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Probabilistic Causality, Direct Causes
and Counterfactual Dependence-

JAMES WOODWARD
California Institute of Technology

1 Introduction

A great deal of recent philosophical work on causation largely falls in two
major traditions. On the one hand, there is the tradition of probabilistic theo-
ries of causality inaugurated by Suppes (1970). Suppes hoped to reduce
causal claims to claims about probabilities. More recent work in this tradition
eschews the goal of a complete reduction but still hopes to find systematic
relationships between causal claims and claims about probabilities. For ex-
ample, a standard suggestion (Cartwright 1983) about that connection is that
causes must raise the probability of their effects across all causally homoge-
nous background contexts or given all possible combinations of other factors
that are causally relevant to the effect. Theories of this sort are generally in-
tended as theories of so-called type causation: that is they are intended to
capture causal claims that relate types of events or properties such as “im-
pacts of rocks cause windows to break™ and “smoking causes lung cancer™.
With a few exceptions (e. g.. Eells 1991). they are generally not intended to
be accounts of so-called token causation—that is, causal claims that relate

* Thanks to Chris Hitchcock for a number of helpful discussions.
Stochastic Causaliry.
Maria Carla Galavotti, Patrick Suppes and Domenico Costantini (eds. ),
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individual events such as “the impact of the ball thrown by Billy on January
12,2000 at 3pm caused Smith’s window to shatter”.

One of the main alternatives to such theories in philosophy is the coun-
terfactual approach to causation developed by David Lewis (Lewis, 1973,
1979) and his students. This approach is also reductionist in intent, but in
contrast to probabilistic theories, the aim is to reduce causal claims to claims
about counterfactual dependence, where the latter can be understood in a
way that does not presuppose causal ideas. Moreover, in contrast to prob-
abilistic theories, Lewis’s theory is not intended as an account of type causa-
tion but rather as an account of token causation. Lewis’s theory does succeed
in capturing our common sensical judgments about token causal relation-
ships in a range of (although by no means all) cases. However the theory re-
quires a semantics for counterfactuals that is prima-facie quite mysterious—
for example, we are often required to employ counterfactuals the antecedents
of which are made true by miracles. Many writers have argued that such
counterfactuals play no legitimate role in scientific practice.

What is the relationship between these philosophical theories and the
treatments of causal claims one finds in discussions of experimental design
and in disciplines like econometrics and epidemiology—treatments that em-
ploy, for example, the apparatus of structural equations and/or directed
graphs? These disciplines differ along many different dimensions and there
is no single generally accepted label for the work on causal inference and the
representation of causal relationships one finds in them. To avoid cumber-
some repetition, I will call them the causal modeling disciplines and will
speak (in a way that obviously involves considerable idealization) of “the”
causal modeling conception of causation. Causal inference in the causal
modeling disciplines is usually based, at least in part, on statistical evidence
and, in part for this reason, a great deal of work in these disciplines focuses
on the relationship between causal claims and probabilistic relationships.
This fact has led many philosophers to suppose that the causal modeling no-
tion of causation must be something like the notion that probabilistic treat-
ments of causation attempt to capture. Indeed, the assumption that this is the
case has been one of the main motivations for the developmen: of probabil-
istic theories.

In this essay, I will compare the treatment of causation assumed in the
causal modeling disciplines with the probabilistic and counterfactual theories
developed by philosophers. I will suggest that, contrary to what many phi-
losophers have supposed, the causal modeling notion is in many respects
closer to the counterfactual approach assumed in the Lewisian tradition than
to probabilistic accounts of causality. In fact, the causal modeling treatment
of causation clarifies and explains some of the puzzling features of Lewis’s
account of counterfactuals. Moreover, the causal modeling treatment yields a
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notion of causation that, provided one is willing to make certain assumptions,
does have systematic connections with facts about probabilities. However,
these connections are considerably looser than those defended in standard
formulations of probabilistic theories—so loose that the phrase “probabilistic
theory of causation” seems a misnomer. In general, the causal modeling con-
ception of causation brings together work in both the counterfactual and
probabilistic causality traditions, capturing what is plausible in both.

As a point of departure, let me begin with an observation whose signifi-
cance is insufficiently appreciated by many philosophers working in the
probabilistic causality tradition. This is that the standard treatments of causal
relationships one finds in the causal modeling disciplines employs two dis-
tinct kinds of resources or representations, both of which work together in
problems of causal inference. First, as in probabilistic theories of causation it
is assumed that we have a probability distribution P over some set of vari-
ables V whose causal relationships one is interested in investi gating. Second,
over and above this, one makes use of some additional device G to represent
causal relationships among the variables in V. G is typically either system of
equations or a directed graph. We may thus think of a causal model as an
ordered triple of the form <V, P, G>. As we will see, if we are to adequately
represent the connection between casual relationships and probabilities, borh
P and G are required—neither cannot be reduced to or replaced by the other.
Roughly speaking the role of the directed graphs or structural equations is to
represent information about patterns of counterfactual dependence among
variables; more specifically, it is to tells us what would happen to the values
of some variables under changes of a special sort involving what I will call
interventions. (These are idealized experimental manipulations—see Section
4) in the values of other variables. The probability distribution P, by contrast,
does not convey modal or counterfactual information of this sort. Instead, it
conveys information about the actual distribution of values of variables. As
we will see below, we may think of directed graphs and structural equations
not as summarizing information about any particular probability distribution
but rather as telling us various different distributions are connected to one
another—in particular how such distributions (or certain features of them)
will change under interventions or combinations of interventions. Seen from
this perspective, a major problem with the probabilistic theories found in
much of the philosophical literature is that they attempt to provide an account
of causation by relying too heavily on just one kind of resource—the prob-
ability distribution P. In fact the full resources of the graphical or equational
representation are required if one is to do justice to the notion of causation.
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2 Directed Graphs and Equations

I'begin with some brief remarks about the use of directed graphs and systems
of equations to represent causal relationships. Let us assume that the causal
- claims that we are interested in modeling relate variables where variables
represent properties or magnitudes that (as the name implies) are capable of
taking more than one value!. Such claims will involve type-level rather than
token level relationships. The familiar examples of so-called property or type
causation discussed in the philosophical literature may be understood as re-
lationships between two-valued or binary variables, with the variables in
" question taking one or another of two values, depending on whether the
properties in question are instantiated or occur. Thus the claim that ingestion
of aspirin causes recovery from headache may be understood as asserting a
relationship of some kind between a variable A, representing whether or not
aspirin is ingested, and a variable H representing whether or not relief from
headache occurs. Of course variables need not be two-valued; they may also
assume mahy values or be continuous.
A directed graph is an ordered pair <V, E> where V is a set of vertices
which serve as the variables representing the relata of casual relationships
and E a set of directed edges connecting these vertices. A directed edge from

vertex or variable X to vertex or variable Y means that X directly causes Y.

For now I will largely rely on the reader’s intuitive understanding of this no-
tion; it is discussed in more detail in Section 5 below. However, the basic
idea is that X is a direct cause of Y if and only if there is a possible interven-
tion (experimental manipulation) on X that would change the value of ¥ (or
the probability distribution of ¥) when all other variables in the system of
interest are held fixed at some set of values in a way that is independent of the
change in X. Put more simply, drawing an arrow from X to ¥ means that there
is some change in the value of X that will change the value of ¥ (or the prob-
ability distribution of ¥), given some set of values for the other variables. I
assume that if X is a direct cause of ¥, then X is a cause of ¥, but that the con-
verse of this claim is false. A sequence of variables {V], ... Vy}is adirected
path or route from V to Vy, if and only if for all i ( /<i< n) there is a directed
edge from Vjto V4 }. Yis a descendant of X if and only if there is a directed
path from X to Y. If Y is a descendant of X, then X is an ancestor of Y. The
direct causes of X are also said to be the parents of X2. As we will see below,

170 avoid cumbersome terminology, I will often use the word “variable” to refer both to the
properties etc. that serve as relata in causal relationships and to the symbols that represent

such properties. This conflation is, I believe, harmless.
See Spirtes, Glymour and Scheines, 1993 for a more detailed discussion of the use of di-

rected graphs to represent causal relationships.
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a necessary but not a sufficient condition for X to be a cause of ¥ is that X be
an ancestor of Y.

As an iltustration of the use of directed graphs to represent causal rela-
tionships, suppose that A is a variable measuring atmospheric pressure, B a
variable representing the reading of a particular thermometer and § a variable
representing the occurrence or non-occurrence of a storm Then we may rep-
resent the claim that A is a direct common cause of B and S and that B does
not cause § and S does not cause B by means of the following diagram.

Sv\ /4 B
A
Figure 2.1

Causal relationships may also be represented by means of systems of
equations. When underlying causal relationships are deterministic each en-
dogenous variable Y (that is, each variable that represents an effect) is written
as a function of all and only those variables that are its known or measured
direct causes plus a so-called error term which represents the combined in-
fluence of all of the other direct causes of the endogenous variable. The pres-
ence of the error term makes possible conditional probabilities involving the
measured variables that are strictly between zero and one. There is one equa-
tion for each endogenous variable. For example, if variables X], ... Xy are
all of the known direct causes of ¥, then ¥ may be written as (L. Y=Fy
(X].....Xm) + U. Analogous remarks apply to the indeterministic case, with
the relevant equations specifying how the probability distribution of Y will
change under manipulation of the right side variables representing direct
causes in each equation.

What is the relationship between the representation of causal relation-
ships by means of systems of equations and their representation by means of
directed graphs? As we have seen, when we draw a directed graph with ar-
rows from Xj..., X, into ¥, we convey the information that Y is some func-
tion of X;..X,y and that all of the variables Xy, .., X are essential in the sense
that for each such variable X; , there is some combination of values of the
others such that changing X; will change Y. However, the graph does not
further specify what this function is. It does not tell us which changes in X
will change Y or by how much or for which values of other variables. By
contrast, when we explicitly specify the function or equation refating Y to its
direct causes (e. g. ¥ = 3X 7+ 4X2), we convey more information than if we
merely draw a graph with arrows from X; and X> directed into Y. Unlike the
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directed graph, the explicit form of the equation specifies exactly how
changing X; and X> will change Y. By contrast, the correspondiag directed
graph says simply that there is some change in X; (X2) that, given some
value of X5 (X7), will change Y.

3 Causation, Manipulation and Counterfactuals

I'said above that directed graphs and systems of equations represent counter-
factual claims about how changing the values of certain variables will change
the values (or the probability distribution of the values) of others. Let me
now try to be more precise about this idea and its underlying motivation. The

-notion of causation assumed in directed graphs and systems of equations is a
manipulability conception of causation. The underlying idea is that causal
relationships are just those relationships that are potentially usable for pur-
poses of manipulation and control in the sense that if X is a cause of ¥ then if
it were possible to change or wiggle the value of X in the right way and in the
right circumstances, this would be a way of wiggling or changing the value
of Y. Manipulability theories are thus a subspecies of counterfactual theories
of causation; they are theories according to which the right counterfactuals
for understanding causal claims are counterfactuals that have to do with what
would happen under hypothetical manipulations.

Manipulability accounts of causation have been unpopular in contempo-
rary philosophy; they are commonly criticized as both unilluminatingly cir-
cular and as leading to an unacceptably anthropomorphic or subjective no-
tion of causation in the sense that they seem to restrict true or meaningful
causal claims to those contexts in which manipulation by human being is
possible (see, e.g., Hausman 1998). I have argued elsewhere (Woodward
forthcoming) that while these criticisms are indeed apt when applied to the
standard formulations of the manipulability theory one finds in the philo-
sophical literature (such as von Wright 1971; Price 1991), there is natural
way of developing an alternative version of manipulability theory that avoids
such criticisms. As we will see (Section 4), the key to formulating an accept-
able version of the manipuability theory is finding the right characterization
of the notion of an intervention: an intervention on X with respect to Y can be
characterized in a way that makes no reference to human beings or their ac-
tivities (thus avoiding the anthropocentrism of traditional versions of the
manipulability theory) and also in a way that makes no reference to the exis-
tence or non-existence of a causal relationship between X and Y (thus avoid-
ing the vicious circularity that infects traditional versions).

But while it is possible in this way to formulate a version of the manipu-
lability theory that avoids the standard criticisms, a natural (and deeper ques-
tion) is why we should bother to do this. Why suppose that we can clarify or
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explain anything about causal relationships by thinking about them within
the framework of a manipulability theory? For reasons of space, I will con-
fine myself to a few brief observations. First, researchers within the causal
modeling disciplines tell us again and again that what they mean by causal
relationships are those relationships that are exploitable for purposes of ma-
nipulation and control3. While it is of course possible that such pronounce-
ments have no relation to the conception of causation assumed in the actual
practice of these disciplines, this is a good prima-facie reason for taking the
manipulability conception seriously.

Second, manipulability theories of causation provide a natural and at-
tractive account of the underlying point or rationale of our practice of distin-
guishing between causal and non-causal relationships: if X and Y are corre-
lated and if manipulation of X is possible, there are obvious practical advan-
tages to knowing whether or not the relationship between X and Y is such that
manipulating X can change Y. Moreover, at least in many contexts, it also
seems clear that it is exactly this distinction that is at issue when we worry
about whether a relationship is causal. Consider the well documented corre-
lation between superior scholastic performance and attendance at private
schools. Does this reflect a (3.1) causal connection between such attendance
and performance or (3.2) is it rather the case that private school attendance
per se has no effect on performance and that the correlation arises entirely
from the fact that the very factors that lead to enrollment in private schools
(e.g., affluent parents who are concerned about their children's education)
also cause superior performance? Parents and educational researchers care
about the answer to these questions exactly because they want to know
whether they can manipulate performance by enrolling students in private
schools—it is possible in principle to do this if (3. 1) is correct but not if (3.2)
is. More generally, human beings are often in the position of observing a
correlation between X and Y and wondering whether this correlation reflects
a relationship that will allow them to change ¥ by manipulating X or whether
instead the observed correlation between X and ¥ will disappear under ma-
nipulation of X. According to a manipulability theory our notion of causation
developed not as the result of an impulse to engage in dubious metaphysics
or to project certain of our psychological states onto the world but rather to
mark this practically important distinction. On this view, directed graphs and

3 Hlustrations are readily found in a variety of texts on experimental design and economet-
rics. A representative quotation from Cook and Campbell’s highly influential (1979) is: The
paradigmatic assertion in causal relationships is that manipulation of a cause will result in
the manipulation of an effect. Causation implies that by varying one factor I can make an-
other vary (1979, p. 36, emphasis in original).
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systems of equations have a similar motivation; they reflect our concern to
distinguish manipulation supporting relationships from mere correlations.
Like the notion of causation itself, counterfactuals have often been re-
garded with suspicion by empiricists. It is frequently suggested that they lack
a clear meaning or that their truth conditions are so vague apd (?ontext-
dependent that they are not suitable for understanding or e!u'cu.iatmg any
notion (of causation or anything else) that might be of scientific interest. A
famous example of Quine’s illustrates the worry. Consider the couqterfac-
tual(s) (3.3) “If Julius Caesar had been in charge of U. N. forges during the
Korean war, then he would have used (a) nuclear weapons or (b) catapults”.
It is hard to see on what basis one could decide whether the counterfactual
(3.3) with (a) as consequent or the counterfactual (3.3) with (b) as con.se-
quent (or neither) is correct. A manipulability framework for unde.rstandmg
causation helps to address this worry. It suggests that the appropriate coun-
terfactuals for elucidating causal claims are not just any counterfactuals but
rather counterfactuals of a very special sort: those that have to do with th'e
outcomes of hypothetical manipulations or experiments. It does seem plagsn-
ble that counterfactuals that we do not know how to interpret as (or associate
with) claims about the outcomes of well-defined manipulations will often be
claims that lack a clear meaning or truth value. For example, (3.3a) and
(3.3b) seem unclear for just this reason. It isn’t just that we lack the techno-

logical means to carry out an experimental manipulation in which Caesar is -

placed in charge of the U. N. forces. The more fundamental prqblem is that
we have no clear conception of what would be involved in carrying out such
an experiment.

By contrast, a similar sort of skepticism about couqterfactuals that are
interpretable as claims about the outcomes of hypothetical (but therw1se
well specified) experimental manipulations is much harde.r to sustam.'Con-
sider an experiment in which a large group of people suffering from a disease
are randomly divided into a treatment and a control group with the formejr
receiving some drug that is withheld from the latter. As it turns out, the inci-
dence of recovery is much higher in the former than in the latter. .Pr‘owded
that the right sort of experimental controls have been followzd, it is very

‘natural to think of this experiment as providing good evidence for the truth of

counterfactuals like the following: (3.4) “If those in the control group had
received the drug, the incidence (or expected incidence) of recovery in .thi.lt
group would have been much higher.” Indeed it is very plausible that it is
precisely because the experimenters want to determine the truth value of
counterfactuals like (3.4) that they conduct the experiment. Of course, the
researchers may be mistaken in the conclusion they draw about the .tr.uth
value of (3.4) but this does not distinguish (3.4) from any other empirical
knowledge claim. The claims that (3.4) lacks a determinate meaning or truth
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value or is untestable in principle are, I suggest, much less plausible than the
corresponding claims about (3.3)4.

In contrast to counterfactuals like (3.3), counterfactuals like (3.4) play a
central role both in practical deliberation and in experimental practice in sci-
ence. We need to understand how such counterfactuals can be tested and
evaluated but they should not be dismissed as meaningless or unscientific.

4 Interventions

I suggested above that one of the key elements in formulating a defensible
version of a manipulability theory is the notion of an intervention. Heuristi-
cally (but only heuristically), one may think of an intervention on X with
respect to Y as the sort of manipulation that might be carried out in an ideal
experiment for the purpose of determining whether X causes Y. The basic
idea may be illustrated by reference to the ABS system in Figure 2.1. It is
clear that there are ways of changing B that will be associated with a corre-
sponding change in § even though B does not cause S. For example, if we
change B by changing A, or by means of some causal process that is perfectly
correlated with changes in A, then S will also change, but this would not es-
tablish that B causes S. Plainly, an experiment in which B is manipulated in
this way is a badly designed experiment for the purposes of determining

4 These remarks raise a natural question. Suppose that we grant that counterfactuals like (3.4)
that can be tested experimentally have truth values and hence that the causal claims associ-
ated with them have truth values as well. What about causal claims and associated counter-
factuals for which the relevant experimental manipulations are specifiable or well-defined but
cannot actually be carried out, because of technological or other sorts of limitations? For
example, consider the causal claim that (3.5) the position of the moon causally influcnces the
tides and the associated counterfactual claim that (3.6) if the radius of the moon's orbit were
to be changed as a result of an intervention, the motions of the tides would have been differ-
ent. Assuming that the causal claim (3.5) is true. on a manipulability theory some associated
counterfactual like (3.6) must be true as well. But why suppose that (3.6) has a definite truth
value if, as is clearly the case, the associated manipulation cannot actually be carried out?
While the matter deserves a more detailed discussion than I can give it here, the short answer
is that once it is accepted that (a) counterfactuals have truth values when their antecedents
refer to experiments that can be carried out, it is hard to avoid the view that (b) counterfactu-
als for which the associated experiments are well-defined but cannot be carricd out also have
truth values. The reason for this is that even for counterfactuals satisfying (a). it is not the
actual carrying out of the associated experimental manipulations that endows them with defi-
nite truth values. Rather, such counterfactuals possess definite truth values independently of
whether the relevant experimental manipulations are carried out. The experimental manipula-
tions are a way of discovering what the truth values of the counterfactuals are; they do not
somehow create those truth values. Similarly for counterfactuals satisfying (b)—if the ma-
nipulations specified in their antecedents cannot, as a practical matter, be carried out, this
shows only that their truth or falsity cannot (at present) be directly determined by experi-
mentation, not that they lack truth values.
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whether B causes §. Similarly, an experiment in which the process that
changes B also directly changes S would be badly designed for this purpose.

By contrast, consider the following experiment. We employ a random
number generator which is causally independent of A and, depending just on
the output of this device, repeatedly physically fix the barometer reading at
different values by moving the dial to either a high or low reading and driv-
ing a nail through it. If it is really true that B does not cause S, then we expect
that the changes in B produced by such interventions will no longer be asso-
ciated with changes in S. If, on the contrary, S continues to be correlated with
S under such interventions on B, this would be strong prima-facie evidence
that B does cause S. In contrast to the previous experiments, an experiment of

" this sort would be a well designed experiment for the purposes of determin-
ing whether B causes S. The notion of an intervention is meant to capture the
contrast between these two kinds of experiments: the second sort of experi-
ment involves an intervention on B with respect to S while the first does not.

This reference to an “ideal experiment” naturally suggests an activity
carried out by human beings. However, as I suggested above, the notion of an
intervention can be given a completely nonanthropomorphic characteriza-
tion, that makes no reference to human beings or their activities. I will not try
to present the full details of this characterization here, but instead refer the
reader to the characterization in Woodward (2000)3. Informally, however,
we may think of an intervention / on X with respect to Y as an exogenous
causal process that changes X in such a way and under conditions such that if
any change occurs in Y, it occurs only in virtue of s relationship to X and not
in any other way. Making such a characterization precise requires reference
to the causal relationships between I and various other causes of ¥ and to the
causal relationship between I and Y (for example, I must not be a direct cause
of ¥) but it does not require reference to the presence or absence of a causal
relationship between X and Y. Thus, such a characterization will not be vi-
ciously circular in the sense that to know whether an intervention has been
carried out on X with respect to ¥, one must already know whether X causes
Y.

The sense in which interventions involve exogenous changes in the vari-
able intervened on is illustrated by the above example. When an intervention
occurs on B, the value of B is determined entirely by the intervention, in a
way that is (causally and probabilistically) independent of the value of A
which was what previously determined the value of B. In this sense the inter-
vention breaks or disrupts the previously existing endogenous causal rela-
tionship between A and B. If we represent such an intervention on B by

5 For additional and broadly similar characterizations of the notion of an intervention see
Spirtes, Glymour and Scheines (1993), Woodward (1997), Hausman (1998), and Pearl (2000).
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drawing an arrow from an intervention variable / to B, then the result of the
intervention will be to replace the structure in Figure 2.1 with the structure in
Figure 4.1:

S\ / B S\
A A
Figure 2.1 . Figure 4.1

B ¢—

This illustrates the so-called “arrow-breaking™ conception of interven-
tions: an intervention on X breaks all arrows directed into X while preserving
all other arrows in the graph, including those directed out of X. The breaking
of arrows directed into X captures the idea that the value of X is now deter-
mined exogenously, entirely by the intervention variable I and that those
variables that influenced the value of X prior to the intervention no longer do
s06.

This idea about how to represent interventions graphically is closely tied
to an idea about the impact of interventions on systems of equations that Dan
Hausman and I (Hausman and Woodward 1999) have elsewhere called
“modularity”. We may represent the structure in Figure 2.1 by means of the
following two equations

(4.1)B=aA

(42)5=0bA
An intervention on B will then correspond to replacing equation (4.1)
with a different equation (4.3), B = |, specifying that the value of B is no
longer determined by S but is instead set entirely by the value of the inter-
vention variable /. Just as we assume, when we employ the arrow-breaking
conception of interventions, that it is possible to carry out an intervention on
B that leaves the arrow from 4 to S undisturbed, we also assume that when a
system of equations like (4.1- 4.2) correctly represents some causal structure,
it will be possible to carry out this operation of replacing one equation in the
system (in this case, (4.1) with (4.3)) while leaving the other equations in the
system (4.2) undisturbed. When a system of equations has this feature (that
is, when one may disrupt or replace any one of the equations by means of an
intervention on the dependent variable in that equation, without disrupting
the other equations), I will say that the system is modular or equation-
invariant. Within a probabilistic framework, modularity corresponds to the

6 For additional discussion of the arrow-breaking interpretation, sec Pearl (1995, 2000).
Spirtes, Glymour and Scheines (1993) and Hausman and Woodward (1999).
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following requirement: Pr(X/Parents(X).Set Y) = Pr(X/Parents (X) for all Y
distinct from X, where Set Y means that the value of ¥ has been set by an
intervention.

One natural way of motivating the idea that systems of equations should
be modular appeals to the idea that if a system of equations coirectly repre-
sents causal structure, each equation in the system should represent the op-
eration of a distinct causal mechanism. If we make the additional plausible
assumption that a necessary condition for two mechanisms to be distinct is
that it be possible (in principle) to interfere with the operation of one without
interfering with the operation of the other and vice-versa , we have a justifi-
cation for requiring that systems of equations that correctly represent casual
" structure should be modular. For example, a natural justification for suppos-
ing that we may replace (4.1) with (4.3) without altering (4.2) is that the
mechanism by which A affects B is distinct from the mechanism by which A
affects S. In what follows, I will assume that the systems of equations with
which we are dealing are modular (and correlatively that graphical represen-
tations satisfy the arrow-breaking interpretation of interventions). For exam-
ple, the definition of direct causation (DC) given below assumes modularity.

It also will be important to our subsequent discussion to understand that
intervening to set the value of a variable to some value is conceptually quite
different from conditioning on the value of that variable. (cf. Meek and Gly-

mour 1994; Pearl 2000). Following a proposal due to Pearl (1995) let us sup-

pose that the values of variable X that are set by interventions can be repre-
sented as the values of a new random variable, ser X. (This will be a reason-
able assumption when, as in the example above, the values of this variable
are determined by a randomizing device). Then it will not in general be true
that Pr (Y/X) = Pr(Y/set X). In the above example, S and B are correlated and
in fact Pr(S/B) > Pr(S). However, assuming that B does not cause §, we
would not expect § and set B to be correlated. Instead we would expect that
Pr(S/set B) = Pr(S§). .

The reason why intervening is different from conditioning is unmysteri-
ous. When we condition on a variable, we assume that whatever causal
structure generates the values of that variable is left intact, so that the values
in question continue to be generated by whatever endogenous causal factors
are at work in that system. Thus when we condition on B in the above exam-
ple, we assume that the values of B continue to be generated by A, in which
case they will be correlated with the values of S, which are also generated by
A. By contrast, as the above example illustrates, if a variable is endogenous,
then intervening on it alters the causal structure of the system in which it fig-
ures—giving it a new exogenous causal history. Unless the variable inter-
vened on is exogenous, the intervention will disrupt the previously existing
pattern of correlations in the system, leading to a new set of probability rela-
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tionships. We see this in the example under discussion, in which B and § arc
correlated when there is no intervention on B, but are uncorrelated in the new
structure that results when there is an intervention on B. (The graph in Figure
2.1 thus tells us how the distribution of B and § will change under an inter-
vention on B.) The difference between conditioning and intervening thus
corresponds to the difference between two questions: What would it be rea-
sonable for me to predict regarding the value of § when I observe the value of
B, assuming that no intervention occurs and whatever system has been gen-
erating the values of B and § remains intact? What would it be reasonable for
me to predict regarding the value of S, if I were to physically manipulate the
value of B in the manner described above?

To say that there is an important difference between conditioning and
intervening is not of course to say that there are no systematic connections
between these two notions. Indeed to a very large extent, rhe problem of
causal inference, at least in non-experimental contexts, is when (and how) it
is possible to infer from information about conditional probability relation-
ships to claims about what would happen under possible interventions—an
issue to which I will turn in Section 6 below. However, from the perspective
of a manipulablity theory, the structure of this problem is fundamentally ob-
scured if we do not distinguish between conditioning and intervening.

It should also be clear from the above characterization that interventions
function in broadly the same way as Lewisian miracles. When we consider.
within Lewis’ framework, a counterfactual like (4.4) “If the barometer read-
ing had been low, a storm would have occurred” we imagine that the antece-
dent of this counterfactual is made true by the insertion of a small. localized
miracle which decouples the value of the barometer reading from the value
of the atmospheric pressure. This miracle makes B independent of § and this
in turn prevents the sort of backtracking reasoning that might be used to ar-
gue for the truth of (4.4): (If the reading was low, that must be because A was
low, in which case the storm would have occurred). Like an intervention on
B, the insertion of such a miracle gives B an independent causal history and
(at least in many cases) this is enough to insure that any change in the value
of § is due to the value of B and hence that B is a cause of §.” Of course real-
life interventions need not literally involve miracles. but we may think of this
language as a picturesque way of expressing the idea that an intervention
involves a change that comes into the system from the outside and disrupts

7 As the phrase in parentheses suggests. while Lewisian miracles often function in the same
way as interventions, they do not always do s0. See Woodward (forthcoming) for discussion
One important difference between Lewis’ theory and the interventionist approach is that the

latter assigns an important role to counterfactuals concerning what will happen under combi-
nations of interventions. These have no direct counterpart in Lewis’ theory.
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endogenous causal relationships. I thus suggest that Lewis’ framework
works as well as it does because it tracks the same sorts of relationships that
are picked out by a manipulationist or intervention-based theory. In other
words, Lewis’ “unnatural” semantics for counterfactuals makes good scien-
tific sense when motivated by ideas about the connection between causation

and manipulation?.

5 Direct Causes

I'said above that directed graphs and systems of equations convey informa-
tion about direct causal relationships. Given the notion of an intervention, the
notion of a direct cause can be understood in manipulationist terms as fol-
 lows: . :

(DC) A necessary and sufficient condition for X to be a direct cause

of Y with respect to some variable set Z is that there be a possible

intervention on X that will change ¥ (or the probability distribution

of Y) when all other variables in Z besides X and Y are also held

fixed at some value by interventions.

Intervening to hold the variables in Z fixed at some values while chang-
ing X by means of an intervention means that the variables in Z are set to
those values by a process that satisfies the conditions for an intervention
while X is changed by some other process, also satisfying the conditions for
an intervention, that is causally independent of and uncorrelated with the
process that changes X.

As an illustration consider the following pairs of equations and corre-
sponding graphical structures (error terms have been suppressed for exposi-

tory convenience).
/ ! \
X —» 7

Figure 5.1

(5.1) Y=aX
(5.2) Z= bX+cY

X—»Y —» Z
Figure 5.2

(5.3) Y=aX
(54)Z=dy

8 For similar observations, see Pearl (2000).
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According to both (5.1-5.2) and (5.3-5.4), an intervention on X will
change 7Y, an intervention on X will change Z and an intervention on ¥ will
change Z. Nonetheless, (5.1-5.2) and (5.3-5.4) are associated with different
graphical structures and make different claims about direct causal relation-
ships. According to (5.1-5.2) X affects Z by two different routes, a direct
route and an indirect route that goes through Y. By contrast, according to
(5.3-5.4), X affects Z only by a single route that goes through Y. (5.1-5.2)
claims that X is a direct cause of Z while (5.3-5.4) denies this. The definition
DC captures this difference. According to (5.1-5.2), if we intervene to fix the
value of ¥ and then intervene to change the value of X, the value of Z will
change—hence X is a direct cause of 29. By contrast, if (5.3-5.4) is correct,
then, if we fix the value of ¥ (at any value), no intervention on X will change
Y—hence X is not a direct cause of V. In other words, while (5.1-5.2) and
(5.3-5.4) agree about what will happen to Z under single interventions on
either X or Y, they differ in what they predict about what will happen under
combinations of interventions. In particular, we could determine whether
(5.1-5.2) or (5.3-5.4) is the correct structure by doing an experiment in which
the value of X is changed and the value of Z observed while the value of Yis
held fixed.

DC requires that “all other variables in Z besides X and Y are held fixed
at some value by interventions”. This formulation is needed because some
causal relationships are non-linear. Since the relationships in (5.1-5.2) and
(5.3-5.4) are linear, the effect of a change in the value of X on ¥ when Z is
fixed will be the same, regardless of the value at which Z is fixed. When rela-
tionships are non-linear, this will not be the case. Suppose that F is a variable
that takes the values 0 or 1, depending on whether a fire occurs, S is a vari-
able taking the values 0 or 1 depending on whether a short circuit occurs, and
O is a variable that takes the values 0 or 1 depending on whether oxygen is
present. Suppose that the causal relationship between these variables may be
represented by means of the equation

535 F=S8.0

That is, a fire will occur when and only when both the short circuit and
oxygen are present. If O = 0, an intervention that changes the value of S will
not change the value of F. The formulation of DC nonetheless allows § to
qualify as a direct cause of F; § is a direct cause of F because there is some
value of O (namely O = 1) such that with O fixed at that value, a change in §
will change F.

Plainly not all causes are direct causes. What is the connection between
causation and direct causation? Consider the following candidates for neces-

9 Obviously, this reasoning assumes that the system (5.1-5.2) is modular and in particular that
fixing the value of Y in (5.1) does not change (5.2).
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sary and sufficient conditions for X to be a cause of Y, which I label (SC) and
(NC) respectively.
(SC) If there is a possible intervention that changes the value of X
such that carrying out this intervention will change the value of ¥, or
the probability distribution of ¥, then X causes Y.

(NC) If there are no possible interventions that can change the value

of X, or if for all possible interventions that change the value of X,

the value of Y (or the probability distribution of ¥) does not change,

then X does not cause Y.

I believe that (SC) is extremely plausible; indeed one may take it to be

- one of the core commitments of a manipulability theory of causation. By
contrast, on the supposition that direct causes are causes, NC conflicts with
DC. To see this consider, a structure like (5.1-5.2) with b = -ac. In this
structure, the influence of X on Z along the direct and indirect routes will
“cancel”. In such a structure X is a direct cause of ¥ according to DC and
hence (we are supposing) a cause. Nonetheless, there are no interventions on
X that will change Y and hence according to NC, X fails to cause Y.

This example shows that we need to distinguish between two notions of
“cause”10. Let us say that X is a toral cause of Y if and only if it has a non-null
total effect on Y—that is, if and only if there is some intervention on X alone
(and no other variables) such that for some value of those other variables, this
intervention on X will change Y. The rotal effect of a change dxin Xon Yis
then the change in the value of ¥ that would result from an intervention on X
alone that changes it by amount dx (given the values of other variables that
are not descendants of X.) For example, in (5.1-5.2) the total effect on Z of a
change of dx in X is (b+ac) dx and the total effect on Z of a changedyin Yis
cdy. Let us say that X is a contributing cause of Y if and only if it makes a
non-null contribution to ¥ along some directed path in the sense that there is
some set of values of variables that are not on this path such that if these vari-
ables were fixed at those values, there is some intervention on X that will
change the value of ¥.!! The contribution to a change in the value of ¥ due to

10 Eor a similar distinction, see Hitchcock (forthcoming).

1 Why not simply say that X is a contributing cause of ¥ if and only if X is an ancestor of ¥
where the ancestor relationship is defined in terms of DC? The difficulty with this suggestion
is that even if X is an ancestor of ¥, it is possible that there are no interventions on X that will
change the value of Y, for any values of variables that are not on the directed path from X to
Y. For example, suppose that Z is an intermediate variable on the path from X to ¥, and that
the functions linking X to Z and Z to ¥ compose in such a way that some intervention on X
will change Z for some values of off path variables (so that X is a contributing cause of Z) and
some intervention on Z will change Y (so that Z is a contributing cause of ¥) but that none of
the changes in Z that might be produced by changes in X are such that they will produce
changes in Y. (Many of the counterexamples to the transitivity of causation in the philosophi-
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a change dx in the value of X (or the effect on ¥ contributed by this change in
X) along some directed path is the change in the value of ¥ that would result
from this change in X, given that the values of off path variables are fixed by
independent interventions. For example, if we were to add a third equation
(5.6) to (5.1-5.2) relating an additional variable W to X ((5.6)X = eW)—that
is, if we were to draw an additional arrow from W into X—then although Wis
not a direct cause of Z, W will be a contributing cause of Z since, freezing the
value of ¥, there are interventions on W that will change Z. In particular, the
contribution (along the path W -->X --> Z ) to the value of X due to changing
the value of Wby amount dW is just ebdw. When relationships are linear, as
in the above examples, it does not matter, for the purposes of identifying ei-
ther the total effect on Y of a change in the value of X or the contribution this
change makes to ¥ along some route, what values “other” variables assume.
When relationships are nonlinear, both total and contributed effect will be
relative to the values of other variables. For example, with O = 0, a change in
the value of § will have no total (or contributed) effect on F. With O = 1. the
total (and contributed) effect of a change in § from 0 to 1 will be to change F
fromOto 1.

In the case of (5.1-5.2) with b = -ac, X is not a total cause of Ybut itis a
contributing cause. Total causes will satisfy both SC and NC; contributing
causes will satisfy SC but need not satisfy NC. Direct causes are always con-
tributing causes but contributing causes need not be direct. For example,
when the third equation (5.6) is added to (5.1-5.2), W is a contributing al-
though not a direct cause of Z. Both directed graphs and equations aim., in the
first instance, at the representation of direct rather than total causal relation-
ships. If we have full information about the functional relationships that rep-
resent direct causal relationships, we may recover total causal relationships
from this, as illustrated in some of the examples above, but directed graphs,
by themselves do not convey such information.

I have argued elsewhere (Woodward forthcoming) that there is an im-
portant sense in which the notion of a direct cause (and more generally the
notion of a contributing cause) is more fundamental than the notion of a total
cause but in what follows I will assume only that the notion of a direct cause
is a (not necessarily the only) legitimate notion of cause. This assumption is,
I believe, implicit in the use of directed graphs and systems of equations to
represent causal relationships and also follows from the underlying logic of a
manipulability approach to causation. Even when b = - ac in (5.1-5.2), one
may still use X to change or manipulate Z—all that one has to do is to fix } at

cal literature have this sort of structure.) In this sort of case. X is not a means for changing
and it follows from the general connection between causation and manipulation assumed in
the manipulablity theory that X is not a contributing (or total) cause of Y.
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some value and then wiggle X. Thus there is a perfectly good sense in which
X remains a means to changing Z and this, I claim, is enough to establish that
there is a legitimate sense in which X is a cause of Z. That sense is captured

by the notion of a direct (or contributing) cause.

6 Direct Causes and Probabilities

As explained above, one reason why we need the notion of a direct cause is. to
capture or represent facts about what will happen under combinations of in-
terventions. Such facts are not always captured by information about total
causal relationships, when these are understood as satisfying SC and NC. For
example, in both (5.1-5.2) and (5.3-5.4) X is a total cause of Y, Y is a total

" cause of Z and X is a total cause of Z. Nonetheless X, Y and Z differ in the

direct causal relationships in which they stand in (5.1-5.2) and (5.3-5.4). In
this section I will argue that we also need the notion of a direct cause for an-
other reason: in order to formulate plausible conditions connecting causal
claims to claims about conditional probability.

I will focus on one of the best known proposals about this connection,
the condition (CC) formulated by Nancy Cartwright (1983, p. 26) (Broadly
similar proposals are endorsed by a number of other writers including Eells
(1991) and Eells and Sober (1983). According to (CC)

C causes E iff Pr (E/C. Kj)>Pr(E/K;) for all state descriptions Kjover the

set {C;} where {C;}] satisfies

(i) IfCjisin{C;}, then C; causes either E or not E.

(ii) Cisnotin {C;}

(iii) For all D, if D causes E or D causes not E, then either D = Cor D is in
{Ci}

(iv) If C; is in {C}}, then C does not cause C;.

CC can be interpreted in at least two ways—as a condition on total
causes and as a condition on contributing causes. In what follows I will as-
sume the latter interpretation (i. e., I will use “cause” to mean “contributing
cause”), unless explicitly indicated otherwise. CC differs from the charac-
terizations of causation considered above in a number of respects. First, CC
requires that causes (or better, a change in the value of the cause variable
from absent to present ) raise the probabilities of their effect. By contrast,
both the contributing and total notions of cause described above require only
that a change in the value of the cause variable change the value or the prob-
ability distribution of the effect variable. This difference strikes me as largely
(although perhaps not entirely) terminological. CC attempts to capture the
notion of a positive causal factor or of a promoting cause as opposed to the
notion of a negative causal factor or a preventive or inhibiting cause. By
contrast, DC, as well as NC and SC, attempt to capture the broader notion of
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one variable’s being causally relevant (either positively or negatively) to
another. A variety of considerations of convenience seem to me favor this
broader usage!2.

Second, CC imposes what has come to be called a unanimity require-
ment: C causes E if and only if C raises the probability of E across afl back-
ground contexts K (or all situations that are “otherwise causally homogenous
with respect to E” (Cartwright 1983, P- 25)). Several commentators (e.g.,
Dupre 1984) have objected that this requirement is too strong on the grounds
that it has unintuitive consequences. For example, it requires that we with-
draw the claim that “smoking causes lung cancer among human beings” if
we were to discovereven a small subpopulation in which, perhaps as a result
of some genetic quirk, smoking fails to raise the probability of lung cancer. 1
agree with this objection but think that we do not need to leave matters at the
level of intuition. If I am correct in claiming that the underlying point or ra-
tionale of our classifying the relationship between X and Y as causal or non-
causal has to do with whether or not X is a potential means for controlling or
manipulating Y, then there is little motivation for the unanimity requirement,
since even if we agree to restrict the notion of cause to mean “positive or
promoting cause”, it is clear that X can be used to manipulate ¥ in a way that
is positive for Y even if the unanimity requirement is violated. Instead what
the manipulability conception (and in particular, SC) suggests is something
like the following: X will be means for manipulating ¥ in positive way ( i.e.,
for promoting V), if as there is at least one background context in which X
raises the probability of Y.

If we look for a connection between causation and facts about probabili-
ties that is in the spirit of CC but incorporates these two points, it will be a
proposal of the following form: X causes Y if and only if X and Y are depend-
ent conditional on certain other factors F. The problem of finding a connec-
tion between causation and probability then becomes one of specifying what
these other factors F are. In other words, the question is this: what should be
held fixed (that is, conditioned on) if the conditional dependence of C on E is
to be used as a test for whether C causes E? CC says that the other factors F
that should be conditioned on are all other causes of E with the exception of

12 A minor terminological annoyance is that to assess whether X causes ¥, other factors that
are negatively as well as positively causally relevant to ¥ must be controlled for. Thus if
“cause” is restricted to mean “positive cause”, it is incorrect to say that the only factors that
need to be controlled for are “other causes of Y. One needs some additional vocabulary to
describe the other factors that need to be controlled for. A more fundamental difficulty is that
once one moves away from cause variables that are binary valued. it often becomes unclear
what value of the cause variable corresponds to the “absence” of the cause and hence what
the state is in comparison with which the “presence” of the cause should raise the probability
of the effect.
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those causes of E that are on the causal chain from C to E. (As Cartwright
explains (1983, p. 26) condition (iv) in CC is intended to exclude condition-
ing on such factors). The motivation for not holding fixed causal factors that
are between C and E may seem obvious. If we are dealing with a causal
structure like that represented in (5.3-5.4) and Figure 5.2 in which there is a
single directed path from X to Z with Y as a causally intermediate variable,
then one would expect that conditional on ¥, X and Z will be independent.
Hence, if Y is one of the background factors on which we condition when we
test for whether X causes Z we will reach the mistaken conclusion that X does
not cause Z. However, as Cartwright herself recognizes (1983, p.30, 1989,
pp. 95ff), the claim that, as (iv) requires, we should never control for such

. intermediate variables is too strong!3. Suppose that we are presented with a
triangular structure like that in (5.1-5.2) and Figure 5.1 in which both X and ¥
are direct causes of Z and X is also a direct cause of V. Clearly if the direct
causal connection between X and Z is to reveal itself in the probabilistic de-
pendence of Z on X conditional on some appropriately chosen set of other
factors, these other factors must include Y which is causally intermediate
between X and Y. That is, to capture the direct influence of X on Z, we must in
some way control for or correct for the influence of ¥ on Z. Moreover, since
as we have seen the total cause structure is the same in both (5.1-5.2) and
(5.3-5.4), we need to know the direct causal relationships (and not just the
total causal relationships) between X, ¥ and Z in order to know what to con-
trol for when we test for, e. g., whether X is a cause of Z.

What these examples bring out is that in determining what should be
controlled for or conditioned on for the purposes of assessing whether X
causes Z, we need more than information about the other causes (in either the
contributing or total sense) of Z besides X. We also need to know how, as it
were, those other causes are connected up—with one another, with X and
with Z. It is just this information about direct causal relationships that is con-
tained in the associated equational or directed graph structure and this in turn
suggests that information about such structures is essential if the sort of proj-
ect represented by CC (the project of formulating systematic relationships
between causal claims and conditional probability relationships) is to have
any hope of success.

This point of view is also reflected in the so-called causal Markov con-
dition (CM). This is a generalization of familiar ideas about screening off,

13 Cartwright (1989, p. 96) abandons requirement (iv); replacing it with a requirement in-
volving information about singular causal processes. | fully agree with Cartwright that some
additional information is needed to distinguish what needs to be controlled for in structures
like (5.1-5.2) and (5.3-5.4). However, my suggestion is that what is needed is rather addi-
tional information about direct causal relationships at the type-level.
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first formulated by Reichenbach (1956), and has figured heavily in recent
work on causal inference by Judea Pearl (2000) and by Clark Glymour and
his associates (Spirtes, Glymour and Scheines 1993). CM says that condi-
tional on its parents or direct causes, every variable is independent of every
other variable except its effects:

(CM) For all Y distinct from X, if X does not cause Y, then
Pr(X/Parents (X)) = Pr(X/Parents(X).Y)

As with CC, the word “cause” in CM, can be interpreted as either “con-
tributing cause” or “total cause”. (“Parents” must of course be understood as
meaning “direct cause”). I will assume the former interpretation unless indi-
cated otherwise, although I think that insofar as CM is plausible at all, it is
equally plausible under either interpretation. Like CC, CM connects claims
about causal relationships to facts about relationships between conditional
probabilities. However, unlike CC, CM is formulated in terms of informa-
tion about the direct causes of X. As we will see, this is a crucial difference.

It is well known that there are circumstances under which CM fails to
hold. For example CM will be violated if purely accidental correlations that
reflect no causal connections at all occur. CM can also break down in the
presence of cyclic causal relationships or when variables are measured im-
perfectly or when their values are drawn from mixtures of distinct probability
distributions!4. Although the point is not widely appreciated, CC will also be
violated in all of these circumstances. However, when such circumstances
are excluded, there is a plausible case to be made that CM follows from a
manipulability conception of causation—or so Dan Hausman and I have ar-
gued elsewhere (Hausman and Woodward 1999). CM thus has some claim to
be regarded as a conceptual truth about causation. Moreover, although I will
not attempt to argue for this claim here, I conjecture that insofar as there is
any systematic connection between causation and conditional independence
relationships in acyclic causal systems, it is captured by CM. That is. to the
extent that CM fails to hold, no general test for causation—neither CC nor
any competitor—formulated in terms of conditional independence relation-
ships will work. This gives us a reason for focusing on CM and asking what
if anything it implies about the connection between casual claims and condi-
tional probabilities.

Contraposing CM gives a sufficient condition for causation in terms of
conditional dependence relationships: assuming that ¥ is distinct from X if
Pr(X/Parents (X)) # Pr (X/Parents (X).Y) then X causes (i. e., is a contribut-
ing cause of) Y. However, the converse of this claim is not correct, if “cause”

14 For a discussion of the circumstances in which CM fails, see Hausman and Woodward
(1999).
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means “contributing cause”. In (5.1-5.2) and Figure 5.1, with b = -ac, X and
Z are uncorrelated and hence Pr( X/Parents(X)) = Pr(X/Parents (X). Z).
Nonetheless X is a contributing cause of Z. We would have a necessary con-
dition for contributing causation if we were willing to assume the converse of
CM, which Spirtes, Glymour and Scheines (1993) call Faithfulness (F).

(F): If X causes (is a contributing cause of) Y, then Pr (X/Parents
(X) # Pr(X/Parents (X).Y)

Taken together, CM and F provide necessary and sufficient conditions,
formulated in terms of facts about relationships between conditional prob-
abilities for X to be a contributing cause of Y. Interestingly, the conjunction
CM.F is a condition that is rather different in form from CC, even allowing
for the fact that the notion of direct causation plays no role in CC. While CC
looks (roughly) at whether X and Y are dependent conditional on all other
causes of Y (besides X) that meet certain additional conditions, CMLF asks
whether X and Y are dependent conditional on all direct causes of X.

What justification is there for assuming (F)? Spirtes, Glymour and
Scheines (1993) advance a measure-theoretic argument: given certain as-
sumptions, violations of Faithfulness will be rare in the measure-theoretic
sense. However, this is at best a reason for assuming faithfu'ness in causal
inference problems—assuming faithfulness will only rarely mislead us. As
Spirtes, Glymour and Scheines readily concede, “rare” does not mean impos-
sible. To the extent that our interest is in giving a condition that is strictly
necessary for it to be true that X causes ¥ (and not just a fallible test for
whether X causes V), assuming F is problematic. In contrast to CM, even
those who advocate F do not suppose that it has any claim to be regarded as a
conceptual truth about causation.

Is there some other candidate for a necessary condition that is more
plausible than F? Although I lack the space for a detailed exploration of the
possibilities, I think that there are reasons for skepticism. For example, the
suggestion that a necessary condition for X to be a contributing cause of Y is
that Y be dependent on X conditional on all direct causes of ¥ that are not
identical with or descendants of X fails for several reasons, including the pos-

- sibility of failures of faithfulness. The fundamental problem is that CM says
merely that if certain causal relationships hold, then certain conditional inde-
pendence relationships follow. CM doesn’t say that if these causal relation-
ships hold, then only these conditional independence relationships and no
others hold!5. However, something like this latter assumption seems required

15 As (5.1-5.2) show, it is perfectly possible for independence relationships that do not follow
from CM to hold because of, e. g., cancellations among coefficients in equations. It is cases
of this sort that counstitute violations of faithfulness.
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if we are to have a necessary condition connecting causation and conditional
probabilities. For such a necessary condition to hold, it would need to be true
not just that (a) some inequality between conditional probabilities always
indicates the presence of a causal relationship but that (b) causal relationships
always reveal themselves in some inequality between conditional probabili-
ties. While there is some reason to think that (a) is built into our concept of
causation, it is hard to see how such an argument could be made on behalf of
(b).

Does this assessment change if instead we look for necessary and suffi-
cient conditions for X to be a total cause (rather than a contributing cause) of
Y that are formulated in terms of conditional dependence relationships? As
suggested above, CM yields a plausible sufficient condition for X to be a
total cause of ¥: (TSC) If Y is distinct from X and Pr(X/Parents (X)) # Pr
(X/Parents (X)). Y) then X is a total cause of Y. However, we cannot replace
the reference to Parents(X) in TSC with some condition formulated in terms
of total causes—that is, the condition will fail to be sufficient if we fail to
control for direct causes of X that are not total causes. As an illustration, con-
sider the following structure

/Y\
w » X —»- 7
S.1)Y=aX
(52)Z=bX+cY
6.1H)w=dx

Suppose as before that ac= -b Then X is not a total cause of Z. Instead, ¥
is the only total cause of Z. Assuming CM, W is independent of Z conditional
on both X and Y, but W is not independent of Z conditional just on Y. None-
theless W is not a total cause of Z.!6 The inference from the fact that Z and W
are dependent conditional on all of the total causes of Z to the conclusion that
W causes Z is mistaken.

Formulating a sufficient condition for total causation in terms of condi-
tional dependence relations thus requires information about direct causal
relationships and this is an additional reason for thinking that the notion of a
direct cause is an indispensable one. Moreover, again because of the possi-
bility of violations of faithfulness, the converse of TSC does not hold. Con-
sider a structure in which X and ¥ are the only direct causes of Z, ¥ is exoge-
nous, and X is not, and ¥ is not a cause of X Then with right values of the co-
efficients linking X to Zand Y to Z, it is possible for X 1o be independent of 7

16 Thanks to Chris Hitchcock for supplying this example.
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and hence independent of Z conditional on Parents (X ). Nonetheless, in this
structure X is a total cause of Z.

In summary, we may draw two more general conclusions. First, we re-
quire the notion of direct causation if we are to formulate any plausible con-
nection between causation (whether contributing or totzi) and probability.
Second any defensible connection between causation and probability is
likely to involve only a sufficient rather than a necessary and sufficient con-
dition. In this sense, the connection will be far weaker than the necessary and
sufficient conditions sought in the philosophical literature on probabilistic
causation. If we want necessary and sufficient conditions for causation that
apply even in circumstances in which CM is violated, a counterfactual ap-
proach is more promising.
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