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Abstract
Rudolf Carnap’s Der logische Aufbau der Welt (The Logical Struc-

ture of the World) is generally conceived of as being the failed manifesto
of logical positivism. In this paper we are interested in the following
question: How much of the original Aufbau can actually be saved? We
will argue that there is an adaptation of the old system that satis-
fies some of the original intentions of the Aufbau and shares several of
its several properties. In order to defend this hypothesis one has to
show how a new “Aufbau-like” programme may solve or circumvent the
problems that affected the original Aufbau project. In particular, we
are going to focus on how a new system might address the well-known
difficulties concerning abstraction, dimensionality, and holism.

1 Introduction

Rudolf Carnap’s (1928) classic Der logische Aufbau der Welt (The Logical
Structure of the World) has been abandoned at least twice: at first when
the Vienna circle turned from logical positivism to logical empiricism or
from epistemology to philosophy of science, secondly when philosophy of
science moved from its understanding as being a “logic of science” toward the
emphasis of naturalistic-pragmatic-historical-sociological features of science.
More recently, the Aufbau has attracted attention from philosophers who
questioned its traditional interpretation, which considers the Aufbau to be
the modern upshot of British empiricism. While these reinterpretations of
the Aufbau have initiated a renewal of interest in its content, its assessment
as a famous and perhaps even notorious failure has remained unchanged. In
this paper, we will deal with the Aufbau not from a historical but from a
systematic point of view. We are going to argue that the old Aufbau has a
core that might actually be saved : although the original programme itself
cannot be restored, there is hope for a “new Aufbau” which shares several
important properties with its predecessor.
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This is the plan of the paper: In section 2 we start with a description of
the old Aufbau’s aims and we constrast them with the weaker intentions that
guide the development of the new system. Then we turn to the problems
of the original Aufbau. If any attempt of introducing a new Aufbau is to be
successful, it has to demonstrate how the problems that affected Carnap’s
Aufbau are either circumvented or solved. We will concentrate our efforts
on two representative problem sets: Goodman’s problems of abstraction and
dimensionality (section 4) and Quine’s problem of holism (section 5). Both
problems can only be described satisfyingly if what is called the “basis” in
the Aufbau is outlined beforehand: this will be done in section 3. In sections
6, 7 and 8 we will finally introduce the new system and see how it might
address Goodman’s and Quine’s worries. In section 9 we end up with a
summary of what has been achieved and with an outlook of future work on
the new Aufbau.

2 A New Epistemological Project

According to the traditional interpretation – as being exemplified by Quine
(1951), Goodman (1963), and, retrospectively, by Carnap himself (1963) –
the aim of the Aufbau is to support the following thesis:

• Old thesis: Every scientific sentence can be translated via explicit de-
finitions to another one which consists solely of (i) logical signs and (ii)
terms that refer to “the given”, such that (iii) the defined expression
and the defining expression of each of these definitions necessarily have
the same extension.

The new interpretation by Friedman (1999), Richardson (1998) and a few
others ascribes an even stronger claim to the Aufbau:

• Old thesis: Every scientific sentence can be translated via explicit de-
finitions to another one which is purely structural, i.e., which consists
solely of logical signs, such that the defined expression and the defin-
ing expression of each of these definitions necessarily have the same
extension.

While the first interpretation considers the Aufbau as the result of applying
the then new logical and formal means of Whitehead&Russell’s Principia
Mathematica to the traditional empiricist-phenomenalist programme, the
second one understands the Aufbau as being influenced by the Neo-Kantian

2



tradition and emphasizes its neutrality with respect to epistemological po-
sitions. While the intention of the Aufbau, according to its traditional in-
terpretation, is to show how scientific claims may ultimately be reduced to
claims about the contents of our immediate subjective experience, the more
recent interpretation has it that science is ultimately about the structure
of experience, where ‘structure’ is supposed to denote something that is
intersubjective rather than subjective.

Let us consider the two theses from above in more detail:
In the first thesis, ‘given’ denotes what is given by experience, in partic-

ular, by sense experience. Indeed, for the rest of this paper, sense experience
will be the only form of “data” that we are interested in.

‘scientific sentence’ refers to any sentence in a language of any scientific
discipline that uses its terms in a clear and non-ambiguous way.

A translation is to be regarded a mapping from “the” set of scientific
sentences to itself. The two theses claim that that there are translation
mappings of a particular and distinguished kind: (a) they are induced by
a system of definitions in the way that a scientific sentence A is translated
to another scientific sentence tr(A) if and only if the direct or indirect re-
placement of the defined terms in A by their defining primitive terms yields
tr(A); (b) the corresponding primitive vocabulary conforms to the syntactic
restrictions that are explained by the theses – logical terms and terms that
refer to the given in the first case, only logical terms in the second one;
(c) finally, the transition from a defined expression to its defining one is to
preserve extension necessarily.

As Carnap explains in §50 of the Aufbau, the translations of sentences
and terms are claimed to preserve what Carnap then called “logical value”,
i.e., extension. In the preface of the second edition of the Aufbau, Carnap
clarifies his view by pointing out that what he actually demands is the
necessary preservation of extension, i.e., the translation of an expression
should have the same extension as the translated one by logical rules or by
laws of nature. In particular, if a sentence A is translated to a sentence
tr(A) by substituting a defined expression by its defining expression, then
the defined expression should necessarily have the same extension as the
defining one and consequently A is to be necessarily materially equivalent
to tr(A). As far as the translation of sentences is concerned – and this is
what Carnap finally aims at – the goal is thus more than just the preservation
of truth values; rather it is the necessary preservation of truth conditions.
Demanding only the preservation of truth values for sentences would seem to
be too weak, because any translation function that maps all true sentences
to, say, ∀xx = x, and all false sentences to ¬∀xx = x would meet this
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criterion. However, even in order to set up a translation like this, one would
have to know which scientific sentences are true and which are false, which
is certainly beyond human capabilities. Indeed, the translation mappings
whose existence is claimed by the two theses above might be defined for
a sentence A before the empirical investigation on whether A is true even
commences.

Carnap is well aware of the fact that definitions are normally demanded
to preserve sense or “Erkenntniswert” rather than truth conditions, but
he argues that the necessary preservation of truth conditions is in fact all
that is needed for scientific purposes as opposed to, e.g., aesthetic ones.
If tr is a translation that is based on definitions and which preserves truth
conditions necessarily, and if A is translated to tr(A), then Carnap holds that
A can be replaced by tr(A) in all scientific contexts without any scientifically
significant loss.

Let us turn now to the aims of the new Aufbau. When we say that
the old Aufbau has a core that can actually be saved, this amounts to the
claim that a thesis which is sufficiently close to the two theses above is true.
On the other hand, when we say that the original programme itself cannot
be restored, this means that the new thesis has to be weaker than the two
theses from above. Here is the thesis that guides our new attempt at an
Aufbau-like system:

• New thesis:

– Every scientific sentence can be translated to an empirically equiv-
alent one which consists solely of (i) logico-mathematical signs
and (ii) terms that refer to a subject’s experiences, such that

– the translation image expresses a subject-invariant constraint on
experiences.

We have highlighted the differences between the new thesis and the old
ones by expressing them in italics: first of all, if A is translated to tr(A),
then the two sentences are no longer demanded to be materially equivalent,
let alone necessarily materially equivalent; instead, A and tr(A) should be
empirically equivalent. More particularly, we want tr(A) to express the
empirical content of A, i.e., to use a phrase of Quine: tr(A) is to describe the
difference the truth of A would make to possible experience (cf. Quine 1969).
There is broad agreement among philosophers of science that the truth of
scientific theories may be underdetermined empirically. For similar reasons,
A and tr(A) might differ in truth value even though their empirical contents
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are the same. Accordingly, A is not claimed to replaceable by tr(A) for all
scientific purposes. Note that our new thesis does not presuppose any form
of verificationism according to which the meaning of a sentence is identified
with its empirical content. Moreover, since the translated sentences will
normally have truth conditions which differ from those of their translation
images, the translations in question should not be regarded as subserving
any sort of “ontological reduction”.

At second, the translation mappings that we claim to be existent are no
longer supposed to be definable by a system of explicit definitions. As we are
going to point out later, our translation will be partially based on contextual
definitions, which is anticipated by Carnap in the Aufbau when he accepts
“definitions in use” as legitimate means of reduction by definition (see also
Quine 1969). Note that each of the explicit or contextual definitions that
we use is only meant to hold up to empirical equivalence; we do not demand
coextensionality, necessary coextensionality, or synonymy.

A further difference between the new thesis and its precursors consists
in our reference to mathematical signs as being additional to logical ones.
At the time of the Aufbau, Carnap still subscribed to logicism in the line of
Frege and Russell. But logicism – at least in its traditional form – has failed
and the existence of genuinely mathematical concepts and sentences has to
be acknowledged. In particular, we regard the set-theoretic membership sign
as a mathematical symbol, not as a logical one.

As far as the empirical aspects of our translation mappings are con-
cerned, we have replaced the term ‘the given’ by ‘experiences’: this is meant
to indicate that our new Aufbau system does not rely on any phenomenalis-
tic conception of what the basis of our subjective experience consists in. In
fact, the new system will be open both to a phenomenalistic and a physical-
istic interpretation. Experiences might be the contents of particular mental
states or they might be particular mental states themselves; mental contents
and mental states might turn out be identical to occurrences in the brain or
to brain states.

Finally, the goal of having the translations of scientific sentences ex-
press subject-invariant constraints on experiences is our substitute for the
“structural” intentions of the original Aufbau as highlighted by the second
more recent interpretation of the two interpretations that we have consid-
ered above. In the following we we will not deal with this part of our new
thesis but we will concentrate just on the rest of it.

Since every translation that preserves truth conditions necessarily may
be assumed to preserve empirical content as well, our new thesis is weaker
than the two “old” theses that we have discussed. But the new thesis is still
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reasonably close to the old ones. When Carnap uses the term ‘necessary’
in the preface of the second edition of the Aufbau in order to describe his
goal of the necessary preservation of extension, he circumscribes this in the
following way: the extension of a defined expression within the phenomenal-
istic language that is associated with a subject S should be identical to the
extension of its defining expression independent of what the experiences of S
are like, as long as S has “normal senses” and “unfavourable circumstances”
are excluded. In the case of sentences, this is actually very close to saying
that tr(A) is to describe the difference the truth of A would make to possible
experience of S.

Before we turn to the problems of the old system and the details of the
new one, we want to point out why the development of a new Aufbau might
be a worthwhile epistemological endeavour. Why should we care about a
new “weakened” Aufbau?

• It may cast new light on where and why the old Aufbau really failed:
We claim that each of the problems that have been ascribed to the
original Aufbau fall into one of three categories: (a) they do not even
apply to the original Aufbau (although they might apply to other parts
of the Vienna circle philosophy) – these are the “pseudo-problems”; (b)
they did affect the Aufbau but they may be solved in a new system by
adapting the former in ways that are still acceptable from the point
of view of the old programme – these are the “feasible problems”;
(c) they did affect the Aufbau but they may be circumvented in the
new system by lowering the intentions of the latter – these are the
“serious problems”. The construction of a new Aufbau will give us
some information on which problems of the old Aufbau belong to the
third category.

• It may deepen our understanding of the empirical content of terms
and descriptive sentences: Although the meaning of an expression is
not identical to its empirical content, the latter is certainly one rel-
evant component of its meaning. Indeed, empirical meanings might
be considered to be among the internalist meaning components of lin-
guistic expressions which are additional to other components such as
externalist (referential) ones.

• It may fill the gap between subjective experience and the intersubjec-
tive basis of scientific theories: After the protocol sentence debate in
the early 1930s, philosophers of science had more or less decided to
conceive of the observational basis of science as being intersubjective
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right from the start; observation terms and observation sentences were
meant to refer to observable real-world objects and to their observable
space-time properties. While this move is perfectly acceptable from
the viewpoint of philosophy of science, it leaves an interesting episte-
mological topic out of consideration: the relation of this intersubjec-
tive “observational” basis to the subjective act of observation and its
experiential content. The new Aufbau addresses this latter topic by
relocating empirical contents into the observer.

• It may also lead to new insights for cognitive science or the philos-
ophy of cognition: As Glymour (1992), p. 367, has put it, “Carnap
wrote the first artificial intelligence program” when he introduced his
phenomenalistic construction system in the Aufbau. E.g., an answer
to the question of whether the empirical contents of scientific terms
and sentences are in general computable or not might be an interest-
ing spin-off. Or: how parsimonious can the expressive resources of
a language be such that the empirical contents of sentences can be
described in it?

• Finally, a new Aufbau may refine our understanding and assessment of
structuralist claims: recently, structural realism has evolved into a se-
rious competitor for an adequate description of scientific progress and
its limits; as Demopoulos&Friedman (1985) have shown, some of the
problems that are claimed to affect present-day structural realism are
among the difficulties that Carnap was faced with when he dealt with
the reducibilty of scientific expressions to “structural descriptions” in
the Aufbau (see §11–16, 153–155).

It should have become clear that this is not a metaphysical project but an
epistemological one with possible applications to the philosophy of science,
the philosophy of language, and the philosophy of cognition. Whether or not
it can be carried out successfully, depends on how it comes to terms with the
well-known problems that affected the “old” Aufbau. In the next section
we are going to concentrate on two of these problems, which we refer to as
‘Goodman’s problems’. In order to explain the gist of Goodman’s problems,
we have to start with an outline of what is called the “basis” in the Aufbau.

3 The Basis of the “Old” Aufbau

Carnap’s Aufbau may be viewed as consisting of two parts: (a) the phenom-
enalistic constitution or construction system that is described in §106–155,
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which is nothing but an extensive list of definitions, and (b) a philosophi-
cal metatheory that analyzes, justifies, and applies this constitution system
and compares it to alternative ones. As every finite system of definitions, a
constitution system presupposes a choice of primitive, i.e., undefined terms;
the set of interpretations of these terms together with the members of the
intended universe of discourse of the system are referred to as “the basis” of
the constitution system in the Aufbau. While the latter constitute the “basic
elements” of the system, the former are referred to as its “basic properties
and relations”; we call the predicates that express the basic properties and
relations as “basic predicates”. In the case of the phenomenalistic consti-
tution system of the Aufbau, this basis is, of course, phenomenalistic: it
consists of

• (Old) Basic elements: elementary experiences (erlebs) of a given and
fixed subject S within a given interval of time;

• (Old) Basic relations: the membership relation ∈ and the relation Er
of “recollected similarity”.

The intended universe and the intended interpretation of the basic terms
of the phenomenalistic constitution system in the Aufbau can be explained
extrasystematically:

An elementary experience or erleb (this is Goodman’s term) of the sub-
ject S is a total momentary slice through S’s stream of experience, i.e., the
sum of all visual, auditory, tactile,. . . experiences that S has at a subjec-
tively experienced moment of time where the moment is included in the
given interval.

The membership relation is just the standard mathematical relation that
holds between the members of a set and the set itself. The underlying set
theory of the Aufbau was actually a version of simple type theory in which
‘∈’ was not really primitive but rather contextually eliminable in favour of
higher-order quantification. However, for our purposes it is more convenient
to consider the set theoretical system of the Aufbau as a version of modern
set theory with a given universe of urelements. The urelements are just the
basic elements as described above, i.e., elementary experiences.1

‘Er’ is a binary predicate that expresses a relation between erlebs: it is
the case that xEr y’ if and only if x is recollected by S as being part-similar
to y. E.g., if S experiences in x a particular light-red spot in the left-upper
part of her visual field and if a little later S has an elementary experience y
in which she experiences a dark-red spot in the left-middle part of her visual
field, then x and y have “parts” that are similar to each other. This may
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be expressed more formally by presupposing – as Carnap does – that every
elementary experience can be described by reference to pairwise disjoint
quality spaces that come equipped with a distance function (metric). E.g.,
instead of saying that S experiences in x a particular light-red spot in the
left-upper part of her visual field, we might just as well say that the erleb
x realizes a particular point in S’s visual quality space, i.e., a point in the
latter’s “light-red and left-upper” region. The part-similarity of x and y
corresponds to the fact that there are quality points p, q in a single sensory
quality space (visual, auditory, tactile,. . . ) – in this example the visual one
– such that (i) p and q are metrically “close” to each other, i.e., have a
distance that is less than or equal to some given and fixed real number ε,
and (ii) x realizes p while y realizes q. In the case of the visual quality space,
the closeness of p and q amounts to the fact that p and q represent colours-
at-places where the colours resemble each other and the places resemble each
other. If the part-similarity of two erlebs x and y is recollected by S in the
sense that S compares a memory image of the past erleb x with her current
erleb y, then this is precisely what is to be expressed by ‘xEr y’. Er thus
has a qualitative and a temporal component. In particular, if xEr y, then
the erleb x occurred before y.2

4 Problem Set 1: Goodman’s Problems

Carnap’s main goal in the first part of his constitution system – the so-called
“auto-psychological domain” (§106–122) – is to show that the meager basis
of this system suffices for the definition of various kinds of terms by which
one may describe and analyze S’s experiences qualitatively. In particular,
Carnap wants to define a general term ‘phenomenal quality point’3 the ex-
tension of which should be the set of phenomenal counterparts of visual,
auditory, tactile,. . . quality points as described above. While the quality
points are just points in some mathematical spaces that come associated
with sense modalities, the phenomenal counterparts to these quality points
– call them phenomenal quality points – are set-theoretic constructs on er-
lebs: a quality point p is meant to induce a phenomenal quality point in
the sense that the latter is the set of all erlebs in which p is realized. The
set of phenomenal quality points is the class of all sets of erlebs which are
induced in this way. However, while this is the intended interpretation of the
predicate ‘phenomenal quality point’, Carnap has to show that its extension
may be defined, whether directly or indirectly, solely in terms of the basic
relations ∈ and Er. The way he tries to accomplish this is, roughly, (i) by
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defining a similarity relation Sim of erlebs as the reflexive symmetric closure
of Er, (ii) by abstracting from Sim the phenomenal counterparts of spheres
in quality spaces (call them phenomenal spheres), and (iii) by finally defining
the members of the extension of ‘phenomenal quality point’ in terms of these
phenomenal spheres. Step (i) is intended to have the result that xSimy if
and only if x and y realize quality points in a common closed quality sphere
of diameter ε, i.e., x and y realize quality points that have a distance less
than or equal to ε.4 The steps (ii) and (iii) constitute Carnap’s method of
quasianalysis, a method of abstraction that generalizes Frege’s and Russell’s
method of abstracting equivalence classes from equivalence relations. Phe-
nomenal spheres are supposed to have a mediating role between erlebs and
phenomenal quality points. Analogously to the case of phenomenal quality
points, a quality sphere Q is meant to induce a phenomenal quality sphere
in the sense that the latter should be the set of all erlebs which realize some
quality point in Q. The set of phenomenal quality spheres is the class of all
sets of erlebs which are induced in this way. The first part of quasianalysis
is intended to define the extension of ‘phenomenal quality sphere’ to be this
class, where the definition should be spelled out solely in terms of ‘∈’ and
‘Er’.

After having defined ‘phenomenal quality point’, Carnap’s strategy is to
introduce a definition of a new similarity relation which is defined on the ba-
sis of the similarity relation for erlebs but which holds for the newly defined
phenomenal quality points. Carnap is especially interested in the connec-
tivity components of this new similarity relation: these components are just
the phenomenal counterparts of quality spaces, because if S has experiences
that are sufficiently varied it is likely that phenomenal quality points which
correspond to visual quality points are never qualitative “neighbours” of,
say, phenomenal quality points that correspond to auditory quality points.
Carnap then shows how “dimension numbers” may be assigned to the con-
nectivity components, which seems to be possible because he assumes that
every subjective quality space has a unique dimensionality. E.g., the vi-
sual quality space is supposed to be the only five-dimensional quality space:
a five-dimensional subset of the Euclidean space R5, where the first two
coordinates correspond to the x- and the y-coordinates of places in the two-
dimensional visual field and where the other three coordinates represent the
hue, brightness, and saturation of the colour spots that sit at these places.
Every colour-at-a-place thus corresponds to a unique quality point in a five-
dimensional space that is usually depicted as a cone-like mathematical object
(the “colour cone”). Accordingly for all other sense classes – e.g., the au-
ditory quality space is assumed to be a two-dimensional subset of R2 and
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so forth. In this way, Carnap would be able to identify sense modalities by
their dimensions such that he could define the phenomenal counterpart of
the visual quality space as well as the counterparts of all the other quality
spaces that are associated with the remaining sense classes.

Unfortunately, this strategy of defining phenomenal quality points and
distinguishing phenomenal quality spaces is affected by two serious short-
comings. As Goodman (1951, 1963, 1971) has shown,

• Carnap’s method of abstracting phenomenal quality spheres and phe-
nomenal quality points from a relation of similarity for erlebs is defi-
cient,

• Carnap’s method of determining phenomenal quality spaces by dimen-
sional analysis fails if the set of erlebs is of finite cardinality.

Let us now deal with these two problems in more detail. We focus first
on quasianalysis: by definition, Sim is a reflexive and symmetric relation
on the given set of elementary experiences. If X is a set of erlebs, let X be
called a clique with respect to Sim if and only if for all x, y ∈ X: xSimy.
Here is the main idea of the first step of quasianalysis: consider some set
X of erlebs which realize a quality point within a fixed quality sphere Q
of diameter ε, i.e., of radius ε

2 .5 E.g., Q might be the set of visual quality
points that have distance ε

2 or less from the quality point that represents a
particular tone of red located at a particular spot in the visual field. X will
certainly be a clique with respect to similarity, since every two members of
X are part-similar; this is because every two members of X realize points of
Q and thus points that are metrically close, i.e., have a distance that is less
than or equal to ε from each other. Let X ′ now be a superset of X, such
that every erleb in X ′ still realizes some quality point in Q: then X ′ is again
a clique with respect to Sim and thus X ′ is a clique that is larger than X.
X ′ seems to be a better approximation of the phenomenal counterpart of
Q then X was. Carnap now suggests to define the phenomenal counterpart
of quality spheres as maximal cliques with respect to Sim, where X is a
maximal clique with respect to Sim if and only if X is a clique with respect
to Sim and there is no set Y of erlebs, such that X & Y and Y is also a
clique with respect to Sim. However, this method does not work in each
and every case: sometimes the intended phenomenal quality spheres are not
introduced by quasianalysis, since they cannot be separated with respect to
the similarities that they induce – Goodman calls this the “companionship
difficulty” – or they are introduced unjustifiedly because several erlebs are
pairwise similar without there being a quality sphere in which all of them
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realize a point – this is referred to as the “difficulty of imperfect community”
by Goodman. Let us take a look at two examples:

Example 1 (Companionship)

Let the set of erlebs consist of four members 1, 2, 3, 4. Assume that 1, 2
realize a quality point in the quality sphere Q1, while 3, 4 do not; 1, 2, 3
realize a quality point in the quality sphere Q2 and 3, 4 do not; finally, 3, 4
realize a quality point in the quality sphere Q3 but 1, 2 do not. Furthermore,
let us keep things simple and let us restrict our example just to these three
quality spheres. The phenomenal counterparts to Q1, Q2, Q3 are thus:
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The similarities which are induced by these quality spheres or rather by
the erlebs that realize points in them can be depicted in terms of a graph in
which the loops that would correspond to the reflexive similarity of an erleb
to itself are omitted. In our example the graph look like this:
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If the first step of quasianalysis is applied to this similarity relation, the
resulting members of the extension of ‘phenomenal quality sphere’ according
to their definition as being the maximal cliques with respect to Sim are
{1, 2, 3} and {3, 4}. The original set {1, 2} of erlebs that realize a quality
point in the common quality sphere Q1 has been “swallowed up” by the set
{1, 2, 3} of erlebs that realize a quality point in the common quality sphere
Q2. Since Q2 is a permanent companion of Q1, the phenomenal counterpart
of Q1 is omitted.

In our second example, we consider an instance of “imperfect commu-
nity”:
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Example 2 (Imperfect Community)
For a given set of six erlebs, let us assume: 1, 2, 4 realize a quality point
in a sphere Q1 (and no other erleb does), 2, 3, 5 realize a quality point in a
sphere Q2 (and no other erleb does), and 4, 5, 6 realize a quality point in a
sphere Q3 (while no other erleb does), and we suppose again that these are
all spheres in which points are realized. So the phenomenal counterparts of
quality spheres are:
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The graph that depicts the similarity relation which corresponds to this
distribution of actually realized quality spheres is:
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If the first step of quasianalysis is applied, a “new” triangle {2, 4, 5} is de-
fined to be a member of the extension of ‘phenomenal quality sphere’ because
{2, 4, 5} is a maximal clique with respect to similarity. However, {2, 4, 5} is
not the phenomenal counterpart of any of the actual quality spheres. 2, 4, 5
are indeed pairwise similar, but in each case for a different “reason”. As
Goodman expresses this, they form an “imperfect community”.

As we have seen, the first step of quasianalysis in the Aufbau may fail.
But let us for the moment assume that the set of maximal cliques with re-
spect to Sim would indeed coincide with all and only the phenomenal coun-
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terparts of quality spheres: how could the set of phenomenal counterparts
of quality points be defined in terms of the latter? As a first approxima-
tion, Carnap discusses the possibility of defining phenomenal quality points
as maximal non-empty intersections of phenomenal spheres, just as quality
points correspond bijectively to maximal non-empty intersections of qual-
ity spheres. However, this method of defining phenomenal points on the
basis of phenomenal spheres will not do, because there may be maximal
non-empty intersections of phenomenal spheres which do not coincide with
any phenomenal point: Carnap refers to this as the problem of “accidental
intersection” (§80–81 in the Aufbau). The difficulty is that an erleb may
realize points in many different quality spheres at the same time; therefore,
the phenomenal counterparts of two quality spheres might either intersect
because the two quality spheres themselves have a non-empty intersection
in the quality space and this is reflected by their phenomenal counterparts
– the unproblematic case – or a single erleb realizes points in two quality
spheres although the two spheres do not intersect – this is the case where the
corresponding phenomenal quality spheres intersect “accidentally”. In order
to overcome this difficulty, Carnap includes a quantitative condition which
essentially says: head for maximal intersections of phenomenal spheres by
taking intersections in a step-by-step manner, but do only take an inter-
section step if the set-theoretic overlapping of a phenomenal sphere with
the previously generated intersection is not “too small” compared with the
number of elements of the previous intersection. This constitutes the second
step of quasianalysis. As Goodman and others have shown, even this more
elaborate method does not avoid accidental intersections and hence does not
always give the intended results.

Carnap himself was aware of these problems. The reason that he was
not worried about them is that he regarded the situations in which these
problems do occur as exceptional (Moulines 1991 argues in a similar man-
ner). As we show in Leitgeb (2005), the problems are in fact serious: it
is extremely likely that a cognitive agent such as our given subject S has
experiences of a kind that lead to extensions of ‘phenomenal quality sphere’
and ‘phenomenal quality point’ which differ significantly from the actual
sets of phenomenal quality spheres and phenomenal quality points.

Let us now discuss the second of Goodman’s problems – the dimension-
ality problem – in more detail. When Carnap defines the dimension of his
phenomenal quality spaces, i.e., of the connectivity components of the sim-
ilarity relation for phenomenal quality points, he relies on Menger’s classic
topological definition of dimension for topological spaces (§115–119).6 The
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similarity relation functions as a “neighbourhood” relation on the phenom-
enal quality points, which is all that is needed in order to define a topology
on its connectivity components. What Carnap overlooked but Goodman did
observe was that every finite topological space is in fact zero-dimensional,
where we call a topological space ‘finite’ if and only if its underlying point
set is finite. But Carnap assumes explicitly that the given set of erlebs is
finite, as he points out in §180 of the Aufbau. Hence also the set of phenom-
enal quality points, which are nothing but sets of erlebs, is finite. Therefore,
every phenomenal quality space, including the visual phenomenal quality
space, is actually zero-dimensional and Carnap’s plan of identifying sense
classes by their dimensions fails.

One way of avoiding this problem would of course be to give up the
presumption that the set of erlebs is finite. However, the resulting consti-
tution system would be dubious from a phenomenalistic point of view: in
a phenomenalistic system, the subject should have cognitive access to the
basic elements of the system; if there are infinitely many basic elements, this
does not seem to be possible. The situation changes if a system is set up
that is intended to have a physicalistic interpretation: just as a mechanical
system may have infinitely many possible states, the set of possible contents
or states of experience for our subject S might actually be infinite. If such
a set is chosen to be the set of basic elements of a physicalistic constitution
system, Carnap’s original strategy might be put to work.

In our new Aufbau, we will follow a different line of reasoning. As we
have outlined before, our system will be open to a phenomenalistic and to
a physicalistic interpretation. Accordingly, we are going to leave open what
the cardinality of the set of basic elements is like. Since we will nevertheless
take up Carnap’s idea of characterizing phenomenal quality spaces by their
dimension, we will have to show how dimension numbers may be assigned
to them independent of whether there are finitely or infinitely many basic
elements. We will suggest a solution to this problem as well as a solution to
Goodman’s first problem in section 7.

In the next section we are going to turn to another notorious difficulty
that is has been ascribed to Carnap’s Aufbau: the problem of holism and
the non-definability of theoretical terms.

5 Problem Set 2: Quine’s Problem

After having introduced phenomenal quality points, their similarity relation,
and the different phenomenal quality spaces, several other definitions in the
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Aufbau system just fall into place: e.g., Carnap is able to define the set of
phenomenal colour qualities, which is a set of sets of visual quality classes;
the set of places in the visual field; a neighbourhood relation for these places;
the set of visual sensations, where the latter are ordered pairs 〈x,X〉 of an
erleb x and a visual phenomenal quality point X, such that X occurs within
x, i.e., x ∈ X. Moreover, the transitive closure of the given basic relation
Er can be used as a “preliminary time order” for erlebs. Indirectly, Carnap
can thus define phrases such as ‘x is the place of the visual sensation y’, ‘x is
the phenomenal colour quality of the visual sensation y’, ‘visual sensation x
occurs before visual sensation y’, and so forth. All of these definitions deal
solely with the auto-psychological domain.

Carnap’s first attempt to link experiences to physical properties – or
rather the phenomenal counterparts thereof – was his “definition” of the
function col which is to assign phenomenal colour qualities to points of four-
dimensional space-time. The idea was to project the phenomenal colour
qualities that occur in visual sensations “outwards”, i.e., to map phenomenal
colour qualities – along lines of sight that originate in places of the visual field
– to points in R4. This should be done in a way, such that (i) the temporal
and neighbourhood relations between visual sensations are respected, (ii)
the phenomenal colour qualities “travel” on segments of continuous world-
lines through space-time, and (iii) certain maxims of intertness are satisfied:
the colours on world-lines should change as slowly as possible, the curvature
of their world-lines should be as small as possible, the colours should move
along world-lines as slowly as possible, world-lines should preserve their
spatial distances to as high an extent as possible, and the like.

However, in contrast to the very precise and detailed exposition of the
definitions in the auto-psychological domain, Carnap does not state an ex-
plicit definition of the colour assignment col in terms of ∈, Er, and the
already defined terms, but leaves it with a general outline of the desiderata.
It might seem that this was just a matter of sketchiness rather than a prob-
lem which affects the transition from the autopsychological to the physical
domain in principle. Quine (1951) famously argued against this view:

Carnap did not seem to recognize. . . that his treatment of
physical objects fell short of reduction not merely through sketch-
iness, but in principle. Statements of the form ‘Quality q is
at point-instant x; y; z; t’ were, according to [Carnap’s] canons,
to be apportioned truth values in such a way as to maximize
and minimize certain over-all features. . . I think this is a good
schematization. . . of what science really does; but it provides
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no indication. . . of how a statement of the form ‘Quality q is
at point-instant x; y; z; t’ could ever be translated into Carnap’s
initial language of sense data and logic. The connective ‘is at’
remains an added undefined connective; the canons counsel us
in its use but not in its elimination.

According to Quine, it is not a mere coincidence that Carnap did not
spell out an explicit definition of the colour mapping: he could not have.
While from the viewpoint of philosophers of science, ‘col’ would be a basic
observational term that was not even in need of a definition, within a system
such as the Aufbau ‘col’ is the first instance of a theoretical term, i.e., it is
theoretical relative to the parsimonious basis of the Aufbau. Its extension
is described in terms of a little theory which consists of certain principles
or maxims that contain the basic terms ∈ and Er as well as ‘ca’ itself. If
all terms which are theoretical with respect to the basis of the Aufbau were
definable just in terms of ∈ and Er (and logical expressions), then these
terms would have a meaning of their own. Accordingly, all sentences which
involve terms such as ca would have a content of their own. This is precisely
what Quine denies: only whole theories have content and only theories as
wholes can be empirically confirmed or disconfirmed. This is Quine’s doc-
trine of holism: meaning holism on the one hand and confirmational holism
on the other.7 In a nutshell: the transition from sense experiences to the
physical domain involves theoretical terms which cannot be defined in terms
of the given experiential basis.8 In section 8 we will see how this problem
can be approached in new Aufbau-like setting; section 7 achieves the same
for Goodman’s problems. The next section is devoted to the basis of the
“new” Aufbau.

6 The Basis of the New Aufbau

In some sense, it is not so surprising that Carnap’s phenomenalistic con-
stitution system is affected by the problems that have been outlined by
Goodman. Carnap’s basis is minimalistic, indeed too minimalistic: (i) Er is
weak: since the similarity of erlebs is a notion of part-similarity, too many
erlebs will turn out to be (part-)similar to too many other erlebs. E.g., a
single common red spot on a particular location in the visual field suffices
to let two erlebs come out to be similar. (ii) Er does not allow for “respects
of similarity”: there is no way of distinguishing cases in which two erlebs
x and x′ are similar in the very same respect in which two further erlebs
y and y′ are similar, from cases in which this is not so. (iii) Er does not

17



support “gradations” of similarity: the similarity of an erleb x to an erleb
y is an all-or-nothing affair; a comparative notion of resemblance would be
more fine-grained and perhaps more plausible from a phenomalistic point of
view.

Thus, the first step of avoiding Goodman’s problems is to change the
basis of the system. However, the solution is not just, say, to presuppose
a primitive ternary relation of similarity of the form ‘x is similar to y in a
respect in which z is neither similar to x nor to y’ (Eberle 1975 has sug-
gested this as a solution to Goodman’s problem). The main reason for the
problems that affect quasianalysis is neither a flaw in the method not the
restriction to binary similarity, but rather that the content of information
that is coded by a set of phenomenal quality spheres or by a set of phenom-
enal quality points simply cannot be coded by a similarity relation of erlebs
with fixed finite adicity (see Leitgeb 2005). This does not entail that the
constitution of phenomenal quality spheres or quality points from similarity
is absolutely impossible: if similarity is e.g. assumed to be a relation which
is both “contrastive” and has variable finite or infinite adicity, a substitute
of quasianalysis can be found that is always adequate (this was suggested
by Lewis 1983). Alternatively, if the domains of similarity structures are
extended beyond the original domain of erlebs and if at the same time a
numerical concept of similarity is used, phenomenal qualities can be consti-
tuted again (see Rodriguez-Pereyra 2002). Of course, none of these options
tells us anything about how to approach Goodman’s second problem.

The basic relations that we are going to presuppose are qualitative and
of fixed adicity9. None of our basic relations is a similarity relation; instead,
similarity will be defined in terms of the new basis. Here is the basis of our
system:

• (New) Basic elements: experiential tropes instantiated by the erlebs
of a given and fixed subject S within a given interval of time;

• (New) Basic relations: the membership relation ∈, the temporal “be-
fore” relation <, and the relation Ov of “qualitative overlap”.

Our new basic elements are tropes, i.e., property bits that have an ex-
tended temporal “location” (see Mellor&Oliver 1997 for classic articles on
tropes). A standard example of a trope would be the red of the pencil that is
has been right in front of me for the last three seconds. Our basic elements,
however, are property bits that are exemplified by erlebs rather than phys-
ical entities, so an example would be more like the red-colour-range in the
left-upper part of my visual field that has been instantiated by my last few
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erlebs. Just as Carnap’s erlebs correspond formally to sets of quality points
– the sets of quality points that they realize – the new basic elements corre-
spond formally to pairs 〈Cq, Ct〉 where (i) Cq is a bounded, extended, closed
convex10 set of quality points in a sensory quality space (visual, auditory,
tactile,. . . ), (ii) Ct is a bounded, extended, closed convex set of temporal
instants on the real “time” axis, i.e., a compact interval of finite length, (iii)
there is an erleb of S which instantiates some quality point in Cq within
the interval Ct. We will return to this formal representation below. Except
for stating these necessary conditions, we want to leave open at this mo-
ment which pairs 〈Cq, Ct〉 among those that satisfy (i), (ii), (iii) actually do
correspond to our basic elements.

∈ is of course again the set-theoretic membership relation. We use some
standard first-order set theory (say, of the strength of ZFC) with urelements,
where the urelements are our basic elements. Note that this project is by
no means a nominalistic one; as we will see, mathematics is indeed crucial
for its execution.

‘<’ is binary predicate that expresses a relation of basic elements, such
that x < y if and only if x occurs “completely” before y, where ‘completely’
is meant to imply that x and y do not overlap temporally. According to the
intended formal representation of our basic elements, if x is represented by
〈C1

q , C1
t 〉 and y is represented by 〈C2

q , C2
t 〉, then x stands in the <-relation

to y if and only if every member of C1
t is before every member of C2

t (which
implies that C1

t ∩ C2
t = ∅). Although our basic elements correspond tem-

porally to compact intervals of R and thus to subsets of what is usually
regarded as the formal model of physical time, one should not mix up <
with the order relation of real numbers. The latter holds between points in
a non-denumerable continuum; the former is a relation of possibly finitely
many experiential tropes that have a temporal extension.

The intended interpretation of the primitive term Ov can also be ex-
plained extrasystematically: ‘Ov’ is a unary predicate which applies to sets
X of basic elements. It is the case that Ov(X) if and only if the members
of X have a common qualitative overlap. In terms of the formal model that
we have introduced above, if X = {Yi : i ∈ I} and if each Yi is represented
by 〈Ci

q, C
i
t〉, then Ov(X) if and only if

⋂
i∈I Ci

q 6= ∅. Note that the overlap
of two basic elements x and y is a special case of our general overlap rela-
tion: binary overlap can be expressed easily by ‘Ov({x, y})’. Accordingly,
although ‘Ov’ is a unary predicate, we will often speak of Ov as an over-
lap relation, because it can be viewed as a relation that holds between the
members of every set to which it applies.

Let us compare this new basis with Carnap’s in the Aufbau and with
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Goodman’s in his The Structure of Appearance (Goodman 1951). Carnap’s
idea was to start from erlebs and to define phenomenal quality spheres as
an intermediate step in order to be finally able to state the intended defi-
nition of phenomenal quality points. Goodman’s basic elements correspond
roughly to Carnap’s phenomenal quality points; his basic relations, which
hold for these phenomenal quality points, are chosen in a way that makes it
easy for him to compose complex phenomenal entities from the given atomic
phenomenal units.11 The basic elements of our new system are on a level
of abstraction that corresponds to the level of phenomenal quality spheres:
they are neither total momentary slices through S’s stream of experience
nor can they be regarded as “point-like” qualities, but they are rather some-
where in between. They resemble what Whitehead (see Grünbaum 1953 for
an overview) and Russell (1954, 1961) referred to as extended “events”.12

From a phenomenalistic point of view, it is questionable whether “point-like”
basic elements are subjectively accessible; points seem more likely to be ab-
stractions from extended basic elements, which are more easily accessible
for a cognitive being.

While Carnap’s basic objects are concrete entities and Goodman’s basic
elements are abstract ones, the basic elements of our system share features
with both of them: like the former they can only occur within particular
intervals of time; like the latter they are instantiated in the same way as
properties or types are instantiated by their bearers or tokens. It is a matter
of terminology of whether our basic elements should thus be called ‘concrete’
or ‘abstract’. In any case, the basic elements that we presuppose are actual
entities – our set of basic objects is not meant to include mere possibilia.

Here are some further remarks on the choice of our basis:
– Why do we demand our basic elements to correspond to pairs of con-

vex sets? Convex sets have been suggested by Gärdenfors (1990, 2000) as
plausible candidates for “natural” regions in quality spaces, i.e., the qualita-
tive representations of “natural kinds” or “natural properties”. Gärdenfors
presents several arguments in favour of this suggestion: the quality space
interpretations of classical examples of non-projectible predicates such as
‘grue’ (Goodman’s new riddle) or ‘non-black’ (Hempel’s paradox) are non-
convex sets, in contrast with ‘green’ or colour predicates in general. Convex
sets are not closed under complement and union, but the intersection of two
convex sets in the same quality space is again a convex set; natural properties
seem to obey the same closure conditions. While bounded convex sets have
unique “centers of gravity” which might be regarded as their prototypes,
non-convex sets do not, so convex sets subserve prototype representations.
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There is one additional feature of convex sets that is of particular relevance
in the context of the Aufbau: convex sets may be regarded as respects of
similarity – if p is similar to r in a particular respect (say, Q) and q is
qualitatively between p and r, then it seems to be necessary that p and r
are similar to q in the same respect Q. But this is just the closure condi-
tion for convex sets, whence convex sets seem to be plausible candidates for
qualitative respects of similarity.

– We do not assume that the subject S perceives the basic elements; in
fact, we regard the old “sense data” theory of perception as false. What we
presuppose is that while S perceives physical objects and their properties,
she has certain experiences. Sentences which involve our basic predicates
may be used to describe which sense experiences S has. These descriptions
of S’s experience in terms of basic predicates are not necessarily S’s “first-
person” descriptions, but they might just as well be a neuroscientist’s “third-
person” descriptions. S is also not assumed to be consciously aware of her
sense experiences, i.e., our basis is open to the existence of unconscious sense
experiences.

– Since the basis of our system – and the same holds for Carnap’s –
involves at the same time basic elements and basic relations, the basis is,
in a sense, propositional from the start. It is given that some set of ba-
sic elements have non-empty qualitative overlap or that one basic element
occurs before another one does. The sentences that can be formed in our
restricted first-order language on the basis of ‘∈’, ‘<’, and ‘Ov’, are meant
to express these given propositions. But we do not subscribe to any sort
of epistemological foundationalism: sentences involving our basic terms are
not necessarily certain or self-justifying; we might think that they are true
but in fact they are false. As far as the topic of justification is concerned,
their status differs only gradually from the status of sentences about the
physical world. Neither is it our goal to justify sentences about the physical
world on the basis of sentences that can be formulated in the language of our
new constitution system. The latter might play some role in the analysis of
empirical confirmation, but it is not obvious what this role actually consists
in. In particular, empirical equivalence should not be mixed up with eviden-
tial equivalence: if A and tr(A) are empirically equivalent, this does not by
itself entail that whatever counts as evidence in favour of A is also evidence
for tr(A) and vice versa (see the discussion in Ladyman 2002). It should be
kept in mind that it is even questionable whether Carnap’s original Aufbau
programme was a foundationalist one. The proponents of what we called
the second interpretation of the Aufbau put forward very good arguments
that it was not. In any case, nothing like Sellars’ “myth of the given” applies

21



to our new “Aufbau-like” system.
– We are not committed to any particular way in which < and Ov are

caused to hold between basic elements. It is clear that what S perceives is to
play a role, but if some of S’s theoretical beliefs also do so, this is fine with
the new system. Our choice of basic elements and basic relations reflects
the choice of a level on which S’s experiences are described. We leave open
to what extent these experiences are causally influenced by external input
and to what extent they are shaped by internal mechanisms. What we call
‘experience’ is simply that what is to be found on the level of S’s cognitive
“life” that we have chosen.

– The basis of our system has both an “enlightened” phenomalistic inter-
pretation (as Carnap’s in the old Aufbau had) and a physicalistic interpre-
tation (as Quine’s envisioned naturalization of the Aufbau in Quine 1969,
1993, 1995). We say ‘enlightened’ because of what we have pointed out
above concerning sense data perception and epistemological foundational-
ism. One physicalistic way of viewing our basic elements is to think of them
in terms of neural activation patterns of perceptual detector units: a pat-
tern that corresponds formally to a pair 〈Cq, Ct〉 is generated by a detector if
and only if an external stimulus is detected that overlaps qualitatively with
the range Cq while overlapping temporally with the range Ct. Even if such
a physicalistic interpretation is adopted, the basis is still subjective in the
sense that the basic elements and the basic relations are determined by the
subject S’s experiences. It is just that experiences are now conceived from
a naturalistic point of view.

– It can be shown that the unary basic predicate ‘Ov’, which applies to
sets of basic elements, could be replaced by a seven-adic overlap relation of
basic elements. Thus, we do not really rely on the fact that Ov applies to
sets, although this choice is convenient from an expositional point of view.
It may also be shown that no overlap predicate of lower adicity could be
employed if the definitions that we are going to introduce below are to be
preserved.13

– The empirical contents of sentences, which we want to preserve by our
translation mapping tr, will only be given relative to our choice of basic
elements and basic relations; ‘empirical content’ in our sense is short for
‘empirical content relative to the basis . . . ’, where ‘. . . ’ is to be replaced
by a description of our new basis. But of course there are other possible
choices concerning basic elements and basic relations; there is nothing unique
about our choice of basis. Our basis might actually be constituted in terms
of the basis of a different system, just as Carnap’s basis turns out to be
reconstructible in our own system. It might even be the case that the basic
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elements and basic relations of two systems are in some sense interdefinable.
A basis with more primitive relations might correspond to a more fine-
grained notion of empirical content, but perhaps the rather economical basis
that we have chosen suffices in order to describe the empirical contents of
sentences in a non-trivial and satisfying way. Furthermore, the choice of a
basis is always guided by extrasystematic empirical considerations on the
system that would be determined by the basis. E.g., Carnap’s choice of basis
was obviously motivated and to some extent justified by Gestalt theories of
perception. Our own choice is inspired and – hopefully – also somewhat
justified by findings in cognitive science and neuroscience, although we will
not say much about these background theories in this paper. However,
it should be clear that every attempt of rational reconstruction such as
Carnap’s or the present one presupposes some amount of idealization. In
this respect, it is helpful to think of the given subject S not as a human being
but rather as an artificial cognitive agent. E.g.: if it turns out empirically
that the visual space of humans cannot be considered as a five-dimensional
quality space, then we might still assume our artificial subject S to have a
visual space of the assumed kind. As far as human cognition is concerned,
we might argue that if the empirical contents of scientific sentences can be
analyzed within a constitutional system that is associated with an artificial
agent of sufficient complexity, something similar might be achieved for the
even more complex human cognitive system.

7 How to Solve Goodman’s Problems

We are now going to introduce a sequence of definitions that makes up part
of our new constitution system. As explained at the beginning, the idea
behind such a system of definitions is that it determines a corresponding
translation mapping for sentences. The final goal of the definitions in this
section is to have a procedure at hand by which sentences about phenomenal
quality points and their temporal and qualitative relations can be expressed
just on the basis of ‘∈’, ‘<’, and ‘Ov’. The strategy by which we want
to approach Goodman’s problems will be to turn first to the dimensionality
problem and only then to the problem of defining phenomenal quality points.
The change of basis together with the change of definitional procedure will
enable us to avoid the difficulties of companionship, imperfect community,
accidental intersection, and collapse of dimensionality.

We start with the definition of ‘set of basic elements’, or briefly, ‘Bas’.
The members of the members of the extension of ‘Ov’ are definitely basic
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elements. Moreover, for every basic element x the set {x} is certainly a
member of the extension of ‘Ov’, because x has non-empty overlap with
itself. Therefore, the following definition, by which all and only the members
of the members of Ov are collected together, assigns the intended extension
to ‘Bas’:

• Constitution of set of basic elements:

Bas =df
⋃

Ov.

Now we are going to make use of our basic relation <. At first, we can
define a binary relation of temporal overlap for basic elements:

• Constitution of temporal overlap:

Ovtemp(x, y) ↔df (i) x, y ∈ Bas, (ii) x 6< y and y 6< x.

This definition is justified in view of the fact that if a basic element x
is neither totally before another basic element y nor totally after it – where
the after-relation is just the converse of the before-relation – then x and y
must overlap temporally. The reason why we have not outright started with
a basic relation of temporal overlap is that subjective time does not only
have an overlap structure such as the qualitative spaces do, but in addition
to that also an order structure that we are going to make use of below.

Once we have temporal overlap, we can define time instants and a be-
tweenness and order relation on them. Time instants are simply defined as
maximal sets of basic elements that have pairwise overlap. The definition
is related to Carnap’s system in two respects: time instants have the same
function in our system as the (then primitive) erlebs did in the original
Aufbau; they include all instances of experience at a time. Secondly, our
definition of time instants follows Carnap’s strategy of defining phenomenal
spheres, i.e., the first part of quasianalysis. Does the definition thus fall
prey to the same shortcomings? No – in our case, every basic element corre-
sponds temporally to a compact real interval. It can be shown that if every
two intervals of a set of compact intervals have non-empty intersection, then
the members of the set have a joint non-empty intersection.14 The defini-
tion of betweenness is unproblematic because our basic elements correspond
formally to convex sets, which are by definition closed under betweenness.
The definition of temporal order for time instants is simply the result of
lifting our basic relation < to the next higher level of abstraction. So we
may define:
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• Constitution of time instant (or erleb):

x is a time instant ↔df

(i) x ⊆ Bas, (ii) for all y, z ∈ x : Ovtemp(y, z),
(iii) there is no x′ ⊆ Bas, s.t. x $ x′ and for all y, z ∈ x′ Ovtemp(y, z).

Let Ptemp =df {x|x is a time instant}.

• For all a ∈ Bas, x ∈ Ptemp:

a is at time x ↔df a ∈ x.

• Constitution of betweenness of time instants:

For all x, y, z ∈ Ptemp:

Btemp(x, y, z) ↔df

for all a ∈ Bas: if a is at x and a is at z, then a is at y.

• Constitution of order of time instants:

For all x, y ∈ Ptemp:

x <temp y ↔df there are x′ ∈ x, y′ ∈ y, such that x′ < y′.

Let us turn to the qualitative aspects of experience. We have already
remarked that we want to define the dimensionality of phenomenal quality
spaces before we define phenomenal quality points. Following Carnap, we
can define the phenomenal counterparts of quality spaces as connectivity
components, but not connectivity components with respect to a similarity
relation but rather with respect to the given relation Ov of qualitative over-
lap. E.g.: basic elements which correspond qualitatively to convex subsets
Cq of the visual quality space do not stand in the Ov-relation to basic el-
ements that correspond qualitatively to convex subsets C ′

q of the auditory
quality space. On the other hand, we may assume that the convex sets of
quality points which our basic elements correspond to are distributed over
their quality space in a sufficiently uniform way, such that every two of
these convex sets in a common quality space can be connected by a chain of
pairwise overlappings. This amounts to:

• For all x ⊆ Bas:

x is a connectivity component ↔df

– for all y1, y2 ∈ x there are z1, . . . , zn ∈ Bas (n > 0), such that
Ov({y1, z1}), Ov({z1, z2}),. . . , Ov({zn−1, zn}), Ov({zn, y2});
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– for all y1 ∈ x, for all y2 ∈ Bas: if there are z1, . . . , zn ∈ Bas
(n > 0), such that Ov({y1, z1}), Ov({z1, z2}),. . . , Ov({zn−1, zn}),
Ov({zn, y2}), then y2 ∈ x.

Now that we have defined connectivity components, we can turn to the
question of how to assign dimensions to them. Here we make use of the
auxiliary notion of k-Hellyness, which is defined as follows:

• For all connectivity components x ⊆ Bas, for all k ∈ {1, 2, . . .}:
x is k-Helly ↔df

for every y ⊆ x the following two conditions are equivalent:
(a) for all z ⊆ y with |z| 6 k: Ov(z)
(b) Ov(y).15

The dimensionality of connectivity components may be defined in terms
of ‘k-Helly’. By the famous theorem of Helly (cf. Matousek 2002), every class
of closed, bounded, convex subsets of Rn is (n + 1)-Helly relative to overlap
in terms of non-empty intersection, where ‘k-Helly’ is defined analogously
to above. Moreover – in a non-degenerate case – a class of closed, bounded,
convex subsets of Rn is not n-Helly. E.g., the set of compact real intervals
can be regarded as a degenerate subset of R2 in the sense that it can be
regarded as a subset of R2 but that it can also be regarded as a subset of a
space with lower dimension, i.e., of R. We assume that the convex subsets of
the five-dimensional visual quality space that our basic elements correspond
to are distributed over it in a non-degenerate manner, i.e., their overlapping
patterns may not be realized in a space with lower dimension; accordingly
for all other quality spaces. Fortunately, the cardinality of the set of basic
elements does not play a role, since Helly’s theorem also applies to finite
classes of convex sets. So we have:

• Constitution of k-dimensionality :

For all connectivity components x ⊆ Bas, for all k ∈ {1, 2, . . .}:
x is k-dimensional ↔df

x is (k + 1)-Helly, but not k-Helly.

Sense classes can thus be identified by dimensionality, which solves Good-
man’s second problem. E.g.:

• Constitution of visual phenomenal space:

vs =df ιx (x is a connectivity component and x is 5-dimensional).
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A visual basic element is simply a member of vs. Finally, within a sense
class, quality points can be defined as maximal sets that have non-empty
common overlap, which solves Goodman’s first problem. Carnap’s problem
of “accidental” intersection does not occur, because rather than intersecting
sets of erlebs, which may simultaneously realize points in different quality
spaces, we consider the overlapping of our basic elements, which correspond
qualitatively to one and only one quality space. E.g., in the case of the
visual phenomenal space:

• Constitution of visual phenomenal quality point :

x is a visual phenomenal quality point ↔df

(i) x ⊆ ℘(vs), (ii) Ov(x),
(iii) there is no x′ ⊆ ℘(vs), s.t. x $ x′ and Ov(x′).

Let Pvis =df {x|x is a visual phenomenal quality point}.

In fact, within an n-dimensional sense class, quality points could be
defined as maximal sets of (n + 1)-fold overlappings, i.e., in (ii) and (iii)
we could restrict ourselves to demanding that Ov({y1, . . . , yn+1}) for all
y1, . . . , yn+1 ∈ x (respectively, x′). This is again a consequence of Helly’s
theorem. Note that if we had defined the phenomenal quality points that
belong to an n-dimensional quality space in terms of (n + 1)-fold overlap-
pings, it would have been crucial that the definition of dimensionality for
phenomenal quality spaces had been achieved before the definition of their
corresponding phenomenal quality points.

The set of visual phenomenal quality points can be equipped easily with
a metric notion of similarity. The more uniformly distributed the quality
regions and points in the visual space are to which our visual basic elements
and visual phenomenal quality points correspond, the more this metric will
correspond to the actual metric on visual quality points:

• Constitution of similarity metric on phenomenal visual quality points:

For all x, y ∈ Pvis:

dvis(x, y) =df | {z ∈ vs |(z ∈ x ∧ z 6∈ y) ∨ (z 6∈ x ∧ z ∈ y)} |.

dvis measures the degree of separability of x and y in terms of visual
basic elements. It can be shown that dvis is a metric on Pvis.

Furthermore, we are able to define phenomenal quality spheres, a rela-
tion of part-similarity for time instants or erlebs, a betweenness relation for
visual phenomenal quality points and accordingly for all other sense modal-
ities, and many further interesting concepts. All of Carnap’s terms for the
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qualitative analysis of sense experience can be expressed on the basis of ‘∈’,
‘<’, ‘Ov’; in particular, we can state a definition of the set of phenomenal
colour qualities, the set of visual sensations, the set of places in the visual
field, the neighbourhood relation for these places, and so forth (cf. section
5).

Summing up: why is it that we were able to avoid Goodman’s problems
in our new setting? Our basic elements are already situated on the level
of Carnap’s phenomenal quality spheres, so we did not have to take the
first step of quasianalysis; the difficulties of companionship and imperfect
community simply do not arise. Accidental intersections are taken care
of by our selection of Ov as a given relation of overlap. Since a binary
notion of overlap would not suffice, we conceive of Ov as a class of sets,
although a seven-adic relation would actually do as well. In the case of
temporal overlap, a binary relation, which is definable in terms of ‘<’, is
sufficient, since time is one-dimensional. By Helly’s theorem, connectivity
components are ensured to receive their intended dimension numbers, such
that we are able to identify the different sense classes by their dimensions.
This is achieved by exploiting the overlap relation for our basic elements; the
definition does not depend on a previous definition of phenomenal quality
points.

Why do we have reason to believe that our definitions subserve the aim
of inducing a translation mapping that preserves empirical content? We
have tried to ensure that the extension of every defined term in our system
is the phenomenal counterpart of its quality space preimage. If we have
been successful in doing so, then the formal structure of the actual quality
space entities will show up in their phenomenal counterparts. E.g., the or-
der structure of subjective time instants will be a coarse-grained image of
the actual order structure of time, the dimensional structure of connectivity
components will be a coarse-grained image of the actual dimensional struc-
ture of quality spaces, the metric structure of phenomenal visual quality
points will be a coarse-grained image of the actual metric structure of visual
quality points, and so forth. If tr(A) is based on our definitions, it is going
to describe the difference that the truth of A would make to possible expe-
riences. While A is a description of quality spaces, tr(A) is a description
of the coarse-grained phenomenal copies of quality spaces – of how the for-
mal structure of quality spaces “imprints” on the phenomenal structure of
experience. In this sense, tr may be viewed as preserving empirical content.
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8 How to Solve Quine’s Problems

In the following we build on work which originated from Ramsey (1931) and
which was developed further by Carnap (1966a) and Lewis (1970).

Let us reconsider Carnap’s colour assignment sign ‘col’ in the Aufbau as
an example of a theoretical term. The procedure of setting up a translation
mapping for sentences that contain ‘col’ can be divided into two steps:

Step 1: Axiomatize Carnap’s (implicitly stated) theory for the pri-
mitive colour-assignment function sign ‘col’.16 Let A[col] be the sentence
which axiomatizes this theory; so A[col] will include clauses of the form
‘. . . col(x, y, z, t) = c . . .’, ‘col is such that. . . ’, and so forth.

The actual details of this axiomatization are tedious, because Carnap’s
maxims involve several auxiliary items. In the appendix, we have defined
what we call the set of colour assignment tuples, where a colour assignment
tuple collects the different components that Carnap refers to. Formally, a
colour assignment tuple is an octuple 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 where
(i) pv is a mapping that tracks a possible point of view of S, (ii) dv is a
possible main-direction-of-view mapping of S, (iii) et maps erlebs to points
of time, i.e., to real numbers, (iv) dev represents a possible local-deviation-
of-the-direction-of-view for S, (v) lv is a possible line-of-view function that
is associated with S, (vi) wlf is a family of world-lines, i.e., of continu-
ous trajectories through four-dimensional space-time, (vii) ca is a partial
mapping from space-time to the set of S’s phenomenal colour qualities –
it is intended to be a colour assignment for points of space-time that are
seen by S, and (viii) ca2 is a mapping of the same type as ca but it is
devoted to the assignment of colours to points of space-time which are un-
seen by S. The different components have to satisfy various conditions
in order to let 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 be a colour assignment tuple.
Some of these conditions ensure that the different mappings harmonize with
each other – e.g. the line-of-view mapping has to “match up” with the
point-of-view mapping, the main-direction-of-view mapping, and the local-
deviation-of-the-direction-of-view mapping. Other conditions connect the
mappings with S’s actual experiences; in particular, et has to preserve the
temporal ordering of erlebs, dev has to respect the neighbourhood relation
for places in the visual field, ca assigns points in space-time to phenome-
nal colour quality points according to S’s visual sensations, S’s line of view
as well as according to the assumed world-lines wlf along which colours
are supposed to “travel”, and ca2 fills in “gaps” that are left by ca. All
of these conditions are implicitly contained in Carnap’s specification of the
colour assignment mapping in §126–127 of the Aufbau. If expressed in our
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language, Carnap assumes that there are pv, dv, et, dev, lv, wlf, ca, ca2, such
that 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 is a colour assignment tuple and col is
the result of “putting” the two partial mappings ca and ca2 together17.
However, being the fusion of the two last components of a colour assign-
ment tuple is only a necessary condition for being Carnap’s actual colour
assignment col. Carnap’s maxims in §126 can be reconstructed in the way
that the colour assignment tuple 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 to which col
belongs is maximally “inert” among all colour assignment tuples. This can
be made precise by introducing measures of inertness on the set of colour
assignment tuples: a colour change index (the higher the index, the less
the total number of colour changes), a curvature change index (the higher
the index, the less the total sum of curvature changes), a velocity index (the
higher the index, the less the total sum of velocities), a neighbourship preser-
vation index (the higher the index, the higher the spatial neighbourship
preservation for world lines). Each index maps a given colour assignment
tuple to a particular number. Finally, based on these numbers, an inertness
preorder for colour assignment tuples can be introduced by which one may
express that one colour assignment tuple is less-or-equally inert as another.18

What Carnap’s theory of colour assignment finally amounts to is: there are
pv, dv, et, dev, lv, wlf, ca, ca2, such that (a) 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 is
a colour assignment tuple, (b) col is the result of taking the unions of the
two partial mappings ca and ca2, and (c) 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 is
maximal with respect to the inertness preorder on colour assignment tuples.
A[col] is precisely this statement.

Step 2: On the basis of this axiomatization, we have two main options
of solving Quine’s problem by setting up translations of sentences involving
‘col’, i.e., sentences of the form B[col]:

Option 2.1: Translate B[col] to the so-called Ramsey sentence19

∃x(A[x] ∧B[x])

Since the only descriptive terms in B[col] except for ‘col’ are ‘∈’, ‘<’,
‘Ov’ and terms which are defined on the basis of the latter, the Ramsey
sentence only contains descriptive terms that can be reduced to ‘∈’, ‘<’, ‘Ov’.
Furthermore it is easy to see that the Ramsey sentence has the same logical
consequences as the sentence A[col]∧B[col] as far as sentences are concerned
which solely consist of ‘∈’, ‘<’, ‘Ov’ (and logical terms); in this sense, the two
sentences are empirically equivalent. The idea of the translation mapping is
that if someone claims B[col] to be true, he implicitly claims A[col]∧B[col]
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to be true, because the extension of ‘col’ is given by the theory A[col]. But
A[col] ∧B[col] may be considered to be empirically equivalent to ∃x(A[x] ∧
B[x]). Ramsey sentences can be viewed as contextual definitions, i.e., the
empirical content of ‘col’ is only explained in the context of sentences.

Ramsification has sometimes been put forward as a means of making
either the instrumentalist view of theoretical terms or the structuralistic
view of scientific theories precise: according to the former, the only function
of theoretical terms is that they help “ordering” or keeping track of our
experiences in a neat way. The transition from sentences with theoretical
terms to their corresponding Ramsey sentences seems to preserve precisely
this aspect of theoretical terms. At the same time, the Ramsey sentences
seem to subserve the aims of structural realists who want to show that
the transition from former successful but false theories to our current im-
proved theories preserves “structural content”; the Ramsey sentences that
are associated with theories are supposed to express their structural con-
tent. However, our intention of using Ramsey sentences is neither tied to
an instrumentalistic picture of scientific discourse nor to a structuralistic
account of scientific progress. As far as the first is concerned, we do not
claim that A[col] ∧ B[col] is just a short-hand for ∃x(A[x] ∧ B[x]) or that
the two have the same meaning or pragmatic function. Our goal is simply
to set up a translation mapping for scientific sentences that maps sentences
to other sentences, such that (i) the latter are directly or indirectly com-
posed of our basic terms and (ii) the translation preserves empirical content.
Ramsification is just a manner of achieving this goal. Concerning structural
realism, Newman’s observation (see Demopoulos&Friedman 1985), which is
usually regarded to contradict the structural realists’ aspirations of relying
on Ramsey sentences in order to clarify the notion of ‘structural content’, is
irrelevant for our project. Newman showed that a Ramsey sentence which
consists solely of observational and logical expressions is roughly as strong
as the set of all observational consequences of the original “unramsified”
theory together a cardinality assumption on its universe of discourse. Put
differenty: the only “structure” which the Ramsey sentence adds to the ob-
servational part of the theory is a cardinality claim (see Ketland 2004 for
the more precise model-theoretic statement). While this runs counter to the
intentions of structural realists, it leaves our new Aufbau untouched; for our
concerns, the translation of sentences in terms of Ramsey sentences only has
to preserve empirical content and this is what seems to be the case. The
Ramsification of a theory with respect to a particular theoretical term only
expresses what the structure of the extensions of the other terms has to be
like if the theory is to come out as true. In our case, “the other terms”
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are just our basic experiential terms, such that the Ramsification of Car-
nap’s theory of colour assignment with respect to the theoretical term ‘col’
expresses what the structure of S’s experience has to be like if the colour
theory is to be true.

Similar criticisms of Ramsification do not apply to the way in which we
employ it either, because we do not regard Ramsification as subserving a
particular theory of truth or meaning. E.g.: as Glymour (1980) observes,
while the inference from P [t] and Q[t] to P [t] ∧ Q[t] is logically valid, the
“ramsified” inference from ∃xP [x] and ∃xQ[x] to ∃x(P [x]∧Q[x]) is not; but
this is only a problem if the Ramsey sentences are supposed to determine or
reveal the truth conditions of the original sentences. In our case, Glymour’s
observation amounts to an observation about the properties of the transla-
tion mapping tr that we suggest. He shows that tr is not compositional:
tr(B[col]) = ∃x(A[x] ∧ B[x]) and tr(C[col]) = ∃x(A[x] ∧ C[x]), however
tr(B[col]∧C[col]) = ∃x(A[x]∧B[x]∧C[x]) rather than tr(B[col]∧C[col]) =
∃x(A[x]∧B[x])∧∃x(A[x]∧C[x]). While this is a fact which is interesting in
itself, it certainly does not preclude tr from being the translation mapping
that we were looking for in our section 2.

Option 2.2: Define ‘col’ by a Lewis-style definite description (cf. Lewis
1970):

col =df ιxA[x]

If we pursue this option, our intended translation mapping is actually
given by a definition. However, if we decide to make use of Russell’s theory
of definite descriptions, this definition gives rise to a contextual elimination
procedure again which resembles the one of the last option, the only differ-
ence being that now an additional uniqueness claim is included in the trans-
lation image. This has the following effect: assume that B[col] is an atomic
sentence; then tr(B[col]) = B[ιxA[x]] = ∃x(A[x]∧∀y(A[y] → y = x)∧B[x]),
so B[col] does not precisely have the same logical consequences in the lan-
guage given by ‘∈’, ‘<’, ‘Ov’ as tr(B[col]), since B[col] does not imply
∃x(A[x]∧∀y(A[y] → y = x)∧B[x]) although tr(B[col]) does (trivially). How-
ever, as Lewis argues, if someone claims B[col] to be true, (i) he implicitly
claims A[col]∧B[col] to be true, because the extension of ‘col’ is given by the
theory A[col], and (ii) additionally it is tacitly presupposed that A[col] speci-
fies the reference of ‘col’ uniquely. If so, the slight increase of empirical con-
tent that happens to characterize the transition from the Ramsey sentence
∃x(A[x] ∧ B[x]) to the Lewis sentence ∃x(A[x] ∧ ∀y(A[y] → y = x) ∧ B[x])
is acceptable.
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A more serious concern about translation mappings according to option
2.2 is the question of how likely sentences such as tr(B[col]) are true. Af-
ter all, ‘x’ runs over a set-theoretic universe; therefore, if A[x] is not of a
particularly restricted form, there will be “many” – in fact, infinitely many
– values of ‘x’ which satisfy A[x]. Even worse, there might be instances of
formulas A[x] that are not satisfied uniquely independent of what the ex-
tensions of ‘<’, ‘Ov’ are like, i.e., independent of the qualitative features of
S’s experiences. One way of avoiding this is to restrict the quantification
in translation images to “natural experiential sets (relations, functions)”:
Not every member of our set-theoretic universe would count as a “natural”
object. Although there may be many sets that satisfy A[x], there is hope
that there is just one natural set among them. Lewis (1970) uses the same
“trick”, although in his case the restriction is to natural physical kinds and
relations. This suggestion can be made precise by introducing two types
of variables, such that variables of one type would take arbitrary basic ele-
ments and sets as their values, while the range of the variables of the other
type would be restricted. If x is a variable of the first kind and a is a
variable of the second kind, then the definition above should actually be
changed into: col =df ιaA[a]. Alternatively, one might introduce an ad-
ditional unary predicate ‘Nat’ the intended interpretation of which is the
class of all natural sets. The corresponding definition of ‘col’ would thus be:
col =df ιx(A[x] ∧ Nat(x)). Although both of these options are in principle
viable, they come with a certain cost: in the first case, ‘a’ should no longer
be regarded as a member of the logical vocabulary of the language of our
constitution system (cf. Schurz 2005); it is a descriptive sign with a gen-
uinely empirical content. Accordingly, in the second case, ‘Nat’ is another
descriptive sign that is additional to ‘∈’, ‘<’, ‘Ov’. In contrast to the latter,
the extension of ‘Nat’ is unclear and cannot be simply explained in terms
of examples and a formal model. In both cases, the new signs would have
to be counted as further basic terms of the system.

A third way of dealing with the uniqueness problem is to include ad-
ditional clauses which are supposed to ensure that the definiens is satisfied
uniquely. In a nutshell, the idea is to define ‘col’ by definite description with
conventional choice. E.g., if all the x that satisfy A[x] could be well-ordered,
such that this well-ordering was definable in terms of ‘∈’, ‘<’, ‘Ov’, then the
following definition would do: col =df ιx∃y(A[y] ∧ ∧x is least w.r.t. . . .)
(where ‘. . . ’ is to be replaced by the defining clause of the well-order).
Moreover, if such a well-ordering is not expressible – which is likely to be
the case – then one might adopt the following strategy: for every colour
assignment tuple, define its “coarsening”, i.e., a tuple of coarse-grained ver-
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sions of the components of the former. E.g., let the coarsening of a colour
assignment tuple include mappings ca′ and ca′2 which assign colours to, say,
cubical regions of space-time; a region would be mapped to a phenomenal
colour quality c if and only if the mappings ca and ca2 of the original colour
assignment tuple map the measure-theoretic majority of points in the re-
gion to c (there are several possible variations of this recipe). The point of
coarsening is that if it is done in the right way, there will be finitely many
coarsenings20; the inertness indices that we have introduced above could be
defined directly for coarsenings; finally, a well-ordering of coarsenings may
be introduced since there are definable enumerations of cubical regions, of
time instants, of the set of phenomenal colours, of the set of visual sensa-
tions, and thus of the finite set of colour assignment coarsenings. Hence we
can define: col =df ιx∃y(A[y] ∧ Coarsening(x, y) ∧ x is least w.r.t. . . .)
(where ‘. . . ’ is now to be replaced by the defining clause of the well-order for
coarsenings). In this way, uniqueness can be guaranted without making use
of quantification over natural classes. While the approximation of colour as-
signment tuples by their “coarse-grained” counterparts is certainly reflected
by a change of meaning as far as the translation of sentences with ‘ca’ to
sentences without ‘ca’ is concerned, the empirical content of the original
sentences is likely to be unaffected. Our observer S may certainly be as-
sumed to have finite capacities of discrimination herself, thus an assignment
of colours to regions rather than points is all that is asked for if one is only
interested in the preservation of empirical content. The underlying thought
of each of these variants of option 2.2 is that the intended uniqueness of
definite descriptions can be guaranteed if there is a manner of expressing
a unique selection method for the objects that satisfy the description. The
choice itself is conventional in the same sense as it is a matter of convention
whether we choose Kuratowski’s definition of ordered pairs in axiomatic set
theory or a different one as long as the characterizing axiom for ordered pairs
is satisfied. The drawback of this translation method is that the empirical
contents of theoretical sentences would be determined only up to convention,
but this is perhaps excusable. Carnap’s Aufbau itself may be regarded as a
conventionalistic project (cf. Runggaldier 1984).21

We suggest that one of these options can be applied in order to trans-
late sentences with theoretical terms to sentences in the language of our
constitution system, such that this translation preserves empirical content.
According to both options, scientific sentences will usually be translated to
“long” sentences that include various fragments of theory. In this sense,
some of Quine’s holistic aspirations are indeed satisfied by our translation
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mappings. As Quine points out,

If we can aspire to a sort of logischer Aufbau der Welt at
all, it must be one in which the texts slated for translation into
observational and logico-mathematical terms are mostly broad
theories taken as wholes. [. . .]
The translation of a theory would be a ponderous axiomatization
of all the experiential difference that the truth of the theory
would make. . . we may, following Peirce, still fairly call this the
empirical meaning of theories” (Quine 1969).

Since – as we claim – the extensions of our theoretical terms are given by
certain theoretical modules or building blocks rather than by “the” scientific
theory in total, our translation mappings only conform to a partial sort of
holism. Furthermore, Quine seems to have overlooked the possibility of using
these theory fragments in order to set up term-to-term and sentence-to-
sentence translations which preserve empirical content. This solves Quine’s
problem as far as our new Aufbau project is concerned.

Three final remarks on our method of approaching Quine’s problem:
– If we presuppose option 2.2 for the moment, then the definition of

theoretical terms may involve our basic terms as well as terms – including
theoretical terms – that have already been defined. This leads to a system
of levels of terms, such that the definition of a term of level n only involves
terms on levels below n. Friedman (1999) poses the question how such
a system of constitutional levels is supposed to come to terms with the
phenomenon of revision: e.g., the subjective colour assignment that is at
first solely based on the experiences of the subject S has to be revised
subsequently on the basis of the reports of other subjects on the one hand
and on the basis of hypotheses about scientific regularities on the other; but
our knowledge of other subjects and of scientific regularities presupposes
our subjective colour assignment. Accordingly, the rational reconstruction
of col seems to depend on the definitions of other subject’s reports and
scientific terms, while the definitions of the latter seem to presuppose the
definition of the ‘col’. This circle can be broken by introducing new “high-
level” theoretical terms as refinements of theoretical terms that have already
been defined on lower levels. Our definition of ‘col’ would e.g. be the
definition of a preliminary colour assignment. On the basis of ‘col’ and
other primitive or defined terms, definitions of further scientific terms can
be given. On the basis of the latter, a new term ‘col∗’ can be introduced the
extension of which may be regarded as a refinement of the original colour
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assignment col. Carnap himself hints at this procedure when he defines what
he calls a “preliminary time order” in §120 of the Aufbau.

– §155 of the Aufbau is devoted to an application of our option 2.1 in
order to define what was originally meant to be Carnap’s basic relation of
recollection of similarity.22 The latter is defined as the binary relation which
satisfies a particular high-level condition that is supposed to be characteristic
of the relation of similarity recollection. In fact, Carnap uses the variant of
2.1 from above in which we made use of an additional predicate ‘Nat’ – in
Carnap’s terminology, ‘Found’. The extension of ‘Found’ is supposed to
be the class of “founded”, “experienceable”, “natural” relations (cf. §154).
As Demopoulos&Friedman (1985) and Friedman (1999) argue convincingly,
‘Nat’ or ‘Found’ are not logical terms, therefore the strong structuralistic
thesis that we have presented in section 2 when we dealt with the second
interpretation of the Aufbau is not supported by the existence of definitions
of this sort. This failed structuralistic claim is of course not a part of our
own thesis.

– Why is it that we have to make use of contextual definitions in the
transition from the autopsychological domain to the physical domain, while
we have been able to restrict ourselves to explicit definitions in the former?
The exact answer to this question would need more elaboration, but our
hypothesis is that the approach in the last section is actually not as different
from the one in this section as it may seem at first glance. Terms such as
‘quality point’, ‘visual place’, ‘visual sensation’ and so on are theoretical
terms themselves – their extensions are given by little theories on cognition.
However, their corresponding definitions in terms of, say, Lewis’ definite
descriptions can be turned into equivalent explicit definitions which are of
the same or of a similar form as the explicit definitions that we have given
in our section 7. In contrast to expressions about the immediate qualitative
properties of our experience, the empirical extension of ‘col’ is too complex
to be cast into an explicit definition on the basis of our primitive terms.

We did not cover dispositional terms in this section since they are not be
regarded as theoretical terms. Disposition term constitute a separate and
important problem for an Aufbau-like programme, but not a problem that
we can deal with in this paper (cf. footnote 5).
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9 Summary and Outlook

We have finally arrived at a scheme for translating scientific sentences A to
sentences tr(A) where the latter consist solely of logico-mathematical signs
(logical connectives, quantifiers, ‘=’, ‘∈’) and terms that refer to experiences
(‘<’, ‘Ov’). In the case of the “autopsychological” terms that we have dealt
with in section 7, tr was given by explicit definitions. Our suggestions in
section 8 of how to translate sentences that include the colour assignment
function sign ‘col’ (accordingly for other theoretical terms) were several: ei-
ther to apply Ramsification or to define ‘col’ in terms of a definite description
that can be eliminated contextually; in the latter case, we have presented
different possible versions of how the definite description can be formulated.
However the translation is set up, logical and mathematical signs are always
left invariant by translation.

As far as the preservation of empiricial contents is concerned, we have
taken care that the extensions of all autopsychological terms are defined to
have their intended interpretations as the phenomenal counterparts of qual-
itative objects. This should ensure that every definiendum of a definition
in section 7 is empirically equivalent to its corresponding definiens. Finding
solutions to Goodman’s problems was a necessary prerequisite for achieving
this. The translations of sentences that involve ‘col’ in terms of Ramsey
or Lewis sentences can be shown to preserve empirical content while doing
justice to Quine’s holistic concerns about the corresponding passage of the
original Aufbau. Since the extension of ‘∈’ may be assumed to be fixed –
at least from a Platonistic view of mathematics – each translation tr(A)
expresses a constraint on the extensions of ‘<’ and ‘Ov’. As the last section
has shown, this constraint might be a fairly complex one. E.g., tr(A) might
say that there is a mapping which is defined on a set in our set-theoretic hi-
erarchy such that some condition that is expressed in terms of ‘∈’, ‘<’, ‘Ov’
is satisfied; the existence of such a function might correspond to a situation
in which S has experiences which show some complex pattern of temporal
succession and qualitative overlap. Mathematical expressions are needed
for two reasons: (i) they are necessary to set up the definitions of autopsy-
chological terms; (ii) they occur in scientific theories; therefore, according
to the methods of translation that we have discussed in the last section,
mathematical terms will show up in the translation of sentences with theo-
retical terms; (iii) mathematical terms enable us to express constraints on
experiences that could not be expressed on the basis of ‘<’ and ‘Ov’ alone.

This leads us to the following conception of empirical contents: let A be a
scientific sentence; let tr(A) be its translation according to our constitution
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system; let [tr(A)] be the class of set-theoretic models M for ‘<’, ‘Ov’, such
that (i) ‘∈’ has its intended interpretation in M, and (ii) M satisfies tr(A):
then [tr(A)] may be considered as a formal representation of the empirical
content of A.

The translation mapping that is induced by our choice of basis in section
6, our choice of explicit definitions in section 7, and finally our choice of con-
textual definitions in section 8 is relativized to empirical theories in three
ways: the basis is selected according to theoretical considerations; the defini-
tions in the autopsychological domain only assign the intended extensions to
their definienda if certain empirical hypotheses about S and her experiences
are satisfied – e.g., S has sufficiently varied experiences, basic elements are
distributed qualitatively in a sufficiently uniform manner, and so forth; the
contextual definitions of ‘col’ and of other theoretical terms include theory
fragments. Thus, it is definitely not the case that our translation mapping
is given by unrevisable analytic rules of correspondence in the traditional
sense of the word. Instead, every revision of our empirical theories will lead
to a corresponding revision of the translation mapping. The choice of our
translation mapping depends on empirical theories and so does the notion
of ‘empirical content’ that we have used.

At least for all sentences A which solely consist of the linguistic expres-
sions we have investigated in this article, the thesis put forward in section
2 has been defended except for one part: we still need to show that tr(A)
expresses a subject-invariant constraint on experiences. We leave this part
for another paper.
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Notes

1In our context, the philosophical and mathematical differences between the standard
suggestions for axiomatic systems of set theory are not of major importance.

2This mixture of qualitative and temporal components has been rightly criticized by
Moulines (1991) for having some counterintuitive consequences. In our new system, qual-
itative aspects will be separated from temporal ones by reserving one basic relation for
each.

3We do not always use Carnap’s original terms.
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4It can be shown that Carnap’s definition of ‘Sim’ does not always subserve this in-
tention. However, for the sake of the argument, we will ignore this additional problem of
Carnap’s procedure.

5In a one-dimensional quality space, a quality sphere of diameter ε is simply an interval
of length ε.

6Carnap discussed this notion of dimensionality in his Abriss der Logistik (Carnap
1929).

7We will not go into details how meaning holism and confirmational holism differ from
each other or what their logical relationship looks like. Moreover, Quine’s view on this
topic is not clear itself and was subject to subtle changes throughout the years.

8Carnap of course dealt with an undefinability problem himself when he studied the
difficulty of defining dispositional terms on the basis of observation terms (Carnap 1936–
1937). But this topic should not be mixed up with the problem concerning ‘ca’: disposition
terms are not theoretical terms since their extensions are not given by theories; they stand
somewhere “in between” observation terms and theoretical terms.

9The extension of one of our basic predicates is actually a set of sets of basic elements,
which can be seen as a formal reconstruction of a Lewis-style relation of basic elements
with variable adicity. However, as we will point out below, one could in principle dispense
with this basic predicate in favour of a seven-adic predicate that applies to basic elements
directly.

10In our case, convex sets will always be subset of some Euclidean space Rn. A subset X
of Rn is called convex if and only if for every x, y ∈ X, the straight line segment between
x and y is included in X, i.e., for all λ ∈ [0, 1] : λx + (1 − λ)y ∈ X. In the case of n = 1,
convex sets simply coincide with the real intervals. Informally, a convex set is closed under
“betweenness”: if p and r are members of a convex set Q and q is between p and r, then q
is a member of Q as well. By ‘extended’ we simply mean non-empty and not “point-like”,
i.e., neither identical to the empty set nor to a singleton set.

11In the preface of the second edition of the Aufbau, Carnap notes that he would now
have also opted for phenomenal quality points as basic elements.

12Indeed, several of the definition in the next section are inspired by Russell’s
13There is nothing “magic” about the number seven: the overlap predicate for basic

elements need to have an adicity that is at least of magnitude highest dimension of quality
space involved plus two. Since the five-dimensional visual quality space is supposed to be
of largest dimension, this yields an adicity of seven.

14This follows from Helly’s theorem, one of the classic results in Convex Geometry; see
our definition of dimensionality.

15|z| is the cardinality of z. See Berge 1989 for the notion of k-Hellyness.
16Strictly, ‘col’ will not be a function sign in the first-order language sense, but rather

an individual constant. However, since the individual constant ‘col’ is intended to denote
a particular function which is a member of the set-theoretic universe that we presuppose,
one may still conceive of it as a function sign, except that in contrast to proper function
signs, predicates may be applied to it.

17This is possible since the domain on which ca is defined is disjoint from the domain
on which ca2 is defined

18One way of introducing such an inertness preorder is to rank the index functions
by priority and to order the colour assignment tuples lexicographically according to the
priority ranks.

19The original Ramsey sentences are second-order sentences. But since we presuppose
set theory, second order quantifiers can be construed as first-order quantifiers.
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20We presuppose that there is sufficiently large space-time sphere such that for all colour
assignment tuples 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 the domains of the partial mappings ca
and ca2 are included in this sphere. This ensures that there are only finitely many cubic
regions that we have to deal with.

21There are actually further variants of option 2.1 and 2.2 which we have not discussed:
e.g., Ramsification could involve quantification to natural classes, too; this would be a
variant of 2.1. Moreover, Hilbert’s ε-terms could be used rather than ι-terms: this would
be a variant of option 2.1 and option 2.2 at the same time, since entences with ε-terms
correspond logically to ramsified sentences but instead of involving existential quantifiers
they employ special singular terms (cf. Carnap 1966b).

22Thus, Carnap’s definition of the basic empirical predicate of his system is an early
application of Lewis’ (1970) idea of defining theoretical terms by definite description and
reference to natural properties and relations.
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11 Appendix: Approximate Colour Assignment
Tuples

We use the following terms, which can all be defined by means of our basic
terms ‘∈’, ‘<’, ‘Ov’ (in the line of §117–118 of the Aufbau with minor mod-
ifications): ‘Sensvis’ (set of visual sensations), ‘Place’ (set of places in the
visual field), ‘SameP lace’ (same-visual-place relation on visual sensations),
‘NeighP lace’ (occupies-neighbour-place-of relation on visual-places), ‘Pcol’
(set of phenomenal colour qualities).

Constitution of set of colour assignment tuples:

ColAssign =df the set of octuples 〈pv, dv, et, dev, lv, wlf, ca, ca2〉 with:

1. (point of view mapping)

pv : R+
0 → R3 with pv(t) =

 pvx(t)
pvy(t)
pvz(t)

, s.t. pvx, pvy, pvz are

continuous.

2. (main direction of view mapping)

dv : R+
0 → R3 with dv(t) =

 dvx(t)
dvy(t)
dvz(t)

, s.t. dvx, dvy, dvz are

continuous.

3. (erleb to real time instant mapping)

et : Erl → R+
0 , s.t.

for all x, y ∈ Erl: x <temp y iff et(x) < et(y).

4. (local deviation of direction of view mapping)

dev : Sensvis → R3, s.t.

for all 〈x1, y1〉 , 〈x2, y2〉 ∈ Sensvis:

• 〈x1, y1〉 NeighP lace 〈x2, y2〉 iff
^(dev(〈x1, y1〉), dev(〈x2, y2〉)) < γ

• 〈x1, y1〉 SameP lace 〈x2, y2〉 iff dev(〈x1, y1〉) = dev(〈x2, y2〉).

[‘^’ refers to an angle, ‘γ’ denotes a fixed real number.]
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5. (line of view mapping)

lv : Sensvis →
{
z

∣∣z is a semi-line in R3
}

with

for all 〈x, y〉 ∈ Sensvis:

lv(〈x, y〉) ={
〈a, b, c〉 ∈ R3 |∃r ∈ R+ 〈a, b, c〉 = pv(et(x)) + r(dv(et(x)) + dev(〈x, y〉))

}
.

6. (family of world lines)

wlf is a family {wlfi}i∈I of mappings wlfi : R+
0 → R3, s.t.

• for all i ∈ I: wlfi : R+
0 → R3 s.t. for all t ∈ R+

0 , wlfi(t) = wlfi,x(t)
wlfi,y(t)
wlfi,z(t)

, where wlfi,x, wlfi,y, wlfi,z are continuous.

7. (colour assignment for seen points of space-time)

ca is a partial function from R3 × R+
0 to Pcol, s.t.

• for all 〈a, b, c, t〉 ∈ R3 × R+
0 :

if ca(〈a, b, c, t〉) is defined, then there is precisely one 〈x, y〉 ∈
Sensvis, s.t. et(x) = t, 〈a, b, c〉 ∈ lv(〈x, y〉), y ∈ ca(〈a, b, c, t〉)

• for all 〈x, y〉 ∈ Sensvis:
there is precisely one 〈a, b, c, t〉 ∈ R3×R+

0 , s.t. et(x) = t, 〈a, b, c〉 ∈
lv(〈x, y〉), and ca(〈a, b, c, t〉) is defined with y ∈ ca(〈a, b, c, t〉)

• for all 〈a, b, c, t〉 ∈ R3 × R+
0 :

if ca(〈a, b, c, t〉) is defined, then there is an i ∈ I, s.t. wlfi(t) =
〈a, b, c〉

• for all i ∈ I there is an 〈a, b, c, t〉 ∈ R3×R+
0 , s.t.: wlfi(t) = 〈a, b, c〉

and ca(〈a, b, c, t〉) is defined.

8. (colour assignment for unseen points of space-time)

ca2 is a partial function from R3 × R+
0 to Pcol, s.t.

• for all 〈a, b, c, t〉 ∈ R3 × R+
0 :

if ca(〈a, b, c, t〉) is defined, then ca2(〈a, b, c, t〉) is undefined

• ca∪ca2 assign for every t ∈ R colours to at most two-dimensional
regions of R3 × R+

0
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• for all 〈a, b, c, t〉 ∈ R3×R+
0 , for all 〈x, y〉 ∈ Sensvis, s.t. et(x) = t,

〈a, b, c〉 ∈ lv(〈x, y〉) where ca(〈a, b, c, t〉) is defined:
for every 〈a′, b′, c′〉 ∈ lv(〈x, y〉), s.t. |〈a′, b′, c′〉 − pv(et(x))| <
|〈a, b, c〉 − pv(et(x))|: ca2 is undefined

• for all 〈a, b, c, t〉 ∈ R3 × R+
0 :

if ca2(〈a, b, c, t〉) is defined, then there is an i ∈ I, s.t.: wlfi(t) =
〈a, b, c〉 and there is an 〈a′, b′, c′, t′〉 ∈ R3 × R+

0 with wlfi(t′) =
〈a′, b′, c′〉 and ca(〈a′, b′, c′, t′〉) is defined.
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