationship
is stable under interventions that set some values of their independent vari-
ables. one can use it (with respect to those values) to manipulate. even if
it is not stable under all interventions. Hence. there is a natural motiva-
tion for saying that relationships that are invariant under some but not all
interventions can qualify as causal.

We can accommodate the above observations by explicitly relativiz-
ing the notion of invariance (and. correlatively the connection between
manipulation and causation) to a range of values of variables set by in-
terventions or. to express the same idea more compactly. to a range of
interventions. [ will thus say that a relationship like (1) is imvariant un-
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der some interventions but not others, and correctly describes the results
of some hypothetical experiments but not others. To qualify as a correct
causal description, a relationship must be invariant under some range of
interventions but it need not be (and in the case of the sorts of causal rela-
tionships typically described by regression equations will not be) invariant
under all interventions. Thus for example, (1) may qualify as a true causal
generalization (with respect to those values of its independent variables
for which it is invariant) if it is invariant under interventions that set the
value of the amount of water that the plants in some population receive to
1, 2 or 3 liters, even if (1) would break down if the plants were to receive
1000 liters of water. In such circumstances (1) does correctly describe how,
by manipulating the amount of water that a plant receives within the 1-3
liter range, one may manipulate its height within a certain range and this
establishes that (1) is a correct causal description within this range.

I'turn now to another issue concerning how the notion of invariance is to
be understood. My argument has been that a necessary and sufficient con-
dition for an equation like (1) to correctly represent a causal relationship is
that it be invariant under some range of interventions on its rhs variables.
However, 1 do not claim that when (1) represents a causal relationship
it will be invariant only under interventions on such variables. Typically,
when (1) represents a causal relationship, it will be invariant under many
other sorts of changes as well. It is analytically useful to separate such
“other changes” into two categories. First, there are changes in what we
may call background conditions. These are conditions or factors that are
not included in (1), either among the measured variables or in the error
term. Second, there are changes in variables that explicitly occur in (1)
where those changes do not involve interventions. I will first explore the
significance of stability under the first category of change and then turn to
the second category.

As an illustration of the notion of background conditions, return to the
interpretation of Y in (1) as measuring the height of individual plants in
some population, and X; and X5.as measuring the amount of water and
fertilizer that individual plants receive. Then background conditions for
(1) will include changes in the position of Mars, changes in the color of
the shirt worn by the person administering the water. and changes in the
day of the week. One expects that (1) will be stable under many changes
in background conditions of this sort, although of course it is an empirical
matter exactly which such changes will or will not disrupt (1).

Should we conclude from this that it is only a necessary but not a
sufficient condition for an equation such as (1) to describe a causal re-
lationship, that it be invariant under some range of interventions on its
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independent variables changes, and that an additional necessary condition
is required — namely that it be invariant under some range of changes in
background conditions as well? Once we have decided to relativize the
notion of invariance to a range of interventions, this additional move ap-
pears to be unnecessary. Any intervention must occur in some hackground
circumstances or other (e.g.. it will be an intervention in which an experi-
menter in a red shirt puts a liter of water on each of the plants on a Tuesday
afternoon while the position of Mars is such and such) and we can always
incorporate reference to these into the characterization of the intervention.
If (1) is invariant under an intervention occurring in certain background
conditions that sets the variable X; to some value x*. but not invariant
under other interventions occurring under different background conditions
that also set X; = x*, we can convey this fact by being explicit abowut
exactly which interventions in which background conditions fall within
the range of invariance of (1). In general. rather than trying to formu-
late an additional necessary condition having to do with invariance across
changes in background conditions for (1) to represent a causal relationship
(and hence struggling with the problem of finding a non-arbitrary answer
to the question of which background conditions) it seems preferable and
less arbitrary to say simply that different causal claims will differ in the
range of changes in background conditions under which they are invariant,
and that we can spell out the content of difterent casual claims by being
explicit about the range of interventions and other changes over which
they are invariant. This having been said. we should also note that while
a relationship can certainly count as causal if it fails to be invariant under
some changes in background conditions, relationships that are. so 1o speak.,
almost endlessly sensitive to changes in such conditions ~ that are altered
or disrupted in indefinitely many ways as background conditions shitt - are
regarded as of little scientific interest. even if they appear to be invariant
under interventions in some highly specialized background circumstances.

The second possibility described above concerns changes that are not
produced by interventions, but which do oceur in variables that explicithy
figure in a relationship. Consider a casual process that alters both Xy and
X in (1). Such a process will not count as an intervention on Xy, since
the change produced in X | will be correlated with the change produced
in another cause of Y. namely X> and by parallel reasoning also will not
count as an intervention on X. Nonetheless. we expect that it (1 describes
a causal relationship. it will be stable or invariant under some range of such
changes. It is important to understand what this means: in saving that (1)
will be invariant under such changes what we mean is that the change in
Y will be what (1) says it will be. given the changes in Xy and X, Thus
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if X; is changed by amount d X, and X, by amount d X, the total change
in Y will be a1dX| + axd X, if (1) s invariant under this change. This
contrasts with the change in ¥ that would be produced by an intervention
on X, which is just a;d X,. To put the point slightly differently, we may
interpret the individual coefficients in a linear regression equation as telling
us what change in ¥ would be produced by interventions on the associated
ths variables — thus the coefficient q, (az) tells us what the change in Y
would be under an intervention that produces a unit change in X(X;).
(Recall that an intervention on X will change X, but not any of the other
rhs variables in (1).) When several of the rhs variables in (1) are changed,
(1) will often remain invariant but in such cases, the total change in Y
will be the net effect or sum of the contributions made by the changes
in each of the independent variables where each of these contributions is
the change in Y that would have occurred if an intervention had occurred
on just that variable. Thus what is “the same” across cases in which X ]
is altered by amount dX, by an intervention, and cases in which X | is
altered by amount d X, and X, is altered by amount d X, is the contribution
(namely a;d X ) made to the total change in Y by the change in X, or,
alternatively, the relationship (1). Both of these need to be distinguished
from the total change in ¥ which will not of course be the same in these
two cases.

I have belabored this point because a number of recent criticisms of
the idea that causal relationships are invariant relationships turn on mis-
understandings about what should be expected to be invariant in cases in
which an effect has multiple causes. Both Richard Healey (1992) and Dan
Hausman (1998) note that in cases in which both X and X, are causes
of Y, the total change in ¥ will be different depending on the whether a
change occurs just in X or in both X, and X,. Hausman takes this to spell
trouble for standard formulations of the thesis that causal relationships are
invariant (Hausman 1998, 222ff.). In doing so, he interprets the thesis that
causal relationships are invariant as the thesis that the total change in ¥ will
be the same, regardless of whether X, alone is changed by an intervention
orboth X, and X, are changed. However, when invariance is understood in
the way advocated above and when we recognize the important difference
between the claim that the relationship (1) is invariant and the (obviously
false) claim that the total change in ¥ per unit change in X; will be the same
regardless of what else changes along with X;, we see that cases involving
multiple causes pose no threat to the connection between causation and
invariance that I advocate.

The claim that (1) is invariant under some interventions on its independ-
ent variables and the claim that it is invariant under some non-interventions
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that change those variables are logically or conceptually distinct. It appears
to be logically possible to have one sort of invariance without the other.
However, it is hard to think of realistic cases of causal relationships in
which this happens. As before. rather than looking for some additional
invariance condition, having to do with invariance across changes that are
not interventions, that will distinguish those generalizations that describe
causal truths from those that do not. it seems more natural and less arbitrary
to say that typical causal generalizations arc invariant not Justunder a range
of interventions but also under a range of changes in their independent
variables that do not result from interventions as well as under a range
of changes in background conditions and that other things being equal
we prefer relationships that are invariant under a larger or more important
range of interventions and changes.

I can further clarify the connection between causation and invariance
that I advocate by contrasting my views briefly with those of Nancy
Cartwright. In recent work (e.g.. 1995) Carntwright suggests that we should
distinguish between two questions — whether a relationship is causal and
the extent to which it is stable or invariant across various sorts of changes.
She contrasts what she calls “mere causal relationships™ with “capacitics
that will be stable across a range of envisioned changes™ or as she also
describes them, “supercausal relations™ which “remain invariant across
a range of envisioned interventions™ (1995, 55). A relationship can he
causal without being “supercausal™ or “invariant™ (1995. 56). Situations
meeting the conditions for a controlled experiment will sometimes allow
us to establish “what causal relationships obtain in that situation™ but.
because causation is different from invariance. we cannot infer from this
“what causal relationships will obtain outside that situation™. Additional
assumptions about capacities or invariance are required to “export” causal
conclusions to different situations.

Where Cartwright sees a sharp distinction between two questions (]s
this relationship causal? Is it invariant?). 1 sce something more closely
resembling a continuum. If one accepts the view that causal relationships
tell us something about the results of hypothetical experiments. then it
seems to follow that some measure of invariance under interventions i
necessary for a relationship to be causal at all. On any view that connects
causation and manipulation. relationships that are so unstable that they
are disrupted by all possible attempts to use them to manipulate will non
qualify as causal. From this perspective. what relatively stable or imvari-
ant relationships have is not some additional feature that is not present at
all in “mere™ causal relationships but rather more of the same feature
invariance and stability under a larger or more important range of inter-
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ventions and changes than is present in mere causal relationships. This is
not to deny Cartwright’s point about exportability, which is correct and
important, but rather to re-express it in terms of the idea that a relationship
can be invariant under a relatively limited or narrow range of changes and
interventions and hence causal, but can fail to be invariant under other
changes and interventions which may be of interest to us.

1.3. Comparison with Traditional Manipulability Theories

The idea that the existence of a causal relationship between X and Y has
to do with the behavior of the relationship between X and ¥ under inter-
ventions on X figures centrally in the so-called manipulability or agency
theories of causation that have been developed by philosophers like von
Wright (1971) and Price and Menzies (1993). Such theories are subject
to a number of serious criticisms, and because of this, many philosophers
have concluded that any view that connects causation and manipulation is a
non-starter. For this reason, it is important to see that the position sketched
above is not subject to the difficulties that face traditional manipulablity
theories. The latter theories are reductionist in aspiration and avowedly
anthropocentric. Their basic strategy is to appeal to some antecedently
understood concept of human agency or manipulation and to use this to
provide a non-circular, reductive account of what it is for one event to
cause another. For such a reduction to work, the relevant notion of agency
must not itself be a causal notion, or at least must not presuppose all of the
features of the notion of causation we are trying to explicate. Such theories
are thus naturally led to take human agency as a primitive, irreducible fea-
ture of the world that stands outside or behind the rest of the natural causal
order, rather than just one variety of causal transaction among others (von
Wright 1971, 74; Price and Menzies 1993, 190ff.).
There are many reasons why theories of this sort are unpromising. To
begin with, if our discussion above is on the right track, the notion of an
“intervention that is required for a successful explication of the connection
between causation and manipulation is a thoroughly causal notion, and this
completely undercuts the reductive project. This is so not only in the most
obvious respect — namely that when we say that an intervention / changes
X, this must be understood as meaning that / “causes X to change™ but
in a variety of more subtle respects as well. As we have seen, the notion
of an intervention / on X with respect to ¥ requires reference as well to
the presence or absence of various other causal relationships besides the
causal relationship between / and X. For example, there must be no direct
causal connection between I and Y and / must not cause changes in or be
correlated with other causes of ¥ besides X (except, as noted above, for

CAUSAL INTERPRETATION IN SYSTEMS OF EQUATIONS 209

those that are causally between /7 and X or X and ¥). This use of causal
language is ineliminable — we can not replace it with causally uncommitted
talk of correlations. Nor can we replace it with notions having to do with
human agency. For one thing. manipulations carried out by human beings
can (and frequently do) fail to meet the causal conditions for an interven-
tion described above. For example. a human experimenter can carry owt
a manipulation and have the concept or experience acting “freely™ as a
human agent, but if her manipulation of the treatment variable is correl-
ated with other causes of the effect variable. her action will not qualify
as an intervention and her causal inferences probably will be mistaken.
It is a fundamental objection to traditional agency theories that it is not
the experimenter’s agency per se that underpins her causal inferences. but
rather whether her actions satisty the causal conditions on interventions
described above.

The connection between causation and manipulation described above
differs from traditional manipulability theories in several important re-
spects. First, it is non-reductionist in aspiration. The notion of an interven-
tion to which I have appealed is a straightforwardly causal notion which
is not tied to human activities in any essential way. The idea is to use
background information about some casual and correlational relationships
— information about the presence of a causal relationship between f and X.
about the absence of a casual relationships between 7 and ¥ that does not
go through X and so on — to say what it is for a different casual relation-
ship — a causal relationship between X and ¥ - to hold. The connection
between causation and manipulation to which I have appealed is thus not
viciously circular in the sense that to say what it is for an intervention 1o
occur on X with respect to Y. one has to have already decided whether
there is a causal relationship between X and Y.} Because this connection
is non-reductionist. it avoids those criticisms of manipulabilty theories that
are premised on their reductionist aspirations. And because the notion of
an intervention is characterized in explicitly causal terms. we avoid amy
appeal to the antinaturalist idea that human action is somehow special and
outside the causal order of the rest of nature.

Another criticism lodged against traditional manipulability theories is
that they are objectionably anthropocentric in the sense that they tie the
existence of causal relationships much too closely to facts about the manip-
ulations that human beings can actually carry out. Because such theories
hold that our concept of what it is for a relationship to be causal is logically
or conceptually tied to the concept or experience of human agencey. they
face great difficulties in explicating causal claims (e.g.. “changes in the
position of the moon cause changes in the tides on carth™) for which the
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relevant human manipulations are impossible. Advocates of manipulability
theories often respond by claiming that ascriptions of causal relationships
in such cases involve a projection or non-literal, analogical extension of
notions that apply literally only when human manipulation is feasible, but
this strikes most critics as implausible. The connection between causation
and intervention advocated above avoids this difficulty for two reasons.
First, while the characterization of an intervention employs causal notions,
it makes no reference to human beings or their activities. A natural causal
process that does not involve human beings or their activities will count as
. an intervention as long as it has the right sort of causal history. So-called
“natural experiments” illustrate this possibility. Human interventions count
as interventions because (or if) they have the right sorts of causal charac-
teristics, not because there is anything special about human agency per se.
Second, the connection advocated above is hypothetical or counterfactual —
the claim is that when a relationship like (1) is a correct causal description
then if an intervention were to occur that alters X, Y would change in the
way described by (1). It is not required that the intervention in question
actually occur or even that it be physically possible in the sense of being
consistent with the laws and initial conditions that actually obtain.*

1.4. The Error Term

There is a final implication of the ideas about invariance that I have been
defending that is worth special emphasis at this point. This has to do with
the role of the error term in (1). As I remarked above, when we claim that a
regression equation is level invariant, this implies not just that the relation-
ship is invariant under (some range) of interventions that change the level
of the independent variables X; that explicitly figure in (1), but also that a
similar invariance claim is true for changes in the value of the error term U.
That is, it is assumed that (again at least within a certain range) changes in
the value of U will not affect the functional relationship (1). This means,
among other things, that this functional relationship should be invariant
under changes in the distribution of the error term. This in turn has the
important consequence that, contrary to what many writers maintain, it is
not necessary, if a regression equation is to have a causal interpretation or
to accurately describe a set of causal relationships, that the error term in
" the equation be uncorrelated with the each of the independent variables in
that equation. With respect to the error term. what matters is not its actual
distribution but rather whether the equation is invariant under changes in its
-distribution. Suppose that we are estimating a regression equation of form
(1) for a certain population and that the uncorrelatedness assumption does
turn out to be satisfied. The idea that if this equation correctly represents a
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causal relationship, it should be invariant under changes in the distribution
of the error term means that if the distribution of the omitted causes {7 of
Y changes in such a way that the error term now is correlated with one
or more of the independent variables. the relationship (1) between ¥ and
Xi..... X,. U should nonetheless continue to hold (in the sense that this
relationship should continue to describe what would happen to Y under
interventions on X, . ... Xn. U). Because the error term is now correlated,
one will no longer be able to use OLS estimation techniques talthough
one may still be able to use other estimating techniques - see below) but
assuming that (1) is invariant under this change. it will be just as much 3
correct causal representation as before. I will return to this topic in Section
3 below

2.

Regression equations represent a particularly simple sort of causal struc-
ture in which a single dependent variable is represented as causally
influenced by a set of independent variables but in which no causal re-
lationships are represented as holding among the independent variables
themselves and no reciprocal or cyclic causal links back from the de-
pendent variable onto the independent variables are represented. Often,
however, social scientists and other users of causal modeling techniques
want to represent more complex structures. This is accomplished through
the use of systems of equations. The conventions for interpreting such
equations causally parallel those for single regression equations. Each
equation in a system contains a single dependent variable on the Teft hand
side and one or more right hand side variables which are interpreted as the
direct causes of the lhs variable. If one wishes to represent causal relation-
ships among the rhs variables one adds additional equations conforming to
the convention just described. For example. in the system of cquations

3) Y=aX+U
4) Z=bX+c¢Y+V

(3) says that X is a direct cause of V. and (4y says that X and } are direct
causes of Z (as before. U and V are error terms that represent causes of the
dependent variable in each equation that are unmeasured and not explicitly
represented). We may also represent the structure (3)-(4) by means of 4
directed graph. following the convention that an arrow directed out of one
vertex and into another means that the former is a direet cause of the latter,
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2.1. Modularity

In view of our earlier discussion, it is natural to impose the requirement
that if a system of equations like (3)—(4) correctly represents the causal
facts, then each individual Equation (3) and (4) must be level invariant

" under some range of interventions on the rhs variables of that equation.

However, there is also a second, distinct invariance requirement which it is
natural to impose on systems of equations. To motivate this requirement,
consider a simple illustration. Atmospheric pressure A is a common cause
of the reading B of a barometer and the occurrence or non-occurrence of a
storm S but neither B nor S are causes of each other. We can represent this
by means of the following equations (where I have suppressed the error
terms since they are not essential for the point that follows)

(5) S=cA
(6) B=dA

or by means of the following diagram

'S ’ B
A
- How can we interpret this system in terms of the results of hypothetical
experiments? Suppose that we intervene on A. Then if (5) and (6) correctly
describe the casual structure of the system. the value of S should change
in the way described in (5), and similarly the value of B should change
in the way described by (6). Suppose, on the other hand, a set of inter-
ventions / occur on the position of the barometer dial B. This might be
accomplished by consulting a randomized device , the output of which is
causally independent of and uncorrelated with A (or any other causes of
B) and, depending on this output, manually fixing the dial at one position
or another. Of course what we expect to find., if the causal structure of this

system is correctly specified by (5)—(6), is that there will be no correlation
at all between changes in § and changes in B when produced by /. This
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corresponds to the fact that B is not a cause of §. However. the logic of
this reasoning depends crucially on an assumption that has not vet been
made explicit. An intervention on B of the sort described above changes
the causal relationship between A and B. When the interventions [ are
carried out, the value of B is entirely determined by the interventions and
is no longer causally affected by the value of the atmospheric pressure A,
In effect, the intervention replaces (6) with a new equation (6*) B = [.
The crucial assumption that we made above is that it is possible to
replace (6) with (6*) without changing or disrupting Equation (5) that
when an intervention on B changes the relationship between A and B. it
does not automatically change (or need not change) the causal relationship

- between A and §. To see the importance of this assumption. suppose that

any possible intervention on B does alter the causal relationship between
A and S, as expressed by (5) - for concreteness suppose that it changes (5)
to (5*) § = ¢*A where ¢* # c¢. Then under any such intervention on B, the
value of S would systematically change, since the effect of a given value
of A on § changes as the coefficient in (5) changes. This is exactly the sort
of behavior that we would ordinarily take to show (on a manipulationist
conception of causation) that B causes S but (5)-(6) do not say that there
is any causal relationship between B and S.

As an another illustration. consider an intervention on ¥ in the equation

- system (3)—(4). We can think of this as replacing (3) with a new Equation

(3*) Y = I which represents the fact that the value of Y is now determined
by the intervention variable / rather than, as was previously the case. by the
variables X and U . If the result of any such intervention is that Equation (4)
is disrupted. then the value of Z will not be influenced by ¥ in the way that
(4) claims. More generally we can say that if any intervention that changes
one equation also alters other equations in a system, then the system will
be misspecified in the sense that it will fail to correctly and completels rep-
resent the causal structure that it purports to model - variables will change
in response to interventions on other variables even though the equations
represent the variables as causally unrelated or. alternatively, will fail to
change under interventions in the way that the equations suggest that thes
should. In either case there will be a mismatch between what the equations
say and what will in fact happen under interventions.

What is it that justifies us in thinking that in the case of the atmospheric
pressure. storm, barometer system it should be possible 1o manipulate
the barometer without altering the relationship between the atmospheric
pressure and the occurrence of the storm? A very natural answer which is
implicit in a great deal of econometric thinking is this: we suppose that
the mechanism (or casual route or relationship) by which the atmospheric
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pressure affects the barometer when the latter is operating normally is dif-
ferent or distinct from the mechanism by which the atmospheric pressure
influences whether or not a storm occurs. Because these mechanisms are
distinct, it makes sense to suppose that one mechanism can be changed or
interfered with or without a change necessarily occurring in the other. If,
on the contrary, there is no possible way of intervening on B without at the
same time altering the relationship between (or the mechanism linking)
A and S, we have grounds for doubting that these mechanisms are really
distinct. We would also have no well-defined answer to questions about

. whether (and to what extent) S would change just in response to interven-
tions on B, and it is just this answer which characterizes the causal effect
of Bon S.

These considerations can be used to motivate the following proposal:
When a system of equations is used to represent causal structure, then
not only should each equation in the system be level invariant but each
equation in the system should represent or correspond to a distinct causal
mechanism or relationship (or to a set of mechanisms or relationships)
which are distinct from the mechanisms or relationships corresponding to
other equations.’ Mechanisms M, and M, are distinct when it is possible
in principle for M; to change or be interfered with without M, changing
or being interfered with and vice-versa. It follows that, in a system of
equations that correctly represents causal structure. not only should each
equation in the system be level invariant, but that the system should also
satisfy the following additional invariance condition: for each equation
there should be some possible change that alters that equation or replaces
it with another equation while leaving the other equations in the system
unaffected. Here, changing an equation means changing the mechanism(s)
or relationship(s) represented by it, and we can think of this as a mat-
ter of intervening on the lhs (dependent) variable in the equation so that
the value of that variable is now fixed by the intervention rather than by
whatever variables previously determined its value. When we say that the
other equations are unaffected, we mean that they would continue to hold
and continue to be level invariant under this change. Somewhat more con-
cisely: each equation should be invariant not only under (some range of)
interventions on its independent variables but also under some possible
changes in the other equations in the system. When a system of equations
possesses this feature, I will say that it is modular or equation — invariant.
We thus have:

'MODULARITY. A system of equations is modular iff (i) each equation is
level invariant under some range of interventions and (ii) for each equation
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there is an intervention or the dependent variable that changes only that
equation while the other equations in the system remain unchanged and
level invariant.

I have defined modularity in such a way that if a system is modular. then
each equation in the system must be level invariant. Nonetheless. modular-
ity and level invariance are distinct concepts. In particular, it is not true that
if each equation in a system is level invariant the system must be modular.
(As we shall see below, the so-called reduced form equations associated
with a system of equations will always be level invariant but need not
be modular.) Intuitively, level invariance is a condition that applics within
individual equations and concerns whether an individual equation is in-
variant under interventions on its rhs variables. By contrast, modularity is
an invariance condition that also applies between equations and has to do
with whether each equation is invariant under changes in other equations.

We can bring out more clearly what modularity involves by re-writing
the system of Equations (3) and (4) as follows

3) Y =aX+U
(7) Z=dX+W

whered =b+acand W = cU + V.

Since (7) is obtained by substituting (3) into (4). the systent (3)-(7) has
exactly the same solutions in X. Y. and Z as the system (3)-(4). Since
X, Y and Z are the only measured variables, (3)—(4) and (3)(7) arc in a
sense observationally equivalent - they imply or represent exactly the same
facts about the patterns of correlations among these measured variables.
Nonetheless. by the rules given above for interpreting svstems ot equir-
tions. these two systems correspond to different causal structures. (3)-(4)
says that X is a direct cause of ¥ and that X and Y are direct causes of 7.
By contrast. (3)—(7) says that X is a direct cause of ¥ and that X is a direct
cause of Z but says nothing about a causal relation between ¥ oand 7. This
difference is also reflected in the graphical representation associated with
the two systems:

~

Z e Y« T \-\‘______ v
/\/ *
v X z<“

(3)-(4) . (3)-(7)
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We can gain some additional insight into what modularity means by
noting that, despite their observational equivalence, if (3)—(4) is modular,
then (3)—~(7) cannot be (and vice-versa). To see this, consider an interven-
tion on the variable Y in (3). The result of this will be to replace (3) with a
new Equation (3*) ¥ = [, specifying that the value of ¥ is now determined
by the intervention variable, rather than by X. In effect, the coefficient a in
(3) is set equal to zero by the intervention. If the system (3)—(4) is modular,
(4) will continue to hold under this change in (1). By contrast, if (3)-(4) is
modular, (7) must change under this intervention since, as we have seen,

. its effect is to change the value of the coefficient a in (3) and the coefficient
d in (7) is a function of a. Thus changing a in (3) will change d and hence
(7). This corresponds to our judgment that if (3)-(4) is a correct represent-
ation of the causal facts then (3)—(7) collapses or mixes together distinct
mechanisms or causal routes — the influence of X on Z that occurs because
X directly influences Z (this is represented by the coefficient b) and the
influence which occurs because X influences ¥ which in turn influences Z
(this is represented by the product ac) — into a single overall mechanism
linking X and Z, which is represented by the coefficient d. This failure to
correctly segregate the system being modeled into distinct mechanisms is
directly reflected in the non-modularity of (3)—(7). .

We can also bring out the difference between (3)~(4) and (3)~(7) in a
slightly different way. Suppose that an intervention occurs on Y. Then if
(3)—(4) is a correct representation of the causal facts (and hence is modu-
lar), we know that while (3) will be disrupted, (4) will not be. Hence, if ¥
is set to some new value k it will continue to make just the contribution to
Z that is indicated by (4) - i.e., the contribution will be ck. Thus, according
to (3)—(4), an intervention on Y will change the value of Z. By contrast,
according to (3)~(7), Y does not cause Z and hence an intervention on Y
should not change Z. (Recall that an intervention on Y should be uncorrel-
ated with other causes of ¥ such as X). Of course what will happen under
such an intervention, if (3)—(4) is the correct structure, is (as we have seen)
that the coefficient d will change in (7) so as to reflect the change in the
value of Z that is really produced by the change in the value of ¥, but this
fact about the dependence of Z on Y is not represented in the Equations
(3)=(7). Thus, assuming that (3)~(4) is modular, (3)=(7) fails to correctly
represent what will happen under hypothetical interventions on Y.

There are many other systems of equations besides (3)~(7) that may
be obtained from (3)~(4) by equality-preserving algebraic transformations
and are in this sense observationally equivalent to the latter. For example,
we can also rewrite (3)—(4) as :

3) Y=aX+U
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8) Z=e¢Y+ Rwheree =(b/a+c)and R =V — (h/ayU

Again, if (3)-(4) is modular, (3)=(8) will not be. since changing a will
change the value of e. Again, (3)~(8) represents a different set of causal
claims from (3)—(4) — something which is born out in the fact that (3)-
(8) makes different predictions about what will happen under various
hypothetical predictions. If one accepts that. despite their observational
equivalence, at most one of these systems of equations can correctly rep-
resent the causal facts, there must be some additional constraint that is
satisfied by the correct system. Modularity is the natural candidate for
this constraint. The idea that among all of the observationally equivalent
representations, we should prefer the one that is modular (because it will
be the one that correctly represents the causal relationships) picks out, as
Alderich (1989) puts it, a “privileged parameterization™,

The Equations (3)~(7) are the reduced form equations associated with
the system (3)-(4). In general, one forms the reduced form equations as-
sociated with a system by first identifying the exogenous viriables in the
system — i.e., the variables that are not themselves caused by any of the
other variables in the system and do not have arrows directed into them
in the graphical representation of the system. One then substitutes into
the equations in the system in such a way that one is left with a set of
equations, one for each endogenous variable, which have the endogenous
variable on their lhs and only exogenous variables (and an error term) on
their rhs. It is always possible to do this, and the resulting reduced form
system will always be observationally equivalent to the original system
regardless of its structure. Moreover, the error term in cach cquation will
always be uncorrelated with the rhs variables in that equation and hence
one may always estimate the values of the coefticients in the reduced form
equations by OLS. By contrast. as we shall see in more detail below. it is
not true for all systems of equations that the values of the coeflicients are
estimable from statistical data about the measured variables — in the Jargon
of econometrics, some of the coefticients may be wnidentifiable. In addi-
tion to this. as long as no changes occur in the coefficients in the original
system (either because of interventions on the endogenous variables or
for some other reason). the reduced form equations will be level invariam
(under interventions on the exogenous variables in cach cquationy. It we
care only about producing an observationally adequate representation of
the pattern of correlations among the measured variables, or it we care
only about finding an observationally adequate representation that is level
invariant, we may just use the reduced form cquations.

However. as the preceding discussion illustrates. the reduced form
equations need not be modular. For example. on the assumption that (3)-
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(4) are modular, the associated reduced form Equations (3)—(7) will not be.
We thus see that, as claimed above, it is possible to have a system of equa-
tions, all of which are level invariant but which fail to be modular. Again,
if researchers are not always content with the reduced form representation
—and it is clear that they are not — this can only be because they value
something else (modularity) besides level invariance and observational

adequacy.

2.2. Autonomy

I can further bring out the significance of this last point by connecting it
with a frequently-cited passage from Tygre Haavelmo’s monograph (1944)
in which he introduces the notion of autonomy. It will be recalled that
Haavelmo envisions a researcher who investigates the relationship — call
it (R) - between the maximum speed attained by a particular make of
car and the depression of the gas pedal as this “experiment” is repeated
under exactly the same conditions ~ the same road conditions, fuel mixture,
state of the engine and so on. It is plausible that, provided these conditions
continue to obtain, (R) will be level-invariant under some range of inter-
ventions that depress the gas pedal. Because of this — because (R) describes
how, within this range, one can use the pedal to manipulate the speed — (R)
qualifies as a genuine causal relationship. Nonetheless, as Haavelmo says,
(R) strikes us explanatorily shallow and as scientifically uninteresting.
-Haavelmo contrasts (R) in this respect with an engineering style theory
—call it E —in which the operation of the car is decomposed into a number
of distinct mechanisms and the principles governing these. We expect that
(E) will be modular in the sense that it should consist of independently
changeable representations of the operations of mechanisms that are in
fact distinct from one another, so that when we change the representation
in E of the operation of one mechanism (e.g., the spark plugs) this does
. not automatically necessitate changes in the representation of the operation
of other mechanisms (e.g., the relationship between the air pressure in the
tires and friction with the road surface). It is this feature which will allow
us to trace out the implications of hypothetical changes in the operation
of the various components of the car, just as the modular representation
(3)—(4) allows us to trace out the implications of changes in the individual
mechanisms it represents. A theory like E should thus enable one to see
how, if the operation of any of the mechanisms making up the car were to
change (e.g.. the spark plugs are cleaned or more air is put in the tires) or
if various factors in the environment (the grade of the road, the head wind
etc.) were to change, the operation of the car and the relationship between
the gas pedal and the speed would change. While each of the individual
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equations in (E) will be invariant under changes in the other equations,
(R) will fail to be invariant under most such changes. Haavelmo says that
because (R) is invariant under a smaller set of changes and interventions
than the equations in E, it is less autonomous than those equations. and he
links this to the fact that (R) is less satisfactory from the point of view of
explanation and causal understanding than F.

We can think of (R) as like a non-modular reduced form equation.
Just as the coefficient d in Equation (7) (on the assumption that (3)-(4)
is modular and (3)~(7) is not). represents a sum or mixture of the coetli-
cients corresponding to several distinct mechanisms. so (R} summarizes
an overall relationship between speed and gas pedal position that is the
combined upshot of the operation of many different mechanisms making
up the car. Like (R), (7) will be invariant under some interventions that
change the level of its exogenous variable X, and hence will qualify as
causal. But both (R) and (7) will continue to hold only as long as none of
the many causal relationships or mechanisms that contribute to the overall
relationship they describe are altered. For example. a change in anv one of
the coefficients b, a or ¢ will change the relationship described by (7).
just as a change in the any one of the mechanisms making up the car
engine will disrupt (R). Just as (R) is less autonomous than (F£), so (7)
is thus less autonomous than, say, (4) in the sense that interventions that
disrupt (7) will also disrupt (4). but there are interventions - for example,
interventions that disrupt (3) — that will disrupt (7) but not (4). Just as we
believe that E is more satisfactory than (R) from the point of view of causal
explanation, so we should prefer (3)-(4) to (3)—(7).

2.3. Clarifications

Before proceeding. let me address some possible misunderstandings of the
argument of the preceding paragraphs. First. there are ol course mam
causal systems for which there are at present no technologically feas-
ible methods that allow for separate interference with all of the distinct
mechanisms that compose them. As with level invariance. when we ask
whether there is an intervention on one equation that would leave other
equations unchanged. what we are interested in is what would happen
under certain hypothetical possibilities, and not whether such intersentions
are practically possible. In the example discussed above. what makes (3)-
(7) non-modular (if (3)—(4) is modular) are the mathematical relationships
between the coefticients of the two systems. It is these that tnsure that if
the coefticient a in (3) changes. the coefficient in (7) must change - i.c.,

that there is not even a hypothetical intervention that changes (3) without

changing (7).
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Second, I empasize that the argument is conditional in character: if (3)—
(4) is modular, then (3)~(7) will not be modular and will fail to correctly
represent the results of various hypothetical interventions. Since the coef-
ficients a, b and c in (3)—<(4) can also be written as functions of a and d
in (3)—(7), a paraliel argument could also be used to show that if (3)~(7) is
modular, then (3)~(4) will not be. What the argument shows is thus that,
at most, one among the various alternative systems of equations relating
X, Y and Z that are observationally equivalent can be modular, and hence
that modularity represents a real constraint on the choice of a system of
equations. However, the argument does not purport to tell us which, if
“any, of these alternative systems is in fact the modular one. It is nature
or the world — and, in particular, facts about what the causal mechanisms
are and about what would happen under different hypothetical changes —
that determines this. In other words, researchers must first determine, in
some independent way, which mechanisms are distinct and what would
happen under various hypothetical interventions. They may then represent
this information by a system of equations, guided by conventions of the
sort described above: that different equations should correspond to distinct
mechanisms, that if an intervention on X would change Y, then X should
occur on the rhs of an equation and ¥ on the lhs and so on. ,
These observations may also help to address another concern that may
trouble some readers: (3)-(7) has been obtained from (3)-(4) by a series
of equality-preserving algebraic transformations. In view of this, how can
it be true that these two systems of equations represent different causal
claims? Aren’t the two systems “mathematically equivalent™? If (3)—(4)
and (3)—(7) said only that the quantities X, ¥ and Z are regularly associated
or correlated in a certain pattern, then they would indeed be interchange-
able representations of the same set of correlational facts. However, when
interpreted causally, systems like (3)-(4) say more than this. As Judea
Pearl (1998) has emphasized, what we may think of as the syntactic form
of these equations also conveys information — information about what
would happen under hypothetical interventions. For example. when we
write ¥ on the lhs of an equation and X on the rhs, we convey the informa-
tion that an intervention on X would change Y, but not the information that
an intervention on Y will change X. This is so even though we can derive
)X =(/b)Z~(c/b)Y from(4) Z = bX +cY and vice-versa. Similarly,
writing (3)—(4) rather than (3)—~(7) conveys, through the syntactic conven-
tion, that different equations should represent distinct mechanisms, one set
of claims about what the causal mechanisms are rather than another and
an accompanying set of claims about what will happen under hypothetical
interventions. It is because such syntactic information is lost or changed
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under algebraic manipulation that it is possible for these two systems to
represent different sets of causal facts.

I said above that (3)—(4) and (3)—(7) were in a sense observationally
equivalent. The preceding paragraphs enable us to be somewhat more pre-
cise about what this means and to understand how. despite this fact. they
can represent different causal structures. Assuming that their coefficients
and error terms are related in the way described. the two systems agree,
so to speak, about what has actually happened - about the actual patterns
of correlations among the measured variables that obtain so far. What they
disagree about is modal or counterfactual: they make inconsistent predic-
tions about what would happen should various changes or interventions
occur. It is entirely possible. of course. that these changes will not oceur,
in which case the two systems will continue to agree about what will be
observed. When we take the two systems to disagree nonetheless about
what the causal facts are. we accept that there is a fact of the matter about
what would happen under various hypothetical changes even if these never
occur.

2.4. Modulariry and Graphs

It is also worth noting that these ideas about modularity just described are
closely connected to a set of ideas about the graphical representation of
interventions that have been developed by Judea Pearl (Pearl 1995) and by
Peter Spirtes et al. (1993). According to these writers, an intervention on
variable X may be represented by drawing an arrow directed into X from
the intervention variable and removing all other arrows directed into X, All
other arrows in the graphical representation. including all arrows directed
out of X are preserved. Thus. for example. interventions on ¥ and B in the
systems

y

SV

replace them respectively with

! N B
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Directed graphs provide a qualitative representation of causal rela-
tionships — they represent whether or not there is a causal relationship
between two variables (whether the coefficient linking the variables is zero
or non-zero) but, unlike systems of equations, do not represent what the
quantitative strength (the numerical value of the coefficient) of that rela-
tionship is. But apart from this difference, there is a close correspondence
between this graphical interpretation of interventions and the ideas about
level invariance and modularity described above. The intuition behind the
idea that interventions on a variable break all other arrows directed into it
is that the value of the variable is now completely determined exogenously

‘by the intervention rather than by the endogenous causal influences that
previously determined its value. The idea that arrows directed out of the
variable intervened on are preserved represents a qualitative version of
level invariance — the thought is that if a directed arrow from X to ¥ rep-
resents a genuine causal relationship, then that relationship, and hence the
arrow, should be preserved under interventions that change the value of X.
The idea that all other arrows in the graph (i.e., those that are neither into or
out of X) are preserved is a qualitative version of the modularity require-
ment. As before, we may motivate this idea by appealing to assumptions
concerning the distinctness of mechanisms. Each set of arrows directed
into a variable X is associated with a distinct equation, and hence ought
to represent a mechanism or set of mechanisms that is distinct from the
mechanisms represented by arrows directed into other variables. Because
arrows directed into different variables represent distinct mechanisms, it is
possible to intervene on X and to disrupt the mechanism that determines
the value of X without disrupting any other mechanism. The idea that
when we intervene on X, we break arrows directed into X while preserving
arrows directed into other variables requires that it be possible to disrupt
the equation in which X occurs as a dependent variable without affecting
the equations corresponding to other sets of arrows directed into other
variables, and this of course is just the idea of equation invariance or modu-
larity. If a system of equations is not modular then the corresponding graph
will exhibit action at a distance in the sense that the graph will behave as
though interventions on some variables change arrows directed into or out
of other variables. We may take this to indicate that the graph does not
accurately and completely represent the causal relationships among those
variables.

Let me conclude by noting that, while it is natural to represent many
interventions in terms of arrow-breaking or the complete replacement of

“one equation by another. the main claims of this section concerning mod-
ularity do not require this assumption. Consider a situation in which there
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is a causal connection from Y to X and in which a new exogenous source
of variation Z is supplied to X but without disrupting the ¥~ X connection.
As long as Y and Z are uncorrelated this would also supply 1o X the kind
of independent variation that is demanded of an intervention. Graphically.
this would amount to replacing (i) with (ii):

7

| d
[

Algebraically we might represent such a change by adding a new term to
the equation X = a¥ . toyield X = a¥ 4+ Z. Some readers may find this a
more natural way of representing at least some interventions.

The important point for our purposes is that, regardless of how interven-
tions are represented, we still require the notion of modularity for causal
interpretation. It still must be the case that when we replace (i) with (it) the
addition of a new arrow into ¥ does not alter arrows elsewhere in the graph
directed into other variables. Similarly. the addition of a new term to an
equation is a change in that equation and must not change other equations
in the system if it is to be fully causally interpretable.

Our discussion so far has focused on examples involving lincar equations,
but it is readily generalized to equations involving arbitrary functiona
forms. By doing this we can be more explicit than we have hitherto been
about what the notion of an intervention involves, and we can also con-
nect the ideas described above to an explicitly probabilistic framework
for thinking about causation that may seem more tamiliar to philosophers,
Following Pearl (1998b). let us define a causal theory 7 as a four-tuple
T =(V.U.Pw).fi}) where

() V ={X,..... X,,}is asetof measured variables
(ii) U = {U,..... U,}is aset of exogenous error variables
(iii) P (1) is a probability distribution over U7, ... l',.
(iv) [ fi})is asetof n functions. each having the form X, = f, (Parems X,
Uptfori=1.....n.
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Intuitively, the parents X; are those variables in V that represent the direct
causes of X;. The probability distribution P (1), together with the functions
fi» determine a probability distribution over all the variables in V.

Within this framework to say that some individual equation X; = fi
(Parents X;, U;) is level invariant is just to say that the function f;
(whatever it may be) is invariant or continues to hold on some range of
interventions on the variables Parents X; and U;. As before, we may think
of each individual equation as corresponding to or representing a distinct
causal mechanism. As before, we assume that if mechanisms are distinct,
then it ought to be possible to disrupt or change the corresponding equa-
tion without changing other equations in T. As before, if T meets this
condition, we may describe it as modular or equation-invariant.

Again following Pearl, let us introduce an operator set (X = x) to
represent the fact that the value of the variable X has been set equal to
-x by an intervention- where this notion is understood along the lines de-
scribed above. We may then represent the effect of an intervention which
sets X; = x in the following way: we delete (or “wipe out”) from T
all equations f; in which X; is the dependent variable, and replace them
instead with equations which specify X; = x. All other equations are
left undisturbed. By then substituting X; = x for every occurrence of X;
among the independent variables (parents) in each of the f; we may trace
out the effects of the intervention X; = x.

If we are willing to assume that set X is itself a random variable
with a well-defined probability distribution (as would be the case if, for
example, the values of set X are determined by some appropriate ran-
domizing device as in the storm-barometer example of Section 2), then
we may talk about the probability distribution of some other variable Y
conditional on X’s being set (o various values — that is; P(Y/set X). In
this connection, it is worth emphasizing that it is not true in general that
P(Y/set X) = P(Y/X) when P(Y/X) is understood as the probability of
Y conditional on X''s being observed to have various values. For example,
the probability of the occurrence of a storm conditional on the barometer’s
being observed to have some value is quite different from the probability
of the storm conditional on the barometer’s being set to that value. This is
just the well-known distinction between conditioning and intervening (cf.
Meek and Glymour 1994).

Given this understanding of the “set” operator and its connection with
the “wipe out” procedure for equations described above, various rules or
requirements governing its behavior follow. For example, we have the
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following probabilistic analogue to MODULARITY which we may call
PROBABALISTIC MODULARITY (PM).

(PM) P(X/Parents(X)) = P(X/Parents X. set Z) where 7 is any scl
of variables distinct from X.

(PM) expresses the idea that once one conditions on the full set of causes
of X, setting any other variable should make no additional difference to
the probability of X. Each conditional probability Pr(X/Parents X)) is de-
termined by the corresponding equation X = f; (parents X, /) and the
probability distribution over U, and hence we may think of cach con-
ditional probability (like each equation) as corresponding to a distinct
mechanism. Hence, (PM) is another way of expressing the idea that we
may disrupt any other mechanism in the system (by setting the dependent
variable for that mechanism equal to some exogenously determined value)
without disrupting the conditional probability Pr(X/Parents X). Note also
that it will not in general be true that P(X/Parents X) = P(X/Parents X.7)
— that is, if one replaces set Z in (PM) with Z. the resulting statement
will no longer be true. For example, conditioning on an effect Z of X
may provide information about the value of X even when the values of the
parents of X are taken into account. By contrast, if the value of the same
variable Z is set by an intervention, then it will provide no information
about the value of X. since the effect of the intervention is to break the
previously existing causal relationship between X and Z. This provides a
further illustration of the difference between conditioning and intervening.
We also have an obvious probabilistic analogue of level invariance:

PROBABALISTIC LEVEL INVARIANCE (PL1) P(X/Parents
X) = P(X/set parents X).

This represents the idea that if Parents X are the causes of X, then
the conditional probability P(X/Parents X) should be invariant under
interventions that change the value of any of the variables in Parents (X)),

If we are willing to assume in addition that the causal theory with
which we are dealing satisfies the Causal Markov condition (which says
that conditional on its parents every variable in V is independent of evers
other variable except its effects). then a number of additional rules govern-

- ing the set operator will hold. Two such rules. discussed in Hausman and

Woodward (forthcoming) and labeled by us (PM2) and (PM3) are

(PM2) When X and Y are distinct, P(X/set [Parents Y].}Y) = PN /et
[Parents Y].set Y)

(PM3) If X does not cause Y. then PeX/Parents X) & set V) =
‘ P(X/Parents X&Y).
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Additional rules governing the set operator and a much more detailed and
systematic discussion connecting it to graph-theoretical representations of
causal relationships are given in Pearl (1998b). Rules of this sort connect
the set operator (and the notions of intervention and invariance) to the
probability calculus and to more familiar mathematical operations like
conditioning, and they also make explicit when we may move from causal
knowledge and information derived from passive observations (recorded
in the probability distribution P) to predictions about what will happen
under interventions. They ought to reassure the reader that the notions of
an intervention and of invariance are not obscure metaphysics but can be
given a precise mathematical characterizaion. As Pearl has put it (private
correspondence), they show that that notion of an intervention is useful for
calculating with and not just thinking about causal relationships.

4.

The account just described, which emphasizes the role of invariance and
interventions in the causal interpretation of systems of equations, contrasts
with another position which is held by a number of philosophers and con-
tributors to the causal modeling literature. This alternative account focuses
instead on the role of assumptions about the uncorrelatedness of the error
term in causal interpretation. As we have seen, these assumptions take two
forms. First, there is the assumption — call it (U1) — that the error term in an
individual equation or, in the case of systems of equations, the error term
in each individual equation, is uncorrelated with each of the rhs variables
in that equation. Second, in the case of systems of equations, there is the
assumption (U2) that the error terms in different equations are uncorrel-
ated with each other. It will be important to keep the distinction between
(U1) and (U2) in mind in what follows, since neither entails the other and
since philosophers who have discussed the role of “the” uncorrelatedness
assumption in causal inference have not always made it clear whether they
have in mind (U1) or (U2) or both.

4.1. Uncorrelatedness and Causal Interpretation

The guiding idea of those who emphasize the role of the uncorrelatedness
of the error term is that satisfaction of one or both of the assumptions (U])
and (U2) is necessary and/or sufficient for a system of equations to provide
a correct description of causal structure. While this suggestion is in itself
quite interesting. it is sometimes accompanied by an additional. stronger
suggestion: that the relevant uncorrelatedness assumptions are, as it were,
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purely correlational and can be formulated without making use of causal
assumptions at any point. If so. and if satisfaction ot these assumptions
is necessary and sufficient for the causal claims expressed by a set of
equations to be correct, we appear to be well on the way to a successtul
Humean reduction of causal claims to claims about the presence or absence
of correlations. This idea (or something very close to it) has recently been
endorsed by David Papineau (1991). Papineau writes

-+ take the first two equations in the normal triangular array:

(10) X1 =U;
(11 Xa=anX(+ U
Now these two equations are indeed algebraically equivalent to:
Xy =anUy+ U
X = 1/an Xy — V/a Uy

which represents X3 as the independent variable X as dependent on Xa. However, il the
error terms in the original equations are probabilistically independent, as required. then the
‘error terms” in the re-written equations won't be: the “error term” in the second equation
—1/az1 Uy will be negatively correlated with the “error term’ in the first, anl/p + Us,and
also with the other exogenous variable in the second equation, X 2.9

Papineau’s suggestion is that, among all the systems of equations that are
observationally equivalent to (10)~(11). we should regard that system in
which the uncorrelatedness assumptions (U1) and (U2) are satistied as the
correct representation of causal structure. If the uncorrelatedness assump-
tions are satistied for the first system of equations but not for the second.
this shows that X causes X rather than vice-versa. As he puts it:

So the requirement of independent error terms is a real constraint, which ensures that the
ordering of variables in a set of regression equations isn’t just an arbitrary importation of
prior causal assumptions ... from a metaphysical point of view, there is nothing to stop us
regarding the probabilistic independence of the error terms as a basic and objective fact,
from which the causal ordering derives. (1991, 400)

A number of other writers eschew the reductionist aspect of Papincau’s
program. but endorse or are sympathetic to the idea that satisfaction of
the uncorrelatedness assumption is a sutficient and/or necessary condition
for a system of equations to represent a correct description of some causal
structure. For example, while the views expressed by Nancy Cartwright
(1989) and subsequent papers are subtle and complex. it scems fair to Sy
that she also regards assumptions about the uncorrelatedness of the error
terms as central to the question of when a system of equations can be given
a causal interpretation. In a broadly similar vein. Gurol hrzik advocates a
non-Humean account of causation. but writes that
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a crucial assumption of causal modeling is that an error term is uncorrelated not only with

© other error terms, but also for each equation, with the causes in that equation and also with
each of the earlier causes in other equations. All models - path or structural — endorse this
assumption one way or another (1996, 253, italics in original).

Irzik goes on to argue that this assumption plays “an indispensable role
in causal interpretation”. Another illustration is provided by the econom-
ists T. F. Cooley and S. F. Leroy. In their influential paper (1985), they
endorse the connection between invariance, claims about the outcomes of
hypothetical experiments, and causation advocated in sections 1 and 2, but
.then go on to suggest that satisfaction of an uncorrelatedness assumption
concerning exogenous variables is necessary for such invariance claims to
have a clear meaning:

In order for the required invariance under intervention to have unambiguous meaning in
all contexts, particularly large systems of equations, the assumption that all exogenous
variables be uncorrelated is required. (1985, 293)

Elsewhere they suggest that “the role of the uncorrelatedness assumption”
is “essential to specify(ing) precisely what is invariant under hypothesized
intervention(s)” on the exogenous variables.

Why think that satisfaction of one or both of the uncorrelatedness as-
sumptions is crucial for causal interpretation? One apparently natural line
of thought, described but not endorsed by Cartwright, and advocated by
Papineau and Irzik, is that violation of the uncorrelatedness assumptions
will occur when and only when some sort of specification error is present
(a mistake about causal direction, omission of a relevant variable, etc.).
Cartwright puts the idea this way:

Specilically, why should one think that the independent variables are causes of the depend-
ent variables so long as the errors satisfy the no-correlation assumptions? One immediate
answer invokes Reichenbach’s principle of the common cause: if two variables are correl-
ated and neither is a cause of the other. they must share a common cause. If the independent
variables and the error term were correlated. that would mean that the model was missing
some essential variables, common causes which could account for the correlation, and this
omission might affect the causal structure in significant ways.7 (1989, 24)

Papineau endorses a similar line of thought:

If an error term were correlated with one of the other causcs. then this would indicate some
kind of hidden causal conncction which would invalidate the causal order postulated by
the system of equations. (1989, 401)

As Cartwright notes, this emphasis on the uncorrelatedness assump-
tions brings together the two sets of considerations that | separated at
the beginning of this essay: semantical issues about causal interpretability
(what does a system of equations mean when it has a casual interpretation,
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what conditions are necessary and/or sufficient for the system to correctly
describe a set of causal relationships) and epistemological issues having to
do with estimation and identifiability. As observed carlier. when the error
terms within each equation are uncorrelated with the rhs variables in that
equation, OLS estimates of the coefticients in cach equation will have de-
sirable features like unbiasedness. All such coefficients will be identifiable
— given these assumptions we can infer unique values for the coefficients
from the statistical data. Thus, if the claims described above are correct.
the uncorrelatedness assumptions play both a central epistemological role
and a central role in causal interpretation. Cartwright describes the idea
this way:

the very same condition (regarding uncorrelatedness) that ensures the identifiahility of
the parameters in an equation like that for X, [where X, is the dependent variable in an
equation in a recursive system] also ensures that the equation can be given its natural causal
reading — so long as a generalized version of Reichenbach’s principle of the common cause
can be assumed. (1989, 31)

These claims about the role of the uncorrelatedness assumptions in causal
interpretation present an important challenge to the position defended in
sections 1-2. If the uncorrelatedness assumptions are necessary and/or
sufficient for causal interpretation but pick out the same relationships as
causal as the invariance-based account, then it may be that the former is
more fundamental or that. as Cooley and Leroy suggest. the latter account
requires the former if its central notions are to be well-defined. And if the
two approaches pick out different relationships as causal. we need to ask
which is correct.

In what follows, I will argue for the following conclusions. First, to
avoid trivialization, the uncorrelatedness assumptions must be understood
in causal rather than purely correlational terms. This undercuts Papincau’s
reductionist proposal. Moreover. even when the error terms are interpreted
causally, satisfaction of (Ul) and/or (U2) is neither necessary nor sufli-
cient for a set of equations to correctly represent causal structure or to
have a well-defined causal interpretation. Instead. as urged in Section 1.
the role of the uncorrelatedness assumptions is purely epistemological:
they are simply one of a set of conditions that are jointly sufticient. in
systems of equations that have a certain structure. for OLS estimation
to have desirable properties like unbiasedness. Morcover. although it is
sufficient for this epistemological role. satisfaction of the uncorrelatedness
assumptions is not necessary: depending on the structure of the equations
in question there are non — OLS techniques by which one can reliably
estimate the coefficients even if neither uncorrelatediess assumption i
satistied. In such cases. the equations can certainly have a causal inter-
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pretation. Indeed, a system of equations can have a causal interpretation
even if there is no way at all to reliably estimate their coefficients from
the statistical data. To suppose otherwise is to assume that, if there is no
way of determining which of several competing causal structures is correct

from available data, there is no correct structure, or that if the statistical

. data is unable to discriminate between competing systems of equations,
the equations themselves lack a coherent causal interpretation. In addition,
the assumptions (U1) and (U2) will only be satisfied in one particular sort
of causal structure - so-called recursive systems. In non-recursive systems,
. Which are employed extensively, the uncorrelatedness assumption (U1) is
regularly violated. If, as 1 will argue, such systems can be given a coherent
causal interpretation, this will again show that (Ul) is not necessary for
causal interpretability. Finally, it is also mistaken to argue that satisfac-
tion of either (Ul) or (U2) is required for the notion of invariance under
intervention to be well-defined In general, then, it is invariance and not
uncorrelatedness which is the key to causal interpretation. The separation
of epistemological and interpretive issues advocated at the beginning of
this essay is well motivated.

4.2. Uncorelatedness and Reduction

I begin with the reductionist version of Papineau’s proposal. A fun-
damental difficulty with his suggestion is that if the uncorrelatedness
assumptions are to have any determinate content at all, they cannot be
formulated in purely correlational terms. Instead, the error terms must
themselves be given a substantively causal interpretation — they must be
understood to represent the net effect of omitted causes of the lhs vari-
ables in the equations in which they occur, rather than omitted variables
which are merely correlated with the lhs variables. Moreover, the rhs
variables in each equation that, according to assumption (U1), must be
uncorrelated with the omitted causes represented by the error terms must
be causes of the dependent variable in each equation, rather than merely
being correlated with the dependent variable.?

One way of seeing this is to note that, given a body of statistical data
for the variables Y,.... X,..... X, if we pick any one of them as the
dependent variable and the remainder as independent or rhs variables. and
then take the coefficients in the resulting regression equation to be given
by their OLS estimators, the error term automatically will be uncorrel-
ated with the rhs variables by construction. Since this can be done for
any choice of dependent and independent variables, the fact that the error
term when constructed in this way is uncorrelated with the independent
variables cannot possibly guarantee that the resulting equation is a correct
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causal description. To illustrate this point in the simplest possible case -
univariate regression — consider the equation

3) Y=aX+U

and define a as the regression coefficient estimated by OLS. ie., a0 =
E(YX)/E(XX). Then

U=Y —-aX
XU=YX —-a(XX)
EXU)y=E(YX)—a(XX)y=0

i.e., when a is so defined. U is uncorrelated with X. By contrast, if we had
begun instead with the equation

(12) X=bY+V,

and defined b as b = E(XY)/E(YY). then a parallel argument would
show that V is uncorrelated with Y. In eftect. our choice of a defines the
error U in (3) in such a way that it is equal to the “residual™ ¥ — a X,
which by construction must be uncorrelated with X. Similarly, our choice
of b defines a residual V = X — b} that must be uncorrelated with Y in
(12). It should be clear. however, the fact that it is always possible to do
this does not show that either Equation (3) or Equation (12) is a correct
casual description or that a in (3) has its natural causal interpretation - that
it tells us what would happen to Y if we were to intervene to change the
value of X. It is only if @ has this causal interpretation. and the error term
is understood as Y — a X when a is so interpreted. that there is a sensible,
nontrivial question about whether the error term is correlated with X"

4.3. The Irrelevance of Uncorrelatedness to Causal Interpretation

The above argument undercuts attempts to use the uncorrelatedness as-
sumptions as part of a program to reduce causal claims to claims about
correlations. but it leaves open the possibility that satisfuction of one or
both of the uncorrelatedness assumptions (U1) and (U2). when these are
given some substantive causal interpretation. is necessary and/or sufficient
for a system of equations to represent causal structure correctly. Suppose
that we confine ourselves to equations in which the error terms represent
omitted causal factors. Does it follow that representations in which the
error terms are uncorrelated are in some way preferable or priviieged with
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respect to causal interpretation? I think that there are a number of reasons
for denying this. .

First, there are a number of procedures that allow for estimation of
the coefficients in a system of equations when one or both of (Ul) and
(U2) are violated - it is just that such procedures do not involve the use of

. OLS estimators. For example, if a system is hierarchical — i.e.. contains no

causal cycles or loops — then, depending on details of the system, it may be
possible to use instrumental variables or indirect least squares to estimate
the coefficients even if (U1) or (U2) is violated.'® In such cases, we may
still think of the coefficients in each equation as having the causal interpret-
ation advocated above — i.e., each coefficient describes how the dependent
variable in that equation will change in response to an intervention on the
independent variable associated with that coefficient. This seems to show
that satisfaction of (U1)~(U2) is not necessary for causal interpretability
and that their role is purely epistemological — they are just one of a set of
conditions that permit the use of a certain estimating technique, which is
just one such technique among several.

Second, consider again the reduced form equations formed from some
arbitrary system of equations. As we noted, the reduced form equations

will always satisfy the uncorrelatedness assumption (U1), although not .

necessarily (U2). Since the reduced form equations sometimes incor-
rectly represent causal structure, it follows that satisfaction of (Ul) is
not sufficient for the correct representation of causal structure. Since OLS
estimators will be unbiased for the coefficients in the reduced form equa-
tions and the coefficients will always be identifiable, it follows that it is
not true in general that the conditions that insure unbiased estimation and
identifiability also insure correctness of causal representation.

4.4. Non-Recursive Systems

There is yet another reason for thinking that the uncorrelatedness assump-
tion (U1) is not necessary for causal interpretability. This has to do with
the existence of situations whose causal structure cannot be represented by
any recursive systems of equations. For our purposes, we may think of a
recursive system as a system which is (a) hierarchical — there are no causal
loops or cycles in which X causally influences ¥ and Y in turn causally
influences X — and which (b) satisfies the uncorrelatedness assumptions
(UT) and (U2). In a system which is non-hierarchical, some of the error
terms must be correlated with the independent variables in the equations in
which they occur, in violation of (U1). A simple example is provided by
the following system.

(13) Xs=aX,+bX4+U
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(1) Xs=cX,+dX:+V

The error term U enters into the equation (13) for X.. and hence is cor-
related with X3. But since according to (14), X3 is also a cause of X, X,
is also correlated with X,. Hence., U will be correlated Ny —el U will
be correlated with one of the r.h.s. variables in (13). [ will suggest below
that structures like (13)~(14) can be given a coherent causal interpretation,
and if this is correct, it follows that the satisfaction of the uncorrelatedness
assumption (U1) cannot possibly be a necessary condition for causal inter-
pretability. Similarly, Papineau’s claim that once we have written down
a system of equations in a form in which the error terms occurring in
each equation are uncorrelated with the r.h.s. variables in that equation
and the error terms are uncorrelated across equations. we have found or
fixed the right causal ordering cannot possibly be correct if nonhierarch-
ical systems are possible. In general, it is only in hierarchical systems that
the assumptions (U1) and (U2) can both be satisfied. In assuming that the
correct causal structure must be one in which (U1) and (U2) are satisfied.
we are assuming, on a priori grounds. that the correct causal model must
be hierarchical. For the same reason. Irzik is mistaken in claiming that all
causal models endorse assumptions (U1) and (U2). »
Can non-recursive models be given a coherent causal interpretation?
Are there real world causal systems that are represented by such model\?
While I will not try to explore these questions in detail. a few general
remarks about the status and interpretation of such models may be helpful.
First, such models are employed very widely in economics and other areas
of social science. Many social scientists believe that such models can be
given a causal interpretation. and that many of the systems they investigate
are appropriately described by such models. There are a number of reasons
for the popularity of non-recursive models. For one thing, many theories in
the social sciences attempt to describe equilibrium outcomes and these are
naturally modeled by systems of equations that contain reciprocal links,
For example, a system like (13)~(14) might be used to represent a supply
and demand equilibrium: we can think of (13) as a demand cquation in
which X; is the quantity demanded of some good. X, its price. and X,
is some other variable assumed to influence demand. (14) is the supply
equation relating the price of the good X, to the quantity supplied Xy tat
equilibrium equal to the quantity demanded) and some other factor X
assumed to influence supply. While it may seem natural to suppose that
underlying (13)-(14) is some more complex dynamical process that might
be modeled by a hierarchical. non-cyclic system with time indexed sari-
ables (cf. Cartwright 1989, 16-17). theories of the dynamics underlying
the attainment of equilibria are often underdeveloped in social science.
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While it is certainly desirable to develop more adequate dynamical models,
- equilibrium models are widely regarded as having considerable explanat-
ory power and empirical support. It seems misguided to reject them simply
because they are nonrecursive.'!
How then are the reciprocal links in a model like (13)-(14) to be un-
derstood? I don’t want to claim that there is any single answer to this
question, for it seems plausible that social scientists use non-recursive
systems to model many different kinds of processes, and different inter-
pretations seem plausible in different cases. Nonetheless, as Judea Pearl
(1993) has recently emphasized, the ideas about invariance and interven-
tions described above provide a natural way of understanding at least some
non-recursive models. In particular, we can apply the ideas about modu-
larity developed above to non-recursive as well as recursive systems. If
the system (13)—(14) is modular, then the result of an intervention on X;
will be to replace (13) .with the Equation (13*) X3 = k while leaving
. (14) unaffected. Similarly an intervention on X4 will replace (14) with

Equation (14*) X4 = k’ while leaving (13) intact. As before, if the system
(13)—(14) is a correct causal description, each individual equation will
correctly describe how its dependent variable will respond to interven-
tions on its right hand side variables as the other equation is altered or
disrupted. Thus an intervention on X1, which sets its value equal to k, will
lead according to the undisturbed Equation (14) to a value of X, that is
equal to Xy = ¢X, + dk + V. Thus the intervention on X3 will help to
determine the value of X,. Consider, by contrast, the reduced form system
(Xs=eX 4+ fXo4+U', Xy =gX, + h X2+ V'] which is observationally
equivalent to (13)—(14). This reduced form system differs from (13)—(14)
in its predictions about what will happen under some hypothetical inter-
ventions. For example, (13) predicts that an intervention on X3 will change
X, while the reduced form denies this. Of course, as emphasized above,
this sort of thought experiment will only make sense or yield well-defined
predictions if the two equations represent distinct mechanisms that can be
changed independently of each other. In the supply and demand interpret-
ation of (13)—(14), it is arguable that this condition is satisfied. As Thomas
Rothenberg puts it in an entry on “Simultaneous Equations Models” in
the New Palgrave Dictionary which connects the ideas of independent
changeability of equations, distinctness of mechanisms, and the notion of
autonomy:

In the supply-demand model, it is easy to contemplate changes in the behavior of con-
sumers that leave the supply curve unchanged. For example, a shift in tastes may modity
demand elasticities but have no effect on the cost conditions of firms. In that case the supply
curve is said to be autonomous with respect to this intervention in the causal mechanism
(described by the demand curve]. (1987, 233)
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It is also worth noting that. just as with hicrarchical systems with
correlated errors. there are techniques (e.g.. two stage least squares. as
well as the use of exclusion restrictions and information about the details
of the error variance-covariance matrix) other than OIS that. under the
right circumstances, permit estimation of the coefficients I non-recursive
systems. This again seems to reinforce the point that the uncorrelated-
ness assumptions have more to do with OLS estimation than with causal
interpretation.

Parallel remarks apply to the notion of identifiability. While all re-
cursive models are identifiable. some non-recursive models are not: the
statistical data generated by the model may not allow us. even in principle,
to reliably estimate the coefficients in the model. Instead the values of
the coefficients will be underdetermined by all such information. A very
simple example of such a model is the following structure

(15) Y =aX
X = by

Here the statistical data generated by this model does not allow us to
estimate the coefticients « and b. (Inwitively. this is because all sorts of
different combinations of the coefficients ¢ and b will generate the ob-
served association between X and ¥.) A nonidentified model is certainly a
disappointment to the investigator. but there is no good reason to suppose
that such models are impossible or lack a coherent causal interpretation. To
say that the non-identified model correctly describes some system is just
to say that the causal structure of the situation (at least as matters stand
at present) is such that the statistical associations produced among the
measured variables are not such that we can use then to tully discriminate

-among different possible models of the structure. As emphasized above,

this is not to say that no possible observations can discriminate among

the models, since different models will always make difterent predictions

about what will happen under some hypothetical changes or intervention.
but rather simply that in the absence of such changes. we cannot discrim-

_inate among them. For example. in the case of the mode) (15) immediately

above, with X representing quantity demanded or supplied and ¥ price. it
is well-known that if we could observe shifts in the supply curve (the first
equation) caused by some factor which influences supply but not demind.
such as rainfall. we could identify the coefficient in the second cquation,
(That it is at least possible that changes in the supply curve should be
produced by factors that do not at the same time influence demand i
of course bound up. in the way described above. with the idea that the
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supply and demand equations describe distinct mechanisms.) It would be
an extravagant kind of operationalism to suppose that a model like (15)
only becomes meaningful if such a shift actually takes place or only when
chgnges occur that allow us to estimate the coefficients in (15). This gets
things backwards — it is because a model like (15) already has a coherent
cau.sal interpretation which differs from the interpretation associated with
various observationally equivalent alternative models that it makes sense to
ask what sorts of data would discriminate between it and these alternatives
and under what circumstances nature will produce this data.

4.5. Invariance and Uncoirelatedness

Ne)ft let me turn to Cooley and Leroy’s contention that for the notion of in-
variance under interventions to be well-defined, exogenous variables must
be uncorrelated. The argument that they give in support of this claim has
recel.nly .been sympathetically discussed by Cartwright (1995) and is worth
quoting in some detail. They write:

Suppose that we start with the model
(16) M=uv
(17 P =aM + u.

where u and v are correlated. If the analyst were willing to assume that the correlation
between v and 1 occurred because v determines a component of u, i.e.,

' (18) u=hv+w
then (16)—(17) could be rewritten as
(19) M=v
(20) P=aM + bv+ w.

with v ar.ld w uncorrelated. Since M is exogenous in this setup, the effect of a change in
M on P is well-defined: d P = (a + b)dv. Here a + b could be estimated by regression: a
and b, of course, are not separately identitied.

If. on the other hand, the analysts were willing to specify that the correlation between
v anq 1 of (16)-(17) owes to a causal link in the reverse direction, the system would be
rewritten

Q0 M=ce+cu,
(22) P=aM +u,

with u a.nd e uncorrelated. Now the question *What is the effect of M on P? is not well-
posed, since the answer depends on whether the assumed shift in M is due to an underlying
change in e (in which case the answer is d P = ade) or in u (in which case the answer is
dP = (ac + Ddu). (1985, 291-2, I have renumbered the equations and changed some
symbols)
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The conclusion they draw from this is that

the notion of exogeneity involves the idea of intervention: a change in an exogenous
variable is envisaged, and the effect of this intervention on the endogenous variables is
calculated. Exogeneity also involves the idea of invariance under intervention: i cet. par.
[ceteris paribus] assumption is made, and this restriction must have unambiguous meaning
so that the hypothesized intervention is clearly defined. In order that the required invariance
under intervention have unambiguous meaning in all contexts, particularly Targe systems,
the assumption that all exogenous variables be uncorrelated is required. (1985, 292--3)

If the ideas defended in Sections 1 and 2 are correct, this argument is
fundamentally misguided. In my view, when the analyst writes down equa-
tions like (20) or (22), intending that they be understood as a causal claims
rather than as mere claims about patterns of association, their causal in-
terpretation does not depend on whether the correlation between v and u
occurs because v determines a component of 1 or vice-versa. What one
means by “the effect of a change in M on P" is just “the change in P that
would result from an intervention on M™ and this effect is the same and
is equally well-defined for both (20) and (22). In both cases, the effect
on P of a change in M is given just by the coefficient ¢ — ie. if the
change in M is d M, the effect of this change on P is ad M. To sce this,
note that an intervention on M disrupts equation (19). replacing it with
an equation in which the value of M is determined by the intervention or,
what is the same thing breaks the arrow directed into M from v in the
associated graphical representation. However. the value of v itself is not
changed by this intervention and the value w is unchanged as well. As a
result, according to (20), the only change in P is due to the change in M
and is reflected in the value of a. In the case of (21)-(22). an intervention
on M similarly breaks arrows directed into M from but leaves the values
of these variables themselves unchanged. Hence the change in I’ duc to a
change d M in M is again justadM.

The expression that Cooley and Leroy give for the effect of a change
in M on P in connection with (19) and (20) - dP = (a 4+ D)ydv —isin
fact the expression for the total effect of a change in v on M. What (19)
and (20) tell us is that v affects P through two different routes — both
directly and by affecting M which in turn affects P. This total effect of v
on P should be distinguished from the direct effect of M on P’ which is
what the coefficient a tells us about. Similarly, in connection with (21)-
(22) the expression ade is the total effect on P of a shift in ¢ which affects
P only indirectly by affecting M. By contrast. the expression (ac + Ddu
is the total change that would result in P from a change in u. which is
the sum of two components — a direct effect from w to /> and an indirect
effect of u on P through M. Of course these two expressions are different
but this shouldn't be alarming since they describe different total effects.
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Both of these total effects are different from the direct effect of M on P
which is again just ad M. Contrary to what Cooley and Leroy suppose,
the fact that the total effect of a change in e on P is different from the
total effect of a change in 4 on P does not show at all that the change in
P that would result in an intervention on M (which has to do with still
another quantity, namely ad M) is ambiguous or ill-defined. It is of course
perfectly true that if | observe a change in M and want to predict the total
change in P that will occur, it makes a difference whether the change in
M is due to a change in e or a change in u. However, it is just a mistake
to identify the total change in P that it would be reasonable to predict
after observing a change in M with the change in P that would result from
an intervention on M.'? In the former case, it is legitimate to “backtrack”
~ to make use of whatever information the state of M conveys about its
causal antecedents — and to then take account of how these antecedents
may affect P through some other route besides M. By contrast, because
we think of an intervention on M as an exogenous change in M, a change
in M that results from an intervention conveys no information about the
state of its causal antecedents and hence we cannot reason backward to
these antecedents and then forward to the state of P.

The reasoning described above, in which the effect of M on P is spe-
cified by the coefficient a, plainly depends on invariance assumptions —
for example, that while interventions on M disrupt (16) and (21), they
do not disrupt (20) or (22). These are what we earlier called modularity
assumptions. However, once we have these invariance assumptions, we
do not require further assumptions about the uncorrelatedness of exo-
genous variables for the invariance assumptions to be well-defined or to
give unambiguous answers about what will happen under interventions.
Instead it is one of the virtues of the invariance assumptions that they yield
well-defined answers to such questions regardless of whether or not the
exogenous variables are uncorrelated.

4.6. Misspecification and Uncorrelatedness

Finally, let me commernit briefly on another argument described above for
the significance of the uncorrelatedness assumptions. This is the argument
that violation of the uncorrelatedness assumptions indicates a mistake of
some kind about causal structure. There are at least two problems with
this argument. The first is that the uncorrelatedness assumption (U'1) will
always be violated in nonrecursive models. If such models are sometimes
correct, not all violations of the uncorrelatedness assumptions are due to
mistakes about causal structure. A second and more fundamental problem
is that even in the case of hierarchical models and assuming Reichen-
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bach’s principle, it does not follow from the fact that the uncorrelatedness
assumptions are violated that the model is mistaken in its claims about
causal structure — it may instead be that the model is merely incomplete.
For our purposes, a system of equations is mistaken, if for the variables
that explicitly figure or are included in the system, it postulates causal
relationships that do not exist or fails to postulate relationships that do
exist between those variables. A system is incomplete if there are other
variables, not included in the system, that are causally related to the vari-
ables included in the system and whose causal relationships to the included
variables are omitted by the model. An example of a mistaken model is a
regression model which represents X as a cause of ¥, when in fact X is not
a cause of Y. An example of an incomplete model is a regression model
(23) Y = aX, + bX; + U in which X,. X,, and U are indeed causes
of Y, but in which X, and U are correlated because they are joint effects
of some additional variable Z which has been left out of the model. As
I have argued, in this second case the model need not be mistaken in the
causal claims it makes, although we cannot use OLS to estimate it. In the
passages quoted above, Cartwright seems to recognize that unexplained
correlations need not indicate a mistake about causal structure (she claims
only that they “might” have significant implications for causal structure).
By contrast, Papineau seems to suppose that a correlated error term must
indicate a mistake in causal structure.

Some incompleteness will be a feature of any causal model with cor-
related exogenous variables — which is to say, virtually all causal models.
Consider, for example, a version of the regression model (23) in which U is
uncorrelated with X, and X but X, and X are correlated with each other.
Assuming Reichenbach’s principle, this model must be incomplete. since
there must be some additional common cause or causes, not represented in
the model, which accounts for the correlation between X, and X. Still. it
would be crazy to conclude from the fact that X; and X> are correlated that
the model is mistaken in the causal claims it does makes — indeed we can
estimate it by OLS. assuming that we know the variances and covariances
of ¥, X, and X,. Once we recognize the distinction between mistakes
and incompleteness, we see that the presence of a correlation between
exogenous variables, whether or not one of these is the error term, does
not automatically indicate a mistake in causal structure.

4.7. Two Additional Arguments

By way of conclusion to this section. I want to comment more specifically
on two additional arguments linking assumptions about the uncorrel-
atedness of the error term to causal structure. The first is due to Gurol

e e A et 3 e
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Irzik (1996). He asks us to consider a simple regression Equation 3)
Y = aX + U, where U is not Just the residual but rather has a causal
interpretation as the causes of ¥ in addition to X that have been omitted
from the equation. Following an argument of Herbert Simon’s (1954), Irzik
contends that that if (a) X is uncorrelated with U, (b) Y does not cause X ,
(¢) Reichenbach’s principle holds — namely, if X and Y are correlated, then
either X causes Y, ¥ causes X or X and Y have a common cause Or causes,
-and (d) X and Y are correlated, then it follows that (e) X causes Y. While,
in fact, (e) does not quite follow from these premises, I believe there is
a suitably reconstructed version of the argument that is sound: from (a),
(b),(d)and a suitably reformulated version of Reichenbach’s principle, (e)
does indeed follow.

What does this show? The first thing to note is that argument does
nothing to establish that satisfaction of the uncorrelatedness assumption (a)
is necessary for (3) to have a causal interpretation. At best the argument
shows that the conditions (a)-(d) are jointly (not individually) sufficient
for it to be true that X causes Y. According to the position adopted in this
essay, if (a) holds and (3) correctly describes a causal relationship, then (3)
should continue to hold under interventions that change the distribution
of U so that it is correlated with X. That is, changing the distribution of
U should not change the value of a or the way in which Y responds to
an intervention on X. If, on the contrary, changing the distribution of U
did result in the change in the value of g or in the way that X responds
to interventions on Y, then Equation (3) would be misspecified and not
a correct representation of the causal facts. Thus, rather than satisfaction
of (a) being a necessary condition for (24) to have an interpretation as
a true causal claim, my view is that if (3) only held under (a), it would
not describe a true causal claim because it would fail to have the right
invariance characteristics. Of course it is true that if U is correlated with X
in (3) and one attempts to estimate the value of ¢ by OLS, then, whether or
not (3) represents a true causal claim, the resulting estimate will be biased
but this shows only that changing the distribution of U (from uncorrelated
to correlated with X) will change the OLS estimate of a, not that it will
change the value of a itself.

What about the suggestion that, even if the uncorrelatedness assumption
() is not necessary for causal interpretabilty, it is at least sufficient? Even
if we put aside the point that what the above argument shows is that (a)
in conjunction with a number of other assumptions is sufficient for causal
interpretability and not that ( a) alone i, this interpretation of the argument
strikes me as misleading. For one thing,'? Irzik’s argument does not gener-
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alize to many other contexts in which structural equations are used to make
causal claims. Consider again the equation system

(15a) Y =aX
(15b) X = bY

As already noted, this can be given a natural cuusa! interprc‘lulinn within
the manipulationist framework described above. A'n mtcnientmn on X ll?;fl
changes it by amount dX will disrupt (15b) while leaving (15a) undis-
turbed; hence Y will change by amount ad X . Parallel remarks apply to the
results of an intervention on Y. Because there are no error terms in ( !511 )-
(15b) and because in the absence of any interventions, X and ¥ will hc.
correlated, we cannot appeal to assumptions about the uxTcorrelulcdncss of
the error term or other variables (even in conjunction with ther assump-
tions) to explain what it is for this system to have a causal |r]lcrprctf|!|()|1.
Instead we must appeal to some other set of ideas (such as the l]l:llllpl!lil-
tionist framework) to supply this interpretation. However, if we are going
to employ the manipulationist framework in this case. why not also c!nplo)
it in connection with (3)? In short, the interpretive frumcwork_ defended
in this essay is both more general and more uni‘ﬁcd than any l.rumcwml\
which assigns a central role in causal interpretation to assumptions about
the uncorrelatedness of the error term." .
I turn next to an argument of Nancy Cartwright's. Referring back to
Equations (16)—(17). Cartwright claims
In order to read off experimental results from (16) -(17) we mu?‘l not only know that v and
1 arc uncorrefated but we must also know that (i) v causes M (i) i represents all c:m\c.s ol
P other than those that operate through M and (iii) neither w nor v causes the other nor do
they have causes in common. (1995, 52)

She then observes that (16)—-(17) can be rewritten as (16" )-(17")
(16*) P =1t
7"y M=>bP+w

and shows that if the conditions (i)-(iii) are satistied for v and « in I{(.|u;|-
tions (16)-(17) they cannot also be satistied for ¢ and ' in LEquations
(16*)—(17*). . i

I see no incompatibility between these claims (at least tuken in them-
selves) and the conclusions about the role of the error term defended above.

First, at least in this passage. Cartwright does not claim that satisfaction of

conditions (i)—(iii) is necessary for (16)—(17) to be interpretable as making
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true .cgusal claims. Second, in agreement with my position, Cartwright is
explicit that the mere uncorrelatedness of v (or M) and u is not sufficient
to “read off experimental results” from (16) and (17) — other assumptions
must l?e satisfied as well. Finally, what is the intuition or motivation that
underlies conditions (i)—(iii)? From my perspective, there is an obvious
answer: these are the conditions that must be satisfied if v is to count as an
mterver.ltion variable for M with respect to P. What Cartwright in effect
shows is that if M and P are correlated (a # 0) under an intervention
on P, then we may legitimately think of M as causing P or at least that
we may fissign (16) its obvious interpretation in terms of the outcome of a
h‘ypo.thetlcal experiment. This is my view as well. Cartwright’s proof that
(1)—(iii) (;annot be satisfied for both sets of equations (16)—(17) and (16*)-
.(17*) re!les on the further assumption that the structure under investigation
is .ac.ychc. Relative to this assumption, what she shows (in effect) is that

if .lt is pqssible to carry out an intervention on M with respect to P (where:
this requires among other things that the intervention be uncorrelated with
other causes of M) and this intervention changes M. then one cannot also
carry Qut an intervention on P with respect to M that changes M. From
my point of view, this is just to say that if M causes P, then P does not
cause M and vice-versa.

5.

My concern in this essay has been to illustrate how ideas having to do with
hypoth?tical experiments and invariance can be used to elucidate causal
f:lalms In a very specific context — systems of equations of the sort studied
in the causal modeling literature. I believe, however, that these idess also
can be used to develop a much more general account of causation and
f:xplanation, applicable to many other areas of science. For example, the
idea that causal claims should be interpretable as claims about the ’Out-
comes Qf hypothetical experiments fits very naturally with — indeed is an
alternative way of expressing — the idea, which I have defended elsewhere

that gxplanations work by answering “what if things had been differeng
questions™ about their explananda (Woodward 1979, 1984, 1997). Simil-
quy, the notion of invariance provides a natural and plausible framework
for thinking about causal and explanatory generalizations that contrast with
the }lsual tendency to assimilate such generalizations to “laws of nature™

While the notion of law is usually understood to admit just two possibilities.
(a generalization is either a law or it is “accidental™), invariance comes iﬁ
degrees. And while philosophical tradition regards laws as exceptionless

a generalization can, as we have seen, be invariant within a certain do-’
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main and break down outside of it. For both of these reasons, invariance
is a more promising notion for understanding the status of exception-
ridden explanatory generalizations in the special sciences than accounts
which treat such generalizations as laws of nature (Woodward 1993, 1995,
forthcoming). :

Finally, the notions of modularity and of the independent changeability
of distinct mechanisms also are also widely applicable outside of causal
modeling contexts. Consider a block of mass m sliding down an inclined
plane in a downward directed terrestial field that produces constant gravita-
tional acceleration g. The influence of the gravitational force on the motion
of the block down the incline is given by (24) mg sin 6 where 0 is the angle
between the incline and the horizontal. This is opposed by a frictional force
that is proportional to the velocity of the block. Gravity and friction are dis-
tinct forces, deriving from distinct physical mechanisms or relationships.
We accordingly think that it should be possible in principle to change one
of these forces without changing the other. For example, we might alter
the relationship between the frictional force and the velocity of the block.
but not the relationship (24) for the influence of the gravitational ficld on
the block, by greasing the surface of the plane. and we might alter the
relationship (24) by moving the block to the surface of the moon without
altering the relationship between friction and velocity. When we adopt the
usual physical analysis in which the total force on the block is decomposed
into distinct components due to gravity and friction, we implicitly respect
the ideas about modularity and independent changeabilty described above.
We think of the correct decomposition of a total force into components
as just the decomposition in which the components can be changed in-
dependently of each other or in which the force law for each component
is invariant under changes in the other component. Just as in Haavelmo's
example. it will be this representation which will be best suited to tracing
the results of hypothetical changes and answering “what if things had been
different™ questions; hence the most perspicuous representation from the
point of view of explanation. The notions of hypothetical experimenta-
tion and invariance are central to understanding causation and explanation
everywhere in science and not just in causal modeling contexts.

NOTES

* Many of the ideas in this paper were worked out and claritied in collaboration with Dan
Hausman. A forthcoming co-authored paper (Havsman and Woodward. Independence.
Invariance and the Causal Markov Condition”) explores the implications of the view of
causation defended below for the status of the Causal Markoy Condition, which has figured
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prominently in recent discussions of causation (see, e.g., Pearl 1998¢ and Spirtes et al.
1993). I am heavily indebted to Hausman for extensive discussion and criticism. 1 have
also received extremely helpful comments from Nancy Cartwright, Gurol Irzik and Judea
Pearl. Research for this paper was supported in part by a grant from the National Science
Foundation (SBR-9320097).

! Very roughly, my view is that whenever a generic causal claim of the form Cs cause
Es is true, there must be some relationship between Cs and Es that is stable or invariant
under some range of interventions on C, but which relationship is invariant and under
‘which range of interventions will vary with the causal claim in question. There is no single
invariant relationship which is common to all cases of causation and for this reason it is
simply a mistake to look for a single “invariance condition” which is necessary and/or
sufficient for the truth of all causal claims, The claim that Cs cause Es is a highly generic,
non-specific claim covering many possible more specific relationships between € and E.
In general, one can spell out the content of a causal claim by being more specific about
which relationship is claimed to be invariant and over what range of interventions.

As an illustrdtion, consider the probabalistic theories of causation favored by many
philosophers. These typically focus on causal relationships between dichotomous variables
or at least variables that are measurable only on a nominal scale. It is also assumed that
there is some well-defined joint probability distribution for these variables. Obviously, one
cannot represent causal relationships between such variables by means of linear relation-
ships like (1), and thus one cannot capture what it is for a relationship between dichotomous
variables to be causal by talking about the invariance of (1 ). However, there are many other
possible candiates for invariant relationships involving C and E. If both C and E dicho-
tomous variables taking the values 0 and 1, and if C is the only factor which is causally
relevant to E, then the existence of a causal rclationship between C and E may show itself
in the fact that the conditional probabilities P(E = 1/C = 1) and P(E =1/C = 0)are
not equal and are invariant under some range of interventions that change P(C). Under
such conditions, one can manipulate P(E) by intervening on P(C) and hence it makes
sense, on the connection between manipulation and causation advocated above, (o talk
about a causal relationship between C and E. If E has multiple causes Cy.....C,, the
existence of a causal relationship between C; and E may show itself in the invariance
of the conditional probabilities P(E/Cy,....Cy) under interventions that change P(C;).
Alternatively, it might be the case that these conditional probabilities are not invariant under
interventions on P(C) but that the inequality P(E = 1/C = 1) > P(E = I/C = 0yis
invariant or continues to hold under some range of interventions on P(C) —i.c., changing
the value C for some units in the population of interest from 0 to | always increases the
probability of £ = I for those units even though the numerical values for the conditional
probabilities are not stable for different units or for different ievels of P(C). In this case
t0o, one can manipulate the value of E (or at least the frequency with which different values
of E occur) by manipulating the frequency of different values of C, and hence it will be
appropriate to think of C as a cause of E, although of course the relationship which is
invariant and hence casual will be different from the previous case. In still other cases, the
relevant variables may be continuous or interval-valued and may not be governed by any
well-defined joint probability distribution or probability density. (Think of fundamental
physical laws like Maxwell’s equations). Here the framework associated with probabilistic
theories of causation will not be applicable but we can still think of such laws as describing
invariant relationships and as causal for this reason (cf. Woodward 1992).
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2 For a more detailed treatment of the application of the notion of invuriuylcc 10 cx}pl;m;n-
ory generalizations in the biological and social sciences see Woodward. forthcoming and
Hitchcock and Woodward. forthcoming. ‘

3 We know that it must be possible to specify what it is for an intervention to oceur on X
without presupposing whether or not it is true that there is a causal relationship .hcl\f een
X and Y — if this were not possible we could never learn about causal relationships from
experiments. I

4 Under determinism, every intervention or change that does not occur will be “im-
possible” in the sense that its occurrence will be inconsistent with the laws and actually
obtaining initial conditions. . -
5 We don't preclude the possibility that a single equation may rcprc\.cf'nl several dis-
tinct mechanisms or causal relationships but only the possibility that ditferent equations
represent same or non-distinct mechanism(s). o
6 To sce that the error term in Xy = 1/ar X2 — 1/ax Us is indeed cnrrcllmcd with .,\ A
on the assumption that the error term in (12) is uncorrelated with X, multiply both sides
of this equation by U, and take expectations:

Us Xy = 1/az Uz X2 — 1/an UaUs
EWX1) = V/an(UaXa) — 1/ay EUaU2)

Since U> and X are uncorrelated E(U2X ) = 0. from which it follows, since E(l/21/2)
is not zero. that £(U3X>) must be non-zero. . A .
7 Cartwright goes on to reject this formulation in favor of a more u‘nnpl‘c-x :l‘l.gul(lk:;l
connecting causes and probabilities, involving her “Open Back Path ((Tndmnn (1 ).H .
2911.). Ho:vcver. her original formulation is taken up and endorsed by Papincau and l:’:lk.
8 Similar arguments and conclusions can be found in _Curl\\‘.ng.hl (1995), :lfl(l Pearl (1998).
Irzik (1996) provides a somewhat different argument for a similar cnnc}luxmn. ‘ '
9 Thus even the epistemological role of the uncorrelatedness rcquu'cn?cm n C\'llllll'l-
tion and identification only has a non-trivial application when a Tegression cquation is
interpreted causally (cf. Cartwright 1995, 66. tor a mm!ur observation). ' .
10 Although instrumental variables estimators and ind'nuil least \(llll‘lfL‘\-\\I“ I?(\l‘ ?\.«hun'-
biased. they will be consistent. By contrast, when (Ul is | 1ofated OLS estimators are both
biased and inconsistent. Hence the former are preferable in such contexis. '
T Another consideration favoring the use of non-recursive models, I'L‘CUI‘I”'\ cllnphu'\uc.(!
by Kevin Hoover (1993). has to do with nature of the .\erl:lN\:\ cmpln_\.cd in \(‘LNI.I-I \\ I;l!L‘L
theories: for both conceptual reasons and reasons having to do both with the practicatities
of measurement, such variables may not be fine-grained enough temporally to allow us 1o
replace non-recursive models with recursive ones. . o ) .
12 This is just the contrast between “conditioning™ and “intervening”™ deseribed c.ullu,‘
t3 Another reason why it seems to me to be a mistake to l:l}kv the m'g-umcm as \.h.(l\\llllg_‘
that (a) in conjunction with other assumptions is sufficient I(.vr L‘:lll\fl‘ m(clprglulnlu'\ ‘h..l\
to do with the character of these additional assumptions - in pflrhcul;u. vachcnh‘:fg.h N
principle (¢). 1 do not deny that when suitably qt!ulmcd and retformulated some sersion
of Reichenbach’s principle is probably correct. The prnhlcm_ rather has to do \\|l|-| un-
derstanding what the principle means and the grounds on w h.lt'l'l one \Illnuld aceept it In
particular, ]o understand the principle (and to assess \\hc(hgi-r it is truer it Jooks as though
one must already understand what it means to clatm that e one must alrcady have an
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assigned an interpretation to) “X causes Y” since this locution figures in the statement
of the principle. But then one must have some basis, independent of the argument Irzik
describes, for assigning a causal interpretation to (3). To put the point a bit differently, the
claim that the above argument supplies a set of conditions that are jointly sufficient for
(3) to have a causal interpretation gets matters backwards. To understand Reichenbach’s
principle we must first assign an interpretation to the causal locutions that appear on the
ths of the principle. It is only then that we may ask what reasons we have, given this
interpretation, to accept the principle. Hausman and Woodward (forthcoming) attempt to
do answer this question for a suitable generalization of the principle when “X causes ¥ is
given the manipulationist interpretation defended above.

14 There is a related issue which has been raised by Irzik in correspondence and that is
worth mentioning at this point. An intervention on X involves an exogenous causal process
that breaks the causal connection between X and its previous causes and is uncorrelated
with those causes. In appealing to the notion of an intervention to give a causal interpreta-
tion to a set of equations don’t we thus reintroduce the idea of an uncorrelated additional
cause of X which is tantamount to an uncorrelated error term directed into X? In my view
the answer to this question is “no”. The key point is that the notion of an intervention is a
purely hypothetical notion. To say that a relationship is invariant under some intervention
is to say that the relationship would continue to hold if the intervention were to occur. It
is not necessary that the intervention in question actually occur or that some variable in
the system in question actually satisfy the conditions for an intervention variable.Thus, for
example, in the case of the equations (15a)—(15b) talking about what would happen to Y
under an intervention on X does not commit one to the claim that there must vaclually be
some additional variable U that is directed into X and yet uncorrelated with Y.
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