Adaptive conditions for being informed

_ Patrick Allo _

- CONTEXT - An 'information first' approach to epistemology

- Explaining knowledge in terms of information
- Adopting the non-doxastic relation of 'being informed' as a starting point
- Either providing a definition of knowing as the conjunction of being informed and something else, or presenting being informed as a generalisation of knowing.

- ISSUES -

Information as a state and as a commodity

- Viability of a reductive analysis of strongly semantic information (information as truthful, meaningful well-formed data)
 - Insufficiency of holding strongly semantic information as a condition for being informed
 - Modelling being informed as a prime state
- Tension between reductive analysis of information as a commodity, and primeness of the condition of being informed

Properties

At all states

$$\langle \mathsf{P} \rangle \varphi \Longrightarrow [\mathsf{P}] \varphi \vee (\langle \mathsf{P} \rangle \varphi \wedge \langle \mathsf{P} \rangle \neg \varphi)$$

$$[\mathsf{P}]\varphi \Leftrightarrow [\mathsf{A}^{\mathsf{ar}}]\varphi$$

$$[\mathsf{A}^{\mathsf{ar}}] \varphi \not \Longrightarrow [\mathsf{A}^{\mathsf{ar}}] [\mathsf{A}^{\mathsf{ar}}] \varphi$$

$$\{\varphi: i \Vdash \langle \mathsf{P} \rangle \varphi\} = \lambda(i)$$

$$\{\varphi:i\Vdash [\mathsf{A}^{\mathsf{ar}}]\varphi\}\subseteq \lambda(i)$$

At consistent states

$$\langle \mathsf{P} \rangle \varphi \Leftrightarrow [\mathsf{P}] \varphi \Leftrightarrow [\mathsf{A}^{\mathsf{cr}}] \varphi$$

$$\{\varphi:i\Vdash [\mathsf{A}^{\mathsf{cr}}]\varphi\}=\lambda(i)$$

At veridical states

$$\langle \mathsf{P} \rangle \varphi \Leftrightarrow [\mathsf{P}] \varphi \Leftrightarrow [\mathsf{A}^{\mathsf{vr}}] \varphi$$

$$\{\varphi:i\Vdash [\mathsf{A}^{\mathsf{vr}}]\varphi\}=\lambda(i)$$

What is explained?

Holding a piece of information for ϕ , but failing to be informed that ϕ

while holding reliable information for φ $\exists i, j \in S \text{ such that } i \Vdash [A^{\mathsf{ar}}]\varphi, \text{ and } i \not\Vdash [A^{\mathsf{vr}}]\varphi$ but $j \Vdash [A^{\mathsf{ar}}]\varphi, \text{ and } j \Vdash [A^{\mathsf{vr}}]\varphi$ but not holding reliable data for φ $\exists i, j \in S \text{ such that } i \not\Vdash [\mathsf{A}^{\mathsf{ar}}]\varphi, \text{ and } i \not\Vdash [\mathsf{A}^{\mathsf{vr}}]\varphi$ but $j \Vdash [\mathsf{A}^{\mathsf{ar}}]\varphi, \text{ and } j \Vdash [\mathsf{A}^{\mathsf{vr}}]\varphi$

Being informed that φ is sufficient for robustly holding persistently reliable data for φ $\forall i \in \mathsf{INF} - \mathsf{STAT}$ if $i \Vdash [\mathsf{A}^{\mathsf{ar}}]\varphi$ then for all j such that $i \leq_v j$ it holds that $j \Vdash [\mathsf{A}^{\mathsf{ar}}]\varphi$

Holding reliable data for φ is a strong necessary, but purely internal condition for being informed $i \Vdash [A^{ar}]\varphi$ as well as $i \Vdash [A^{cr}]\varphi$ can be derived from $\{\psi : i \Vdash \psi\}$ while $i \Vdash [A^{vr}]\varphi$ cannot

Benefits

- Translates insights drawn from information-structures into a modal language and thereby generalises the S4 embedding of intuitionistic logic to structures with inconsistent points
- Formalises the defeasible inference from holding consistent data to expecting that data not to be contradicted at future states
 - Formalises strong internal necessary conditions for being informed without a reference to doxastic states