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Abstract

In almost all current approaches to decision making,
it is assumed that a decision problem is described by
a set of states and set of outcomes, and the decision
maker (DM) has preferences over a rather rich set
of acts, which are functions from states to outcomes.
However, most interesting decision problems do not
come with a state space and an outcome space. In-
deed, in complex problems it is often far from clear
what the state and outcome spaces would be. We
present an alternate foundation for decision making,
in which the primitive objects of choice are syntac-
tic programs. A program can be given semantics as a
function from states to outcomes, but does not neces-
sarily have to be described this way. A representation
theorem is proved in the spirit of standard representa-
tion theorems, showing that if the DM’s preference re-
lation on programs satisfies appropriate axioms, then
there exist a setS of states, a setO of outcomes, a
way of viewing program as functions fromS to O, a
probability onS, and a utility function onO, such that
the DM prefers programa to programb if and only if
the expected utility ofa is higher than that ofb. Thus,
the state space and outcome space are subjective, just
like the probability and utility; they are not part of the
description of the problem. A number of benefits of
this approach are discussed.

1 Introduction
In almost all current approaches to decision making
under uncertainty, it is assumed that a decision prob-
lem is described by a set of states and set of outcomes,
and the decision maker (DM) has a preference rela-
tion on a rather rich set ofacts, which are functions
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from states to outcomes. The standard representa-
tion theorems of decision theory give conditions un-
der which the preference relation can be represented
by a utility function on outcomes and numerical rep-
resentation of beliefs on states. For example, Savage
1954 shows that if a DM’s preference order satisfies
certain axioms, then the DM’s preference relation can
be represented by a probabilityPr on the state space
and a utility function mapping outcomes to the reals
such that she prefers acta to act b iff the expected
utility of a (with respect toPr) is greater than that of
b. Moreover, the probability measure is unique and
the utility function is unique up to affine transforma-
tions. Similar representations of preference can be
given with respect to other representations of uncer-
tainty (see, for example, (Gilboa & Schmeidler 1989;
Schmeidler 1989)).

Most interesting decision problems do not come
with a state space and acts specified as functions on
these states. Instead they are typically problems of
the sort “Should I buy 100 shares of IBM or leave
the money in the bank?” or “Should I attack Iraq or
continue to negotiate?”. To apply standard decision
theory, the DM must first formulate the problem in
terms of states and outcomes. But in complex de-
cision problems, the state space and outcome space
are often difficult to formulate. For example, what is
the state space and outcome space in trying to decide
whether to attack Iraq? And even if a DM could for-
mulate the problem in terms of states and outcome,
there is no reason to believe that someone else trying
to model the problem would do it in the same way.
For example, reasonable people might disagree about
what facts of the world are relevant to the pricing of
IBM stock. As is well known (Kahneman, Slovic,
& Tversky 1982), preferences can be quite sensitive
to the exact formulation. To make matters worse, a
modeler may have access to information not available
to the DM, and therefore incorrectly construe the de-
cision problem from the DM’s point of view.
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Case-based decision theory(CBDT) (Gilboa &
Schmeidler 2001) deals with this problem by dispens-
ing with the state space altogether and considering
insteadcases, which are triples of the form(p, a, r),
wherep is a problem,a is an action andr is a result.
Actions in the CBDT framework are the analogue of
acts, but rather than being functions from states to
outcomes, actions are primitive objects in CBDT, and
are typically described in English.

We take a different view of acts here. The inspira-
tion for our approach is the observation that objects
of choice in an uncertain world have some structure
to them. Individuals choose among some simple ac-
tions: “dox” or “do y”. But they also perform var-
ious tests on the world and make choices contingent
upon the outcome of these tests: “If the stock broker
sayst, dox; otherwise doy.” We formalize this view
by taking the objects of choice to be (syntactic) pro-
grams in a programming language. We then show that
if the DM’s preference relation on programs satisfies
appropriate axioms, we, the modelers, can impute
a state space, an outcome space, and an interpreta-
tion of programs as functions from states to outcomes
such that the (induced) preferences on these functions
have a subjective expected utility (SEU) representa-
tion, similar in spirit to that of Savage. Just as prob-
ability and utility are derived notions in the standard
approach, and are tools that we can use to analyze
and predict decisions, so too are the state space and
outcome space in our framework.

This formulation of decision problems has several
advantages over more traditional formulations. First,
we can theorize (if we want) about only the actual
observable choices available to the DM, without hav-
ing states and outcomes, and without needing to view
acts as functions from states to outcomes. Indeed,
in the full paper, we show that we can test whether
a DM’s behavior is consistent with SEU despite not
having states and outcomes. The second advantage
is more subtle but potentially quite profound. Rep-
resentation theorems are just that; they merely pro-
vide an alternative description of a preference order
in terms of numerical scales. Decision theorists make
no pretense that these representations have anything
to do with the cognitive processes by which individu-
als make choices. But to the extent that the program-
ming language models the language of the DM, we
have the ability to interpret the effects of cognitive
limitations having to do with the language in terms of
the representation. For instance, there may be limita-
tions on the space of acts because some sequence of
tests is too computationally costly to verify. We can
also take into account a DM’s inability to recognize
that two programs represent the same function. Fi-
nally, the approach lets us take into account the fact

that different DMs use different languages to describe
the same phenomena.

To understand where the state space and outcome
space are coming from, first note that in our frame-
work we need to ask two basic questions: (1) what is
the programming language and (2) what is the seman-
tics of a program; that is, what does a programmean.
In this paper, to introduce the basic framework, we fo-
cus on a rather simple programming language, where
the only construct isif . . .then . . .else. That is, ifa
andb are programs andt is a test, thenif t then a else
b is also a program. For example, we could have a
program such asif the moon is in the seventh house
then buy 100 shares of IBMelsesell 100 shares of
Microsoft. Notice that once we considerif . . .then
. . .elseprograms, we also need to define a language
of tests. For some of our results we also allow a ran-
domization construct: ifa1 anda2 are programs, then
so isra1+(1−r)a2. Intuitively, according to this pro-
gram, the DM tosses a coin which lands heads with
probabilityr. If it lands heads, the DM performsa1;
if it lands tails, the DM performsa2. While people
do not typically seem to use randomization, adding it
allows us to connect our results to work in the more
standard setting with states and outcomes that uses
randomization, such as that of Anscombe and Au-
mann 1963.

There are many different ways to give semantics to
programs. Here we consider what is calledinput-
output semantics: a program is interpreted as aSav-
age act, i.e., a function from states to outcomes. That
is, given a state spaceS and a outcome spaceO, there
is a functionρSO that associates with a programa
a functionρSO(a) from S to O. We prove Savage-
like representation theorems in this setting. We show
that if the DM’s preference order on programs satis-
fies certain axioms, then there is a state spaceS, an
outcome spaceO, a probability distribution onS, a
utility function on O, and a functionρSO mapping
programsa to functionsρ(a) from S to O such that
the DM prefers acta to actb iff the expected utility of
ρSO(a) is at least as high as that ofρSO(b). Again,
we stress that the state spaceS and the outcome space
O are subjective, just like the probability and utility;
ρSO depends onS andO. If in our representation
we choose a different state spaceS′ and/or outcome
spaceO′, there is a correspondingly different func-
tion ρS′O′ .

Besides proving that a DM’s preferences can
be represented by a probability and utility, Savage
proves that the probability is unique and the utility
is unique up to affine transformations. We cannot
hope to prove such a strong uniqueness result, since
for us the state space and outcome space are subjec-
tive and certainly not unique. We can show that, for
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the language with randomization, if acts are totally
ordered (an assumption that Savage makes but we do
not make in general), the expected utility of acts is
unique up to affine transformations. However, with-
out randomization, as we show by example, we can-
not hope to get a uniqueness result. The set of acts
we consider is finite, and is simply not rich enough to
determine the expected utility, even up to affine trans-
formations. To get uniqueness in the spirit of Savage,
we seem to require not only randomization but a fixed
outcome space.

The rest of this paper is organized as follows.
In Section 2, we give the syntax and semantics of
the simple programming languages we consider here,
and define the notion of program equivalence. In
Section 3, we state our representation theorems and
discuss the (very few) postulates we needed to prove
them. The key postulate turns out to be an analogue
of the cancellationaxiom (Krantzet al. 1971). We
conclude in Section 4. Most proofs are left to the
full paper.

2 The Programming Language

Before we describe programs, it is helpful to de-
fine the language oftests. For simplicity, we con-
sider a simple propositional logic of tests. We start
with some setT0 of primitive tests. We can think
of these primitive propositions as representing state-
ments such as “the price/earnings ratio of IBM is 5”,
“the moon is in the seventh house” or “the economy
will be strong next year”. We then close off under
conjunction and negation. Thus, ift1 andt2 are tests,
then so aret1 ∧ t2 and¬t1. Let T be the set of
tests that can be formed from the primitive tests in
T0 in this way. The language of tests is thus just ba-
sic propositional logic. Tests can be viewed as state-
ments that the DM considers relevant to her decision
problem. They are a part of her specification of the
problem, just as states are part of the specification in
the Savage and Anscombe-Aumann frameworks.

We can now describe two programming languages.
In both cases we start with a setA0 of primitive pro-
grams. We can think of the programs inA0 as rep-
resenting such primitive actions as “buy 100 shares
of IBM” or “attack Iraq”. (Of course, it is up to
the DM to decide what counts as primitive, both for
tests and programs. It may well be that “attack Iraq”
is rather complex, formed from much simpler ac-
tions.) For the first language, we simply close off
the primitive programs inA0 underif . . .then . . .else.
Thus, if a1 anda2 are programs andt is a test, then
if t then a1 elsea2 is a program. LetAA0,T0 consist
of all programs that can be formed in this way. (We
omit the subscriptsA0 andT0 if they are either clear

from context or not relevant to the discussion.) Note
thatA allows nesting, so that we can have a program
such asif t1 then a1 else(if t2 then a2 elsea3).

For the second language, we close off the primi-
tive programs inA0 under bothif . . .then . . .elseand
randomization, so that ifa1 anda2 are programs and
r ∈ [0, 1], thenra1 + (1− r)a2 is a program. We al-
low arbitrary nesting of randomization andif . . .then
. . .else. LetA+

A0,T0
consist of all programs that can

be formed in this way. Again, we omit subscripts
when doing so does not result in loss of clarity.

We next give semantics to these languages. That
is, given a state spaceS and an outcome spaceO, we
associate with each program a function fromS to O.
The first step is to give semantics to the tests. Let
π0

S be atest interpretation, that is, a function asso-
ciating with each primitive test a subset ofS. In-
tuitively, π0

S(t) is the set of states wheret is true.
We then extendπ0

S in the obvious way to a function
πS : T → 2S by induction on structure:

• πS(t1 ∧ t2) = πS(t1) ∩ πS(t2)
• πS(¬t) = S − πS(t).

A program interpretationassigns to each program
a a (Savage) act, that is, a functionfa : S → O.
Let ρ0

SO : A0 → OS be a program interpretation for
primitive programs, which assigns to eachao ∈ A a
function fromS → O. We extendρ0

SO to a function
mapping all programs inA to functions fromS to O
by induction on structure, by defining

ρSO(if t then a1 elsea2)(s) =
{

ρSO(a1)(s) if s ∈ πS(t)
ρSO(a2)(s) if s /∈ πS(t).

(1)
To give semantics to the languageA+, given S,

O, andπS , we want to associate with each acta a
function fromS to probability measures onO. Let
∆(O) denote the set of probability measures onO.
Now, given a functionρ0

SO : A0 → ∆(O)S , we can
extend it by induction on structure to all ofA+ in the
obvious way.1 For if . . .then . . .elseprograms we use
(1); to deal with randomization, define

ρSO(ra1+(1−r)a2))(s) = rρSO(a1)(s)+(1−r)ρSO(a2)(s).

That is, the distributionρSO(ra1 + (1− r)a2))(s) is
the obvious convex combination of the distributions
ρSO(a1)(s) andρSO(a2)(s).

Note that tests and programs are amenable to two
different interpretations. First, programs may not

1We could, as before, takeρ0
SO to be a function fromA

to OS , rather than fromA to ∆(O)S . This would not affect
our results. However, if we view general programs as func-
tions fromS to distributions overO, it seems reasonable to
view primitive programs in this way as well.
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necessarily be implementable (just as acts may not be
implementable in the standard Savage setting). The
DM may not be able to run a primitive program and
may not be able to tell whether a test in a program
is actually true in a given setting. However, as long
as the DM in some sense “understands” the tests and
programs, she might be able to determine her pref-
erences among them. A second interpretation is that
the DM has preferences only on implementable pro-
grams, that is, ones where all primitive programs can
be run and the DM can determine the truth of all tests
involved. Our results hold with either interpretation.

3 The Representation Theorems
We assume that the decision maker actually has two
preference orders,� and�, on choices. Intuitively,
a � b means thata is at least as good asb from the
DM’s point of view; a � b means thata is strictly
better thanb. If � is a total order, then� is definable
in terms of�: a � b iff a � b andb 6� a. However, in
the case of partial orders (which we allow here),� is
not necessarily definable in terms of�. Indeed while
it could be the case thata � b and b 6� a implies
a � b, it could also happen that the DM could say,
“a is surely at least as good asb to me, but I cannot
distinguish whether it is better thanb, or merely as
good.” In this case,a � b, b 6� a, anda 6� b. As
usual, we writea ∼ b if a � b andb � a.

We prove various representation theorems, de-
pending on whether there is randomization in the lan-
guage, and whether the set of outcomes is taken to
be fixed. One assumption we will need in every lan-
guage is the irreflexivity of�.

A1. a 6� a for all a.

For some of our results, we also assume that the
preference relation is complete. In our setting, this is
expressed as follows.

A2. For alla andb, eithera � b or b � a.

A2 says that all alternatives are ranked, and if the DM
is not indifferent between two alternatives, then one
must be strictly preferred to the other.

The engine of our analysis is thecancellationpos-
tulate. Although simple versions of it have appeared
in the literature (e.g. (Krantzet al. 1971)) it is
nonetheless not well known, and so before turning to
our framework we briefly explore some of its impli-
cations in more familiar settings.

3.1 The Cancellation Postulate for Choices,
Savage Acts, and AA Acts

In describing the cancellation postulate, we use the
notion of amultiset. A multiset is just a set with

repetitions allowed. Thus,{{a}}, {{a, a}}, and
{{a, a, a}} are distinct multisets. (Note that we use
the {{·}} to denote multisets.) Two multisets are
equal if they have the same elements with the same
number of occurrences. Thus{{a, a, b, b, b}} =
{{b, a, b, a, b}}, but {{a, b, a}} 6= {{a, b, }}. Let C
be a set of choices (not necessarily programs) among
which the DM has to choose, and let(�,�) be a pair
of preference relations onC.

Cancellation on C: If 〈a1, . . . , an〉 and
〈b1, . . . , bn〉 are sequences of elements ofC
such that{{a1, . . . an}} = {{b1, . . . , bn}}, then
1. If ai � bi or ai � bi for i ≤ n − 1, then

bn � an; and
2. if, in addition,ak � bk for somek ≤ n − 1,

thenbn � an.

Roughly speaking, cancellation says that if two col-
lections of choices are identical, then it is impossible
to prefer each choice in the first collection to the cor-
responding choice in the second collection. In this
setting, cancellation is essentially equivalent to re-
flexivity and transitivity.

Proposition 3.1. A pair (�,�) of preference rela-
tions on a choice setC satisfies cancellation iff

(a) � is reflexive,
(b) � ⊂ � , and
(c) (�,�) is transitive; that is, ifa � b and b � c,

thena � c, and if eithera � b or b � c, then
a � c.

Proof: First suppose that cancellation holds. To see
that � is reflexive, takeA = B = {{a}}. The
hypothesis of the cancellatiom axiom holds, so we
must havea � a. To see that� is a subset of�,
suppose thata � b. Take a1 = b2 = a, a2 =
b1 = b,A = {{a1, a2}}, andB = {{b1, b2}}. Since
a � b, by cancellation, we must haveb � a. Thus,
� ⊆ �. Finally, to see that cancellation implies
transitivity, consider the pair of multisets{{a, b, c}}
and{{b, c, a}}. If a � b andb � c, then cancellation
impliesa � c, and if one of the first two relations is
strict, thena � c. We defer the proof of the converse
to the full paper.

In the Savage framework we strengthen the cancel-
lation postulate:

Cancellation for Savage acts:If 〈a1, . . . , an〉
and 〈b1, . . . , bn〉 are two sequences of Savage
acts defined on a state spaceS such that for
each states ∈ S, {{a1(s), . . . , an(s)}} =
{{b1(s), . . . , bn(s)}}, then
1. if ai � bi or ai � bi for i ≤ n − 1, then

bn � an; and
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2. if, in addition, ai � bi for somei ≤ n − 1,
thenbn � an.

Cancellation for Savage acts is a powerful assump-
tion because equality of the multisets is required only
“pointwise”. Were we to require the equality of mul-
tisets for sequences of functions, then the characteri-
zation of Proposition 3.1 would apply. But we require
only that for each states, the multisets of outcomes
generated by the two sequence of acts are equal; there
need be no function in the second sequence equal to
any function in the first sequence. Nevertheless, the
conclusion still seems reasonable, because the two
collections of acts deliver the same bundle of out-
comes in each state.

In addition to the conditions in Proposition 3.1,
Savage cancellation directly impliesevent indepen-
dence, a condition at the heart of all representation
theorems (and can be used to derive the Sure Thing
Principle). If T ⊆ S, let aT b be the Savage act that
agrees witha on T and with b on S − T ; that is
aT b(s) = a(s) if s ∈ T andaT b(s) = b(s) if s /∈ T .
We say that(�,�) satisfies event independenceif for
all actsa, b, c, andc′ and subsetsT of the state space
S, if aT c � bT c, thenaT c′ � bT c′, and similarly
with � replaced by�.

Proposition 3.2. If (�,�) satisfies the cancellation
postulate for Savage acts then(�,�) satisfies event
independence.

Proof: Take 〈a1, a2〉 = 〈aT c, bT c′〉 and take
〈b1, b2〉 = 〈bT c, aT c′〉. Note that for each state
s ∈ T , {{aT c(s), bT c′(s)}} = {{a(s), b(s)}} =
{{bT c(s), aT c′(s)}}, and for each states /∈
T , {{aT c(s), bT c′(s)}} = {{c(s), c′(s)}} =
{{bT c(s), aT c′(s)}}. Thus, again we can apply can-
cellation.

Proposition 3.1 provides an axiomatic characteri-
zation of cancellation for choices. Is there a similar
characterization for cancellation for Savage acts? For
example, is cancellation equivalent to the combina-
tion of irreflexivity of �, the fact that� is a subset
of �, the transitivity of� and�, and event indepen-
dence? As the following example shows, it is not.

Example 3.3. Suppose thatS = {s1, s2}, O =
{o1, o2, o3}. Let (o, o′) be an abbreviation for the
Savage acta such thata(s1) = o anda(s2) = o′.
Clearly there are nine possible acts. Suppose that�
is the transitive closure of the following string of pref-
erences:

(o1, o1) � (o1, o2) � (o2, o1) � (o2, o2) � (o3, o1)
� (o1, o3) � (o2, o3) � (o3, o2) � (o3, o3);

let� be the reflexive closure of�. By construction,
� is irreflexive,� is a subset of�, � and� are

transitive. To see that(�,�) satisfies event indepen-
dence, note that

• (x, o1) � (x, o2) � (x, o3) for x ∈ {o1, o2, o3};
• (o1, y) � (o2, y) � (o3, y) for y ∈ {o1, o2, o3}.

However, cancellation for Savage acts does not hold,
since(o1, o2) � (o2, o1), (o2, o3) � (o3, o2), and
(o3, o1) � (o1, o3).

We do not know if cancellation for Savage acts has
a simple characterization. However, once we allow
randomization, we can get an elegant characteriza-
tion of cancellation. As usual, define anAA act(for
Anscombe-Aumann) to be a function from states to
lotteries over outcomes. We can define an analogue
of cancellation for AA acts. Note that since an AA act
is a function from states to lotteries over outcomes,
if a andb are acts,a + b is a well-defined function
on states:(a + b)(s)(o) = a(s)(o) + b(s)(o). While
(a+b)(s) is not a lottery on outcomes (since its range
is [0, 2], not [0, 1]), it can be viewed as an “unnormal-
ized lottery”.

Cancellation for AA acts: If 〈a1, . . . , an〉 and
〈b1, . . . , bn〉 are two sequences of AA acts such
that

∑n
i=1 ai =

∑n
i=1 bi, then

1. if ai � bi or ai � bi for i ≤ n − 1, then
bn � an; and

2. if, in addition, ai � bi for somei ≤ n − 1,
thenbn � an.

Note that cancellation for AA acts can be viewed
as a generalization of cancellation for Savage acts.
In the case of Savage acts, the probabilities are
just point masses, so the fact that(

∑n
i=1 ai)(s) =

(
∑n

i=1 bi)(s) for all statess says that the multisets of
outcomes must be equal for all statess.

For AA acts, there is a standard probabilistic in-
dependence axiom. We say that the preference or-
ders(�,�) satisfyAA act independenceif for all AA
actsa, b, andc, and allr ∈ (0, 1], we havea � b
iff ra + (1 − r)c � rb + (1 − r)c anda � b iff
ra + (1 − r)c � rb + (1 − r)c. We say that(�,�)
satisfiesrational AA act independenceif they satisfy
AA act independence for all rationalr ∈ (0, 1].
Proposition 3.4. If (�,�) satisfiesA2 and cancella-
tion for AA acts, then(�,�) satisfies rational AA act
independence.

Proof: Suppose thata � b and r = m/n. Let
a1 = · · · = am = a andam+1 = · · · = am+n =
rb + (1 − r)c; let b1 = · · · = bm = b andbm+1 =
· · · = bm+n = ra + (1 − r)c. It is easy to check
that

∑m+n
i=1 ai =

∑m+n
i=1 bi. If rb + (1 − r)c �

ra + (1 − r)c, then we get a contradiction to can-
cellation for AA actions. Thus, byA2, we must have
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ra + (1− r)c � rb + (1− r)c. The same collection
of programs can be used for the converse implication
as well as for the result with�.

We can now characterize cancellation for AA acts
for total orders.

Theorem 3.5. If (�,�) is a pair of preference rela-
tions satisfyingA2, then(�,�) satisfies cancellation
for AA acts iff� is irreflexive,�⊆�, (�,�) is tran-
sitive, and(�,�) satisfies rational AA act indepen-
dence.

Proof: The fact that extended cancellation implies
that (�,�) has the required properties follows from
Propositions 3.1, and 3.4. For the converse, suppose
that 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are sequences of
AA acts such thata1 + · · ·+ an = b1 + · · ·+ bn and
ai � bi for i = 1, . . . , n−1. By way of contradiction,
suppose thatan � bn. Let c = 1

n−1 (a2 + · · ·+ an)).
Sincea1 � b1, by rational AA act independence, we
get that

1
n (a1 + · · ·+ an)

= 1
na1 + n−1

n c � 1
nb1 + n−1

n c
= 1

n (b1 + a2 + · · ·+ an).

By induction (using transitivity) and the fact that
an � bn, it follows that 1

n (a1 + · · ·+ an) � 1
n (b1 +

· · ·+ bn−1 + bn). But this contradicts the assumption
thata1 + · · · + an = b1 + · · · + bn. Since it is not
the case thatan � bn, by A2, we must havebn � an,
as desired. Ifai � bi for somei ∈ {1, . . . , n− k}, a
similar argument shows thatbn � an.

It seems thatA2 plays a critical role in the proof of
Proposition 3.4 and hence Theorem 3.5. It turns out
that by strengthening cancellation appropriately, we
can avoid this use ofA2. We first state the strength-
ened cancellation postulate for Savage acts, since we
shall need it later, and then for AA acts.

Extended cancellation for Savage acts: If
〈a1, . . . , an〉 and〈b1, . . . , bn〉 are two sequences
of Savage acts defined on a state spaceS
such that for each states ∈ S we have
{{a1(s), . . . , an(s)}} = {{b1(s), . . . , bn(s)}},
then
1. if there exists somek < n such thatai � bi

or ai � bi for i ≤ k, ak+1 = . . . = an, and
bk+1 = . . . = bn, thenbn � an; and

2. if, in addition,ai � bi for somei ≤ k, then
bn � an.

Clearly, cancellation for Savage acts is just the special
case of extended cancellation wherek = n − 1. The
intuition behind the extended cancellation postulate

is identical to that for the basic cancellation postu-
late; moreover, it is easy to see that the existence of
an SEU representation for� implies extended can-
cellation.

There is an obvious analogue of extended cancel-
lation for AA acts:

Extended cancellation for AA acts: If
〈a1, . . . , an〉 and〈b1, . . . , bn〉 are two sequences
of AA acts such that

∑n
i=1 ai =

∑n
i=1 bi, then

1. if there exists somek < n such thatai � bi

or ai � bi for i ≤ k, ak+1 = . . . = an, and
bk+1 = . . . = bn, thenbn � an; and

2. if, in addition,ai � bi for somei ≤ k, then
bn � an.

Extended cancellation is just what we need to re-
move the need forA2 in Proposition 3.4.

Proposition 3.6. If (�,�) satisfies extended cancel-
lation for AA acts, then(�,�) satisfies rational AA
act independence.

Proof: The proof is identical to that of Proposi-
tion 3.4, except that we can show thatra+(1−r)c �
rb + (1 − r)c immediately using extended cancella-
tion, without invokingA2. We leave details to the
reader.

We can now get the desired characterization of can-
cellation for AA acts.

Theorem 3.7. (�,�) satisfies extended cancellation
for AA acts iff� is irreflexive,�⊆�, (�,�) is tran-
sitive, and(�,�) satisfies rational AA act indepen-
dence.

Proof: The “if” direction is immediate from Proposi-
tions 3.1, and 3.6. For the converse, we proceed much
as in the proof of Theorem 3.5. We leave details to the
full paper.

3.2 The Cancellation Postulate for
Programs

We use cancellation to get a representation theorem
for preference orders on programs. However, the de-
finition of the cancellation postulates for Savage acts
and AA acts make heavy use of states. We now show
how we can get an analogue of this postulate for pro-
grams.

Definition 3.8. Given a setT0 = {t1, . . . , tn} of
primitive tests, anatom overT0 is a hypothesis of the
form t′1 ∧ . . . ∧ t′n, wheret′i is eitherti or¬ti.

An atomδ can be identified with the truth assign-
mentvδ to the primitive tests such thatvδ(ti) = true
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iff ti appears unnegated inδ. If there aren primi-
tive tests inT0, there are2n atoms. LetAt(T0) de-
note the set of atoms overT0. It is easy to see that,
for all testst ∈ T and atomsδ ∈ At(T0), either
πS(δ) ⊆ πS(t) for all state spacesS and interpre-
tationsπS or πS(δ) ∩ πS(t) = ∅ for all state spaces
S and interpretationsπS . (The formal proof is by in-
duction on the structure oft.) We writeδ ⇒ t if the
former is the case.

A program inA can be identified with a func-
tion from atoms to primitive programs in an obvi-
ous way. For example, ifa1, a2, anda3 are primi-
tive programs andT0 = {t1, t2}, then the program
a = if t1 then a1 else(if t2 then a2 elsea3) can be
identified with the functionfa such that

• fa(t1 ∧ t2) = fa(t1 ∧ ¬t2) = a1;
• fa(¬t1 ∧ t2) = a2; and
• fa(¬t1 ∧ ¬t2) = a3.

Formally, we definefa by induction on the structure
of programs. Ifa ∈ A0, thenfa is the constant func-
tion a, and

fif t then a elseb(δ) =
{

fa(δ) if δ ⇒ t

fb(δ) otherwise.

The cancellation postulate that we use for the lan-
guageA0 is simply extended cancellation for Savage
acts, with atoms playing the role of states:

A3. If 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are two se-
quences of programs inAA0,T0 , and for each
atom δ over T0, {{fa1(δ), . . . , fan

(δ)}} =
{{fb1(δ), . . . , fbn

(δ)}}, then

1. if there exists somek < n such thatai � bi

or ai � bi for i ≤ k, ak+1 = . . . = an, and
bk+1 = . . . = bn, thenbn � an; and

2. if, in addition, ai � bi for somei ≤ k, then
bn � an.

Of course, we can prove analogues of Proposi-
tions 3.1 and 3.2 usingA3. A3 has another conse-
quence when choices are programs: a DM must be
indifferent between equivalent programs, where pro-
gramsa andb areequivalentif, no matter what in-
terpretation is used, they are interpreted as the same
function. For example,if t then a elseb is equivalent
to if ¬t then b elsea; no matter what the testt and
programsa andb are, these two programs have the
same input-output semantics. Similarly, ift andt′ are
equivalent tests, thenif t then a elseb is equivalent
to if t′ then a elseb.

Definition 3.9. Programsa andb areequivalent, de-
noteda ≡ b, if, for all S, O, πS , andρSO, we have
ρSO(a) = ρSO(b).

The general problem of checking whether two pro-
grams are equivalent is at least as hard as checking
whether two propositional formulas are equivalent,
and so is co-NP-hard. It is not hard to show that it is
in fact co-NP-complete. Nevertheless, it is a conse-
quence of cancellation that a DM must be indifferent
between two equivalent programs.

Proposition 3.10. Suppose that(�,�) satisfiesA3.
Thena ≡ b impliesa ∼ b.

Proof: It is easy to check that ifa ≡ b thenfa = fb.
Let S beAt(T0), the set of atoms, letO beA0, the
set of primitive programs, and defineρ0

SO(c) to be
the constant functionc for a primitive programc. It
is easy to see thatρSO(c) = fc for all programsc.
Since ifa ≡ b, thenρSO(a) = ρSO(b), we must have
fa = fb. Now applyA3 with a1 = a andb1 = b to
getb � a, and then reverse the roles ofa andb.

To get a representation theorem forA+, we use
the cancellation postulate for AA acts, again replac-
ing states by atoms. The idea now is that we can
identify each programa with a functionfa mapping
atoms into distributions over primitive programs. For
example, ift is the only test, then the programa =
1
2a1 + 1

2 (if t then a2 else a3) can be identified with
the functionfa such that

• fa(t)(a1) = 1/2; fa(t)(a2) = 1/2
• fa(¬t)(a1) = 1/2; fa(¬t)(a2) = 1/2.

Formally, we just extend the definition offa given in
the previous section by defining

fra1+(1−r)a2(t) = rfa1(t) + (1− r)fa2(t).

We then get the obvious analogue of extended cancel-
lation for AA acts:

A3′. If 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are two se-
quences of acts inA+

A0,T0
such thatfa1 + . . . +

fan = fb1 + . . . + fbn , then if ai � bi for
i = 1, . . . , k, wherek < n, andak+1 = . . . = an,
andbk+1 = . . . = bn, thenbn � an. Moreover, if
ai � bi for somei ∈ {1, . . . , n−k}, thenan � bn.

Again, A3′ can be viewed as a generalization of
A3.

Theorem 3.7 shows that we can replaceA3′ by A1
and postulates that say that (a)�⊆�, (b) (�,�) is
transitive, (c)(�,�) satisfies rational AA act inde-
pendence, and (d)a ≡ b impliesa ∼ b.

3.3 A Representation Theorem forA
We are now ready to state our first representation the-
orem. In the theorem, iff is a Savage act mapping
statesS to outcomesO andu is a utility function on
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O (so thatu : O → IR), thenuf : S → IR is the
function defined by takinguf (s) = u(f(s)). If Pr
is a probability measure onS, thenEPr(uf ) is the
expectation ofuf with respect toPr.
Theorem 3.11. If (�,�) are preference orders on
acts inAA0,T0 satisfyingA1 andA3, then there exist
a finite setS of states, a setP of probability measures
on S, a finite setO of outcomes, a setU of utility
functions onO, a setV ⊆ P×U , a test interpretation
π0

S , and a program interpretationρ0
SO such thata �

b iff EPr(uρSO(a)) ≤ EPr(uρSO(b)) for all (Pr, u) ∈
V and a � b iff for EPr(uρSO(a)) < EPr(uρSO(b))
for all (Pr, u) ∈ V. EitherP or U can be taken to be
a singleton. Moreover, ifA2 also holds, thenV can
be taken to be a singleton andS can be taken to be
At(T0).

Note that, in Theorem 3.11, there are no unique-
ness requirements onP or U . In part, this is because
the state space and outcome space are not unique. But
even ifA2 holds, so that the state space can be taken
to be the set of atoms, the probability and the utility
are far from unique, as the following example shows.

Example 3.12. TakeA0 = {a, b} and T0 = {t}.
Suppose that� is the reflexive transitive closure of
the following string of preferences:

a � if t then a elseb � if t then b elsea � b.

It is not hard to check that every program inA is
equivalent to one of these four, soA2 holds, and we
can take the state space to beS∗ = {t,¬t}. Let
O∗ = {o1, o2}, and defineρ0

S∗O∗ so thatρ0
S∗O∗(a) is

the constant functiono1 andρ0
S∗O∗(b) is the constant

functiono2. Now defineπ0
S∗ in the obvious way, so

thatπ0
S∗(t) = {t} andπ0

S∗(¬t) = {¬t}. We can rep-
resent the preference order by using any probability
measurePr∗ such thatPr∗(s1) > Pr∗(s2) and utility
functionu∗ such thatu∗(o1) > u∗(o2).

As Example 3.12 shows, the problem really is that
the set of actions is not rich enough to determine the
probability and utility. By way of contrast, Savage’s
postulates ensure that the state space is infinite and
that there are at least two outcomes. Since the acts
are all functions from states to outcomes, there must
be uncountably many acts in Savage’s framework.

The next example shows that if the order is partial
and we want the representation to involve just a single
utility function, then we cannot take the state space to
be the set of atoms.

Example 3.13. Suppose thatT0 = ∅, andA0 (and
henceA) consists of the two primitive programsa
and b, which are incomparable. In this case, the
smallest state space we can use has cardinality at least
2. For if |S| = 1, then there is only one possible

probability measure onS, so a and b cannot be in-
comparable. Since there is only one atom when there
are no primitive propositions, we cannot take the state
space to be the set of atoms. (There is nothing special
about takingT0 = ∅ here; similar examples can be
constructed for arbitrary choices ofT0.) It is also im-
mediate that there is no representation where the out-
comes space has only one element. There is a repre-
sentation where the state and outcome space have car-
dinality 2: letS = {s1, s2} andO = {o1, o2}; define
ρ0

SO so thatρ0
SO(a)(si) = oi andρ0

SO(b)(si) = oi⊕1,
for i = 1, 2 (where⊕ represents addition mod 2); let
P be any set of probability measures that includes
measuresPr1 andPr2 such thatPr1(s1) > Pr1(s2)
and Pr2(s2) > Pr2(s1); let U be any set of util-
ity functions that includes a utility function such that
u(o1) 6= u(o2). It is easy to see that this choice gives
us a representation of the preference order that makes
a andb incomparable. This suggests that there are
no interesting uniqueness requirements satisfied byP
andU .

We remark that it follows from the proof of The-
orem 3.11 that, even if the order is partial, there is
a representation involving a single probability mea-
sure (and possibly many utility functions) such that
the state space isAt(T0).

3.4 A Representation Theorem forA+

A3′ does not suffice to get a representation theorem
for the richer languageA+. As we have observed
A3′ gives us rational AA act independence. To get
a representation theorem, we need to have act inde-
pendence even for acts with real coefficients as well.
Moreover, we need a standard Archimedean property.
The following two postulates do the job.

A4. If r ∈ (0, 1], thena � b iff ra + (1 − r)c � rb +
(1−r)c anda � b iff ra+(1−r)c � rb+(1−r)c.

A5. If a � b � c then there existr, r′ ∈ [0, 1] such that
a � ra + (1− r)c � b � r′a + (1− r′)c � c.

We now get the following analogue of Theo-
rem 3.11. With randomization, ifA2 holds, we get
some degree of uniqueness. Although the state space,
outcome space, probability, and utility are not unique,
expected utilities are unique up to affine transforma-
tions. To make our discussion of uniqueness clearer,
say that(S, O,P, π0

S , ρ0
SO, u) is a representation of

(�,�) if it satisfies the conditions of Theorem 3.11.
Note that ifa is a program, thenρSO(a) is an AA act.
As usual, we takeEPr(uρSO(a)), the expected utility
of this AA act with respect toPr, to be∑

s∈S

∑
o∈O

Pr(s)u(o)(ρSO(a))(s)(o).
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Theorem 3.14. If (�,�) are preference orders on
acts inA+

A0,T0
satisfyingA1, A3′, A4, andA5, then

there exist a finite setS of states, a setP of proba-
bility measures onS, a finite setO of outcomes, a set
U of utility functions onO, a setV ⊆ P × U , a test
interpretationπ0

S , and a program interpretationρ0
SO

such that a � b iff EPr(uρSO(a)) ≥ EPr(uρSO(b))
for all (Pr, u) ∈ V and a � b iff EPr(uρSO(a)) >
EPr(uρSO(b)) for all (Pr, u) ∈ V. EitherP or U
can be taken to be a singleton. Moreover, ifA2 also
holds, thenV can be taken to be a singleton,S can be
taken to beAt(T0), and if(S, O, Pr, π0

S , ρ0
SO, u) and

(S′, O′,Pr′, π0
S′ , ρ0

S′O′ , u′) both represent(�,�),
then there exist constantsα and β such that
for all acts a ∈ A+

A0,T0
, EPr(uρSO(a)) =

αEPr′(u′ρS′O′ (a)) + β.

If A2 holds, then Theorem 3.14 says that the ex-
pected utility is unique up to affine transformation,
but makes no uniqueness claims for either the prob-
ability or the utility. This is not surprising, given
that, in general, the probability and utility will be over
quite different spaces. But even if two representations
use the same state and outcome spaces, not much can
be said, as the following example shows.

Example 3.15.Suppose thatA0 = {a, b}, T0 = {t},
and (�,�) is a pair of preference relations satisfy-
ing A1, A2, A3′, A4, andA5 such thata � b and
if t then a else b ∼ 1

2a + 1
2b. It is easy to see that

these constraints completely determine(�,�). Let
S = At(T0), O = {at, a¬t, bt, b¬t}, π0

S(t) = {t},
π0

S(¬t) = {¬t}, andρSO(c)(s) = cs for c ∈ {a, b}
and s ∈ {t,¬t}. There are many representations
of (�,�) with this state and outcome space: for
example, we could takePr1(t) = 1/2, u1(at) =
u1(a¬t) = 1, andu1(bt) = u1(b¬t) = 0; or we could
takePr2(t) = 3/4, u2(at) = 2/3, u2(a¬t) = 2, and
u2(bt) = −u2(b¬t) = 0. We leave it to the reader to
check that these choices both lead to representations
that give the same expected utility to acts.

As in the case of the languageA, we cannot in gen-
eral take the state space to be the set of atoms. Specif-
ically, if A0 consists of two primitive programs, and
we take all programs inA+

0 to be incomparable, then
the same argument as in Example 3.13 shows that we
cannot takeS to beAt(T0), and there are no interest-
ing uniqueness requirements that we can place on the
set of probability measures or the utility function.

3.5 Objective Outcomes

In many applications it seems reasonable to consider
the outcome space to be objective, rather than sub-
jective. For example, if we are considering decisions

involving trading in securities, we can take the out-
come space to be dollar amounts. Given a fixed, finite
setO of outcomes, we consider the set of acts that
result when, in addition to the primitive acts inA0,
we assume that there is a special actao for each out-
comeo ∈ O. Call the resulting languageAA0,T0,O or
A+
A0,T0,O, depending on whether we allow random-

ization. We then defineρSO so thatρSO(ao) is in-
terpreted as the constant functiono for each outcome
o.

With an objective outcome spaceO, we have not
been able to prove a representation theorem forA,
but we can get a representation theorem forA+ that
is quite close to that of Savage and Anscombe and
Aumann. We need a postulate that, roughly speaking,
ensures that all outcomeso are treated the same way
in all states. This postulate is the obvious analogue of
Savage’s state independence postulate. Given a test
t, we writea �t b if for some (and hence all, given
cancellation) actsc, we have

if t then a elsec � if t then b elsec.

We say thatt is null if, for all a, b, andc, we have

if t then a elsec ∼ if t then b elsec.

Define ageneralized outcome actto be a program
of the formrao1 + (1 − r)ao2 , whereo1 ando2 are
outcomes.

A6. If t is not null anda1 anda2 are generalized
outcomes, thena1 � a2 iff a1 �t a2 and similarly
with � replaced by�.

A7. There exist outcomeso0 ando1 such thatao1 �
ao0 .

Theorem 3.16. If (�,�) are preference orders on
acts in A+

A0,T0,O satisfyingA1, A3′, and A4-A7,
then there exist a setS of states, a setP of proba-
bility measures onS, a setU of utility functions on
O, a setV ⊆ P × U , a test interpretationπ0

S , and
a program interpretationρ0

SO such thata � b iff
for all (Pr, u) ∈ V, EPr(uρSO(a)) ≥ EPr(uρSO(b))
and a � b iff for all (Pr, u) ∈ V, EPr(uρSO(a)) >
EPr(uρSO(b)). If A2 holds, then we can takeV to be
a singleton, the probability is uniquely determined,
and the utility function is determined up to affine
transformations. That is, if(S, Pr, π0

S , ρ0
SO, u) and

(S′,Pr′, π0
S′ , ρ0

S′O, u′) are two representations of the
preference order, then, for all testst, Pr(πS(t)) =
Pr′(πS′(t)), and there existα andβ such thatu′ =
αu + β.

Note that in Theorem 3.16, even if acts are totally
ordered, we cannot take the state space to consist only
of atoms as the following example shows.
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Example 3.17.Suppose that there are two outcomes:
o1 ($1,000) ando0 ($0), and one primitive acta: buy-
ing 10 shares of IBM. Acta intuitively can return
somewhere between $0 and $1,000; thus,o1 � a �
o0. There are no tests. If there were a representation
with only one state, says, in states, a must return
either $1,000 or $0. Whichever it is, we cannot rep-
resent the preference order.

Our earlier representation theorems always in-
volved a single utility function. As the following
example shows, we can use neither a single utility
function nor a single probability measure here. More-
over, there cannot be a representation where the set of
probability-utility pairs has the formP × U .

Example 3.18. Suppose thatO = {o1, o0, o}, A0 =
∅, andT0 = {t}. Letu1 be a utility function such that
u1(o1) = 1, u1(o0) = 0, andu1(o) = 3/4; let u2 be
a utility function such thatu2(o1) = 1, u2(o0) = 0,
andu2(o) = 1/4; let Pr1 be a probability measure on
S = At(T0) such thatPr1(t) = 1/4, and letPr2 be
a probability measure onS such thatPr2(t) = 3/4.
Consider the preference order onA+

A0,T0,O generated
from V = {(Pr1, u1), (Pr2, u2)}, taking πS(t) =
{t}. It is easy to see that this preference order has
the following properties:

• ao1 � ao � ao0 ;

• ao and 1
2ao1 + 1

2ao0 are incomparable;

• (if t then ao1 else ao0) and 1
2ao1 + 1

2ao0 are in-
comparable; and

• (if t then ao1 else ao0) ∼ ao.

Consider a representation of this order. It is easy
to see that to ensure thatao is not comparable to
1
2ao1 + 1

2ao0 , the representation must have utility
functionsu1 andu2 such thatu1(o) > 1

2 (u1(o1) +
u1(o0)) andu2(o) > 1

2 (u2(o1) + u2(o0)). To en-
sure thatif t then ao1 else ao0 and 1

2ao1 + 1
2ao0

are incomparable, there must be two probability mea-
suresPr1 and Pr2 in the representation such that
Pr1(πS(t)) < 1/2 andPr2(πS(t)) > 1/2. Finally, to
ensure that(if t then ao else ao0) ∼ ao, we cannot
have both(Pr1, u1) and(Pr1, u2) in V.

4 Conclusions
Most critiques of Bayesian decision making have left
two assumptions unquestioned: that beliefs may be
represented with a single number, and that all possi-
ble states and outcomes are known beforehand. The
work presented here directly addresses these con-
cerns. We have shown that by viewing acts as pro-
grams rather than as functions from states to out-
comes, we can prove results much in the spirit of the

well-known representation theorems of Savage and
Anscombe and Aumann; the main difference is that
the state space and outcome space are now objec-
tive, rather than being given as part of the decision
problem. So what does all this buy us? To the ex-
tent that we can prove only such representation theo-
rems, the new framework does not buy us much (al-
though we still claim that thinking of acts as pro-
grams is typically more natural than thinking of them
as functions—rather than thinking about a state and
outcome space, a DM need just think of what he/she
can do). We have proved these results just to show
how our approach relates to the standard approaches.
We believe that the real benefit of our approach will
be realized when we move beyond the limited setting
we have considered in this paper. We list some possi-
bilities here:

• Once we move to game-theoretic settings with
more than one agent, we can allow different agents
to use different languages. For example, when
trying to decide whether to buy 100 shares of
IBM, one agent can consider quantitative issues
like price/earnings ratio, while another might con-
sult astrological tables. The agent who uses as-
trology might not understand price/earnings ratios
(the notion is simply not in his vocabulary) and,
similarly, the agent who uses quantitative meth-
ods might not understand what it means for the
moon to be in the seventh house. Nevertheless,
they can trade, as long as they both have available
primitive actions like “buy 100 shares of IBM” and
“sell 100 shares of IBM”. Agreeing to disagree re-
sults (Aumann 1976), which say that agents with
a common prior must have a common posterior
(they cannot agree to disagree) no longer hold.
Not only is there no common prior, once the state
space is subjective, the agents do not even have a
common state space on which to put a common
prior. Moreover, notions of unawareness (Fagin &
Halpern 1988; Heifetz, Meier, & Schipper 2003;
Halpern & R̂ego 2005; Modica & Rustichini 1999)
come to the fore. Agents need to reason about
the fact that other agents may be aware of tests
of which they are unaware. See (Feinberg 2004;
2005; Halpern & R̂ego 2006) for preliminary work
taking awareness into account in games.

• We focus here on static, one-shot decisions. Deal-
ing with decision-making over time becomes more
subtle. Learning becomes not just a matter of con-
ditioning, but also learning about new notions (i.e.,
expanding the language of tests). Note that we can
think of learning unanticipated events as a combi-
nation of learning about a new notion and then con-
ditioning. This framework lends itself naturally to
vocabulary expansion—it just amounts to expand-
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ing the possible set of programs.
• We have considered only a very simple program-

ming language with input-output semantics. In-
teresting new issues arise once we consider richer
programming languages. For example, suppose
that we allow concatenation of programs, so that
if a andb are programs, then so isa; b. Intuitively,
a; b means “doa, and then dob”. We can still use
input-output semantics for this richer programming
language, but it might also be of interest to consider
a different semantics, where we associate with a
program the sequence of states it goes through be-
fore reaching the outcome. This “path semantics”
makes finer distinctions than input-output seman-
tics; two programs that have the same input-output
behavior might follow quite different paths to get
to an outcome, starting at the same initial state.
The framework thus lets us explore how different
choices of semantics for programs affect an agent’s
preference order.

• As we have seen (Proposition 3.10), cancellation
forces a DM to be indifferent between two equiv-
alent programs. But since testing program equiva-
lence is co-NP-complete, it is unreasonable to ex-
pect that agents will necessarily be indifferent be-
tween two equivalent programs. It would be very
interesting to consider weakenings of the cancella-
tion axiom that do not force a DM to be indifferent
between equivalent programs. Such considerations
are impossible in the Savage setting, where acts are
functions.

Besides exploring these avenues of research, we
would like to understand better the connection be-
tween our work and the work onpredictive state rep-
resentations(Jaeger 2000; Littman, Sutton, & Singh
2001). A predictive state representation is a way of
representing dynamical systems that tries to move
away from a state space as part of the problem de-
scription but, rather, constructs the state space in
terms of tests and actions (which are taken to be prim-
itive). While the technical details and motivation are
quite different from our work, there are clearly simi-
larities in spirit. It would be interesting to see if these
similarities go deeper.
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