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Abstract

There is a long-standing puzzle concerning the connection of simplic-

ity to truth in scientific inference. It is proposed that simplicity does

not point at or indicate the truth but nonetheless keeps science on the

straightest or most direct route thereto. A theorem to that effect is

presented, along with a fairly general definition of empirical simplic-

ity, a discussion of examples, and prospects for a new understanding

of statistical model selection.

1. The Puzzle

When faced with a choice among alternative theories compatible with current

experience, scientists tend to side with the simplest one, where simplicity has

something to do with minimizing independent entities, principles, causes, or

equational coefficients. Philosophers of science, statististicians, and, more re-

cently, computer scientists, all recommend such an approach, called Ockham’s

razor, after the fourteenth century theologian and logician William of Ockham.

But the practice raises an awkward question—a question that cuts to the very

heart of scientific method and, therefore, of scientific education and outreach

more generally: insofar as science is about finding true theories rather than aes-

thetic, useful, or comforting fictions, how could Ockham’s razor help one find the

true theory? For if it is already known that the true theory is simple, science

does not require Ockham’s assistance. And if it is not known that the true theory

is simple, what entitles one to assume that it is?

There are many standard responses, but no satisfactory ones. It does not help

to say that simple theories are better “confirmed” (Carnap 1950, Glymour 1980),

more severely tested (Popper 1968), more explanatory (Harman 1965, Kitcher

1981), more unified (Friedman 1983), more symmetrical (Malament 1977), or
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more compact (Rissanen 1983), since if the truth is not simple, then it does not

possess these nice properties either (van Fraassen 1981).

Nor does it help to observe that a Bayesian agent whose prior probabilities are

biased toward simple possibilities will judge the simple possibilities to be more

probable—a Bayesian with the contrary bias would disagree and the question is

why the former bias is better at finding the truth than the latter. The Bayesian

argument remains circular even if complex and simple theories receive equal prior

probabilities (e.g., Rosenkrantz 1983 and Schwarz 1978), for theories with more

free parameters can be true in more “ways”, so each way the complex theory

might be true ends up carrying less prior probability than each of the ways the

simple theory might be true, and that prior bias toward simple possibilities is

merely passed through Bayes’ theorem.

Nor does it help, so far as finding the true theory is concerned, to say that us-

ing a simple theory for purposes of predictive estimation can reduce the expected

error of the resulting estimates, for that argument stands even if it is known in

advance that the simple theory is false (Akaike 1973, Forster and Sober 1994).

Furthermore, if one is interested in predicting the causal outcome of a policy

on the basis of non-experimental data, the prediction could end up far from the

mark because the counterfactual distribution after the policy is enacted may be

quite different from the distribution sampled (Zhang and Spirtes 2003). Also,

such arguments work only in statistical settings, but Ockham’s razor seems no

less compelling in deterministic ones.

Nor does it help to remark that a scientist who always favors the simplest

theory will converge, eventually, to the true one (Reichanbach 1949, Sklar 1974).

Scientists starting with other biases would do so as well (Salmon 1967).

Finally, appeals to Providence (Leibniz 1714), to Kant’s synthetic a priori

(Whewell 1840) or to unobserved evolutionary etiologies (Giere 1985, Duda et al.

2000, pp. 464-465) to argue that simplicity is correlated with truth regardless of

the topic of inquiry are less plausible than the particular applications of Ockham’s

razor that they are invoked to justify.

In sum, the standard literature on Ockham’s razor contains no plausible,

non-circular, explanation of how simplicity helps science to arrive at true theories.

Indeed, a recent philosophical monograph on simplicity pessimistically concludes:

...no single account of theory unification can be given. A philosophical

consequence of that claim is that unity should not be linked to truth

or increased likelihood of truth (Morrison 2000, p. 232).
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This skeptical challenge to the most powerful and characteristic principle of sci-

entific inference is not idle, as the preceding discussion of standard explanations

illustrates. It would be better, therefore, to have a clear, relevant, sound, non-

circular, and readily intelligible argument to the effect that Ockham’s razor is

the most efficient possible method for finding the true theory when the problem

involves theory choice. This note presents just such an explanation.1

2. The Most Direct Route to the Truth

Here is the basic idea. Nature presents new empirical effects to the scientist at

times of her own choosing. Assume that the correct answer to the scientist’s

question is uniquely determined by these effects (otherwise, even convergence to

the true answer in the limit is hopeless). Even given that assumption, which char-

acterizes many everyday applications of Ockham’s razor , there is no guarantee

that the true answer can be infallibly or even reliably inferred, for a crucial effect

might be so subtle or small or implausible as to elude detection until later. At

least one can say that the Ockham strategy of choosing only the unique answer

corresponding to the set of currently observed effects is guaranteed to converge

to the true answer in the limit (after the overly-simple theories are refuted by ef-

fects). But many alternative strategies also converge to the truth in this problem

(every finite variant of a convergent strategy is also convergent). So the simplic-

ity puzzle stands: in what sense does the Ockham strategy lead one to the truth

better than alternative strategies?

Not in the sense that Ockham’s razor is guaranteed to point at or indicate the

truth in the short run, for such a guarantee would imply that one already knows

that the truth is simple. Nor in the sense that Ockham’s razor is guaranteed

to converge to the truth in the limit, for alternative methods that differ sharply

from Ockham’s razor in the short run can claim the same. The new idea is that

these are not exhaustive alternatives, for it may be that Ockham’s razor somehow

converges to the truth along the straightest or most direct path, where directness

is, roughly speaking, a matter of not altering one’s opinion more often or later

than necessary. Since methods that approach the truth more directly have a

superior connection to the truth or are more conducive to finding the truth, it

1The approach is based on concepts from computational learning theory. For a survey of
related ideas, cf. (Jain et al., 1999) and (Kelly 1996). Earlier versions of the following argument
may be found in (Schulte 1999, Kelly 2002, 2004, 2006a, 2006b, and Kelly and Glymour 2004).
A version of the idea was also presented as a tutorial at the 2005 FEW conference at the
University of Texas, Austin. The current version of the theory responds to an interesting
objection to to S. Sarkar at the conference and is much more generally applicable.
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is a relevant and non-circular response to the simplicity puzzle to prove that

Ockham strategies approach the truth more directly than all competitors.

Consider the most aggressive Ockham strategy that always chooses the an-

swer corresponding to the effects observed so far. This strategy retracts exactly

when each new effect is presented. So, however the data for a given answer are

presented, the obvious strategy’s worst-case bound on retractions is the num-

ber of effects the answer corresponds to. Now consider an arbitrary, alternative,

convergent strategy M . Strategy M might retract less than the obvious Ockham

strategy on some presentations of the data for an answer (e.g., M might guess that

ten more effects are coming and may then be lucky enough to observe them all

in sequence, skipping all the intervening retractions the Ockham strategy would

perform). But in terms of worst-case bounds on retractions over all the ways

the data for a given answer could have been presented by nature, the Ockham

strategy does as well, for suppose that the answer T in question corresponds to

n effects. Nature can present no effects to M until M converges to the simplest

answer, for if M never converges to T , nature never presents an effect, so the

simplest theory is the correct answer and M fails to converge to it. Then nature

can present an effect compatible with T , followed by no further effects, until M

converges to the answer corresponding to one effect, and so forth, up to answer T ,

forcing M to retract ten times, arbitrarily late. It follows that the Ockham strat-

egy is efficient, in the sense that its worst-case guarantee concerning retractions

and retraction times over a given answer is as good as an arbitrary, convergent

strategy’s.

Furthermore, violating Ockham’s razor results in a weaker guarantee. Sup-

pose that M adopts an answer that posits unseen effects (a violation of Ockham’s

razor). Then nature is free to withhold the anticipated effects until, on pain of not

converging to the true answer, M backtracks to the (simpler) theory correspond-

ing to just the effects presented thus far. Then nature can proceed to present

more effects, leading M through each successive theory, as in the preceding ar-

gument. So nature can force M to perform an extra reversal of opinion prior to

all of the retractions the Ockham strategy would have performed. So Ockham

strategies are not merely efficient; they are uniquely efficient, in the sense under

discussion.

3. Illustration: Accounting for Empirical Effects

It remains to explain how the preceding story is intended to apply to concrete sci-

entific examples. Suppose that one is interested in the structure S of an unknown
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polynomial law

f(x) =
∑

i∈S

aix
i,

where S is assumed to be a finite set of indices such that for each i ∈ S, ai 6= 0. It

seems that structures involving fewer monomial terms are simpler, so Ockham’s

razor favors them. Suppose that patience and improvements in measurement

technology allow one to obtain ever tighter open intervals around f(x) for each

specified value of x as time progresses.2 Suppose that the true degree is zero,

so that f is a constant function. Each finite collection of open intervals around

values of f is compatible with degree one (linearity), since there is always a bit of

wiggle room within finitely many open intervals to tilt the line. So suppose that

the truth is the tilted line that fits the data received so far (i.e., suppose that

the mother moves to the next shop). Eventually you can obtain data from this

line that refutes degree zero. Call such data a (first-order) effect. Any further,

finite amount of data collected for the linear theory is compatible (due to the

remaining, minute wiggle room) with a quadratic law, etc. The truth is assumed

to be polynomial, so the story must end, eventually, at some finite set S of effects.

Thus, determining the true polynomial law amounts, essentially, to determining

the finite set S of all monomial effects that one will ever see and Ockham’s razor

amounts to never assuming more effects than one has seen so far.3

The Copernican revolution in observational astronomy can be viewed in a

similar manner. Each planet might revolve around the sun or around the earth

and the sun might revolve around the earth or vice versa. Revolution of a planet

around the sun implies that retrograde motion (the appearance of backtracking

against the fixed stars) happens precisely at opposition for superior planets or at

conjunction for inferior planets (Kuhn 1957, Glymour 1980). The earth-centered

account of a planet can be adjusted just so to produce the same appearance,

so strictly speaking, it is impossible to distinguish the two accounts. To make

the question interesting, excuse failure to find the truth in that case because it is

hopeless to do so.4 Then if retrograde motion is out of sync with solar opposition,

2In statistics, the situation is analogous: increasing the sample size reduces the interval
estimates of the values of the function at each argument. The analogy is sketched in greater
detail in the conclusion.

3In typical statistical applications, something similar is true: effects probably do not appear
at each sample size if they don’t exist and probably appear at some sample size onward if they
do exist. The data model under discussion may be viewed as a logical approximation of the
statistical situation, if one thinks of samples accumulating through time.

4Although that may seem to assume away the traditional problem of scientific realism, it
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it will eventually be observed to be so (assuming the increasingly precise, inexact

measurements assumed in the preceding example). Hence, the geocentric account

of each planet is associated with the eventual effect of viewing retrograde mo-

tion out of sync with opposition or conjunction, and the heliocentric account of

earth is associated with the effect of stellar parallax—the apparent motion of the

stars due to the earth’s motion. Hence, the uniquely simplest theory on purely

positional data was Tycho Brahe’s, in which all planets revolve around the sun,

which revolves around the earth. Indeed, Brahe was keen to emphasize this fact

and the failure to detect parallax was understood to be an embarrassment for

the Copernican theory, although the mechanical inscrutability of Brahe’s model

seems to have restricted its popularity in spite of its extra simplicity (the aim

is to explain our systematic bias toward simplicity, not to prove that it must

carry the field against every plausibility consideration). Copernicus’ heliocentric

theory implies a parallax effect, so it is one effect more complex that Brahe’s.

Each geocentric planet adds a further effect. Hence, the ancient Pythagorean

hypothesis that Mercury and Venus are the only heliocentric planets is only one

effect more complex than Copernicus’ theory. Ptolemy’s geocentric account of

every planet was very complex, but not as complex, at least, as the very awkward

theory that moves the earth around the sun but all the planets around the earth,

which has the dubious distinction of being as complex as possible and inviting

all the physical conundra of a moving earth.

The recent literature on the inference of causal structure (Spirtes et al. 2000)

provides a more contemporary illustration. Stripping the idea down to its bare es-

sentials, the true causal structure over a set of variables is conceived as a network,

in which arrows correspond to immediate causal influences. Formal rules relate

such networks to joint probability measures over the variables in such a way that

the correspondence between probabilities and causal structures depends only on

which conditional statistical independence relations hold among variables. Inde-

pendence cannot be detected as such: if variables are independent one simply

never detects a dependency. Dependence, on the other hand, can be detected: if

variables are dependent then an independence test will reject the null hypothesis

of independence at a sufficiently high sample size. Since the number of detected

dependencies increases through time (as more data are collected), the causal con-

does not do so, for even if failure to do the impossible is excused, there is still the problem
of determining what to say when the current data are compatible with either hypothesis—and
that is a matter of some importance, since there are practical future consequences for being
wrong (Churchland 1982).
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clusions based upon the underlying correspondence between graphs and probabil-

ity distributions changes through time. Indeed, direct causal connections between

variables correspond to more conditional dependencies, so conditional dependen-

cies may be viewed as empirical effects and the intuitive complexity of potential

answers to the causal inference question increases as the implied number of effects

increases (cf. Kelly 2006a, 2006b).

A different sort of example concerns the determination of quantum conserva-

tion laws from a set of reactions, in which case empirical effects correspond to

the discovery of reactions linearly independent of the reactions observed so far

(Schulte 2000, Kelly 2006b). An interesting feature of this example is that simpler

conservation theories involve more conserved quantities (symmetries), which cor-

respond to fewer dimensions of linear independence among the reactions. Hence,

the simpler hypotheses require more notation to state (the magnitude of each

conserved quantity must be specified for each particle type) which reverses, in

this case, the popular notion that simplicity has something to do with description

length.

To reduce the preceding examples to their essential elements, let E be a

denumerable set of potential effects and let Γ be a collection of finite sets of effects,

any one of which might be the actual effects that will be observed for eternity.

Nature is free to present effects from E at any time she chooses, possibly several

at one time, as long as the set S of all effects presented for eternity is a member

of Γ. She is never required to grant any assurance that an unobserved effect will

never appear, however—that is the fundamental epistemological asymmetry upon

which everything that follows depends. In the limit, nature presents an infinite

input stream or empirical world w such that for each i, w(i) is a finite subset of E

corresponding to the effects presented at stage i. Let Sw denote the total, finite

set of effects presented along w. It is assumed that each theoretical structure

TS corresponds uniquely to a finite set of effects S. Then the correct structure

for world w is just TSw . Call the situation just described the effect accounting

problem generated by Γ.

An empirical strategy M gets to observe, at each stage n, the initial segment

w|n of the actual world w presented by stage n. Strategy M responds either

with some possible theoretical structure TS or with ‘?’, indicating a refusal to

choose. Strategy M is a convergent solution if and only if for each possible world

w, limn→∞ M(w|i) = TSw .

4. Empirical Simplicity and Empirical Effects
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Empirical simplicity has been a vexed question in philosophy for many years

(Goodman 1983), but often because simplicity has been conceived as an absolute

property independent of a particular problem or question (e.g., Li and Vitanyi

1997). The approach adopted here less ambitiously locates simplicity in the

structure of the question asked—just as computer science locates computational

complexity in the problem to be solved. Let e be a finite input sequence (think

of e as what has been seen so far by the scientist). Let Γe denote the restriction

of Γ to sets of effects compatible with e, meaning that each S ∈ Γe includes Se.

A directed path to S in Γe is a finite sequence (S0 ⊂ S1 ⊂ . . . S) of elements of

Γe. Then let the conditional complexity c(TS, e) of theoretical structure TS given

e be the result of subtracting 1 from the length of the longest path to S in Γe.

If Γ includes every finite subset of E, then the definition plausibly reduces to

counting the effects in S that are not already in Se: i.e., c(TS, e) = |S| − |Se|. It

follows, in that special case, that the unique theoretical structure of complexity

zero given e is TSe . If Γ has “gaps” because some finite sets of effects are ruled out

by background information, then there may be more than one simplest structure

compatible with experience and it may be that c(TS, e) < |S| − |Se|. A weaker

assumption, compatible with such gaps, is that every maximal path have the

same (finite or infinite) length. Say that such a problem is uniform.

Ockham’s razor is the principle that one should not output TS in response

to e unless TS is the unique theoretical structure compatible with e for which

c(TS, e) = 0. A closely related principle is stalwartness, which requires that M

never drop an informative answer TS unless it is no longer uniquely simplest.

The intuition behind stalwartness is that there is no better explanation than the

simplest one, so why drop it? One may speak of stalwartness and/or Ockham’s

razor as being satisfied from e onward (i.e., at each extension e′ of e) or always

(i.e., at each e).

5. The Straightest Path to the Truth

In accordance with the explanation sketched above, let the loss of convergent

strategy M in world w be represented by the sequence λ(M, w) = (r1, . . . , rk) of

successive times at which M retracts an informative answer in w. The only loss

comparisons that matter for the following argument are the easy comparisons in

which strategy M retracts as often and at least as late as strategy M ′ in world

w, in which case it is clear that the performance of M is at least as bad as that

of M ′ in w. For example, (2, 3, 7) < (3, 5, 8, 12) but (2, 5) is incomparable with
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(1, 6).5

A potential retraction time bound is like a retraction time sequence except that

the infinite number ω may occur. Then each set X of retraction time sequences

has a unique, least upper bound sup(X) among the potential retraction time

bounds (cf. Kelly 2006a).6 Now one may speak, nontrivially, of the worst-case

timed retractions of strategy M over some collection K of worlds.

Ockham strategies do not do better than alternative strategies in every world,

because a strategy that anticipates an effect before it is observed might get lucky

and see the anticipated effect at the very next stage. Nor do Ockham strategies do

better than alternative strategies in the worst case overall, since there is no finite

bound either on a convergent strategy’s retractions or on the times at which the

successive retractions occur. Nor do Ockham strategies do better than alternative

strategies in the expected case unless a prior probability distribution is imposed

according to which complex worlds are less probable than simple worlds, which

begs the question in favor of Ockham strategies (Kelly 2006a). But the unique

advantage of Ockham strategies emerges if one considers worst-case costs over

worlds of a given empirical complexity. Accordingly, let Ce(n) denote the set of

all worlds w compatible with e such that c(w, e) = n. Let M be an arbitrary

solution to the effect accounting problem. Define the worst-case loss of solution

M over complexity class Ce(n) as: λe(M,n) = supw∈Ce(n) λ(M, w), where the

supremum is understood in the sense of the preceding paragraph.

Suppose that input sequence e has just been received and the question con-

cerns the efficiency of one’s strategy M . Since the past cannot be altered, the

only relevant alternatives are strategies that produce the same answers as M

along e−, where e− denotes the result of deleting the last entry from e. Say that

such a strategy agrees with M along e− (abbreviated M ≡e− M ′).
Given solutions M, M ′, the following, natural, worst-case performance com-

parisons can be defined at e:

M ≤e M ′ iff (∀n) λe(M, n) ≤ λe(M
′, n);

M <e M ′ iff M ≤e M ′ and M ′ 6≤e M.

These comparisons give rise to two natural properties of strategies:

M is beaten at e iff (∃ solution M ′ ≡e− M) M ′ <e M ;

5Formally, σ ≤ τ if and only if there exists a 1-1 mapping g from positions in σ to positions
in τ such that for each position i in σ, σ(i) ≤ τ(g(i)).

6A slight technicality: for potential bounds b,b′, define b ≤ b′ if and only if each retraction
time sequence ≤ b is also ≤ b′.
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M is efficient at e iff (∀ solution M ′ ≡e− M) M ′ ≥e M.

A convergent solution is beaten by another if the latter solution does as well in

each complexity class and better in some. An efficient solution is as good as an

arbitrary solution in each complexity class. Since efficiency can be reassessed at

each time, one may speak of being efficient from e onward or always.

6. Unique Efficiency Theorem

A precise argument along the lines sketched above (Kelly 2006b) yields the fol-

lowing, mathematical theorem:

Theorem 1 (Ockham efficiency characterization) Let M solve the effect ac-

counting problem generated by Γ and suppose that the problem is uniform. Let e

be a finite input sequence compatible with Γ. Then, the following statements are

equivalent:

1. M is stalwart and Ockham from e onward;

2. M is efficient from e onward;

3. M is never beaten from e onward.

So the set of all convergent solutions to the effect accounting problem is cleanly

partitioned at e into two groups: the solutions that are stalwart, Ockham, and

efficient from e onward and the solutions that are beaten at some stage e′ ≥ e due

to future violations of the stalwart, Ockham property. The argument is a priori,

normative, truth-directed, and yet non-circular. The argument presumes no prior

bias of any kind, so there is no question of a circular appeal to a simplicity bias,

as in Bayesian arguments. The argument is driven only by efficient convergence

to the truth, so there is no bait-and-switch from truth-finding to some other

aim. There is no confusion between “confirmation” and truth-finding, since the

concept of confirmation is never mentioned. There is no wishful presumption

that the truth must be testable or nice in any other way. There is no appeal to

the hidden hands of Providence or Evolution. The same cannot be said of any

alternative explanation on the books today.

Furthermore, the argument is diachronically stable in the sense that it always

makes sense to return to the Ockham fold no matter how many times one has

violated Ockham’s razor in the past. That is important, for Ockham violations

are practically unavoidable in real science because the simplest theory cannot
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always be formulated in time to forestall acceptance of a more easily conceived

but more complex alternative (e.g., Ptolemaic astronomy vs. Copernican astron-

omy, Newtonian optics vs. wave optics, Newtonian kinematics vs. relativistic

kinematics, and special creation vs. natural selection). So although it has been

urged that scientific revolutions are extra-rational events governed only by the

vagaries of scientific politics (Kuhn 1975), revision to the simpler theory when it

is discovered has a clean explanation in terms of truth-finding efficiency. Stability

fails for some non-uniform problems, but it is still the case that efficiency at every

stage is equivalent to being a normal Ockham at every stage.

6. A General Definition of Simplicity

The preceding approach would be far deeper and more interesting if empirical

complexity were defined directly in terms of the structure of an arbitrary empirical

problem, rather than being presupposed and spoon-fed to the scientist. Here is

a very general such an account.

Let an empirical problem be a pair P = (K, Π), where K is a set of infinite

input sequences or empirical worlds and Π is a partition of K into possible an-

swers. Here, there is no question of “pre-packaging” what counts as an empirical

effect: the successive entries in infinite sequence w ∈ K might be boolean bits in

a highly “gruified” coding scheme with an ocean of irrelevant information added.

If e is a finite input sequence, let Ke denote the set of all w in K that extend e

and if w is in K.

The first step is to construct an analogue Γ′e of the set of possible sets of

effects Γe compatible with e entirely out of the branching structure of P . Let p

be a finite sequence of answers drawn from Π. Say that p is forcible by nature

given finite input sequence e in P if and only if for each strategy M guaranteed

to converge to the true answer in P , there exists w in K that extends e such that

M responds to w after the end of e with a sequence of outputs of which p is a

subsequence. Let Se denote the set of all finite sequences of answers forcible in

P given e and refer to Se as the forcibility state of P at e. Now let Γ′e be the set

of all forcibility states Se′ such that e′ extends e.

The next step is to recover paths through Γ′e analogous to the inclusion paths

through Γe. If S0, S1 are in Γ′e, say that S1 is epistemically accessible from S0

given e (written S0 ≤e S1) just in case there exists evidence e0 extending e such

that S0 = Se0 and further evidence e1 extending e0 such that S1 = Se1 . Now let

πe(S) denote the set of ≤e-paths in Γ′e that terminate with S.

It remains to associate answers in Π with elements of Γ′e, a correspondence
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merely stipulated in the effect accounting problem. Say that answer T in Π caps

S in Γ′e if and only if concatenating T onto an arbitrary answer sequence in S

results in an answer sequence in S. Except in pathological cases (excluding all

effect accounting problems), each forcibility state in Γ′e is capped by at most

one answer, so restrict attention to such univocal problems. Then let TS denote

the unique answer that caps S if there is an answer that caps S and let TS be

undefined otherwise.

It is now possible to define empirical complexity. If p is in πe(S), let c(p)

denote the number of stages i > 0 along p such that Tp(i−1) is defined and Tp(i)

is undefined or Tp(i) 6= Tp(i−1). Then define the empirical complexity of forcibility

state S given e as:

c(S, e) = sup{c(p) : p ∈ πe(S)}.
The final step is to associate forcibility states with worlds. In the effect accounting

problem it is assumed that each world presents a finite set of effects, so the set of

effects presented eventually stops growing. The parallel assumption in this more

general construction is that limi→∞ Sw|i converges in each w ∈ K. Given this

assumption, define Sw = limi→∞ Sw|i and, finally, let:

c(w, e) = c(Sw, e);

c(T, e) = min{c(w, e) : w ∈ T ∩Ke}.

The account of empirical complexity just presented agrees with the account

assumed in the effect accounting problem (Kelly 2006b), so there is some set of

assumptions under which it supports the unique efficiency theorem for Ockham’s

razor. It is an interesting question how broadly the efficiency result applies.

Furthermore, if problem P is constructed by assuming a set of effects Γ and

presenting them in an arbitrarily gerrymandered coding system, the above def-

inition will recover the same empirical complexity assessments for answers that

would be recovered from the naive version of the problem in which effects are

directly presented by nature. Finally, in the proposed construction, empirical

complexity is objectively grounded in the structure (K, Π) of the problem and is,

therefore, invariant under notational changes, including the notorious “grue-like”

translations of N. Goodman (1983).

7. Toward Statistical Model Selection

The preceding reasoning can be extended to random strategies in the following,

straightforward way (Kelly 2006a). Answer T is retracted in chance by random
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strategy M to degree r at stage n + 1 if and only if the chance that M produces

T drops by r from stage n to n + 1. The total retractions in chance by M in

world w are given by the sum over all answers T ∈ Π and all stages n > 0 of the

degree of retraction in chance by M of T at n. Then, assuming that M converges

in probability to the true answer (i.e., that the chance that the strategy produces

the true answer goes to unity as more data are seen), one can argue that the

strategy can be forced by nature into total retractions in chance arbitrarily close

to those of a deterministic strategy (Kelly and Glymour 2004).

It is less straightforward to apply the preceding approach to genuine, statis-

tical model selection, in which theoretical structures are statistical models and

the data are produced randomly according to the true model under some setting

of its free parameters—but that must be done if the proposed approach is to

enjoy real scientific application. Notoriously, in statistical model selection there

is no such thing as “compatibility with the data”, so Ockham’s razor cannot

be expressed as a matter of minimizing complexity over answers compatible with

the data—instead, Ockham’s razor involves some motivated compromise between

simplicity and fit. There are theories of how best to strike the balance, but they

are either circular or directed at prediction rather than finding the true model, as

discussed in the introduction. To solve for objective constraints on the optimum

balance between simplicity and fit from the aim of efficient convergence to the

truth would, therefore, constitute a new, truth-directed foundation for statistical

model selection and, hence, for scientific inference in general. The theoretical

significance and potential for broader methodological impact of such a theory

would be immense, both in terms of concrete methodological recommendations

in such expanding areas as the inference of causal structure and in terms of pro-

viding science with a reasonable, transparent, truth-directed motive for its most

powerful rule of inference.

A preliminary approach, which follows the literature on statistical causal mod-

eling, is to set a significance level for statistical tests and to view the outcomes of

the tests as the raw input to the theorist’s model selection method. According to

this approach, the crucial notion of “compatibility with the data” is explicated in

terms of non-rejection at the chosen significance level and empirical effects may

be understood as rejections of null hypotheses and Ockham’s razor demands that

one conclude the model that corresponds to exactly the null hypotheses rejected

thus far. For example, the algorithms for inferring causal structure presented in

(Spirtes et al. 2000) do precisely that. It is proposed to show that presuming

against an effect until it is detected is a strategy that minimizes retractions in
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chance for arbitrary, convergent methods that take test outcomes as raw inputs.

Ultimately, however, one would prefer not to evade the trade-off between

simplicity and fit but to derive it from considerations of efficient convergence to

the true statistical model. For example, consider the toy question of how many

components of a bivariate normal distribution are zero. The simplest hypothesis

is that both components are, the next simplest is that exactly one component is

and the most complex is that neither is. A standard model selection technique

is to maximize a quantity known as the Bayes Information Criterion or BIC for

short (Schwarz 1978). The BIC score for a model T [θ] with free parameter vector

θ of length k relative to sample E of size n is just:

BIC(T [θ], E) = log(sup
θ

P (E, T [θ]))− k log(n)

2
.

The intriguing thing about the BIC score is that the left-hand-term rewards

models that can be “fit” closely to the data (i.e., that make the data very proba-

ble) while the right-hand-term penalizes the number k of free parameters in the

theory. The official justification for the BIC score is that maximizing it picks

out the (approximately) most probable model given the data (according to the

simplicity-biased prior probability distribution discussed in the introduction of

this summary). The concern here, however, is efficient arrival at the truth, rather

than duplication of some simplicity-biased Bayesian’s opinions—and that requires

an examination of how the model selections of the BIC strategy reverse in chance

as sample size increases. The Mathematica plots depicted in figure 1 illustrate

the behavior of BIC as the sample size n increases. The (oddly shaped) white

n = 2 n = 100 n = 30,000 n = 4,000,000

Figure 1: Retractions in chance by BIC

zone covers the points in sample mean space at which BIC selects the simplest an-

swer (that both coordinates of the population mean are zero). The cross-shaped

grey zone covers points at which the next simplest answer is selected (that one
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coordinate of the population mean is zero) and the black region is where the

most complex answer is selected. The unfilled oval line is the boundary of the

95% quantile or footprint of the true sampling distribution, which is (deviously)

chosen to have mean vector (.05, .005). The BIC strategy first “takes the bait”

for the simplest answer at around n = 100 (note that the 95% quantile is nearly

contained within the acceptance zone for the simplest answer). BIC “notices”

that the first component of the mean vector is nonzero at n = 30, 000 (the 95%

quantile is now nearly contained in the acceptance zone for the next-simplest an-

swer) and then notices that the second is nonzero at around n = 4, 000, 000, for

approximately two retractions in chance—the theoretical optimum in this case.

But there are also the partial retractions of complex answers between n = 2 and

n = 100, due to the non-negligible acceptance regions for those answers within

the 95% quantile at n = 2. These extra retractions could have been reduced by

making the white zone larger (i.e., by making BIC more aggressively Ockham)

at small sample sizes. But doing that would add extra retractions to worlds (on

the axes) in which the next simplest hypothesis is true, for in such worlds the

theoretically optimal performance is one retraction in chance, but favoring the

simplest answer a priori adds to this retraction. Hence, there is pressure both

to expand and to reduce the white acceptance zone and therein, it is proposed,

lies the essential balance between simpicity and fit. Here is one proposal that

appears promising. Say that a focus point for n retractions is a point in param-

eter space such that an arbitrary, convergent strategy produces retractions in

chance arbitrarily close to n in arbitrarily small neighborhoods around the point.

Choose a standard metric ρθ,θ′ (ranging from zero to unity) that reflects the rela-

tive distinguishability of probability measures pθ and pθ′ . Say that the unexcused

retractions of strategy M at possible sampling distribution pθ are those in excess

of the excused retractions at θ given by:

e(θ) = sup
θ′

nθ′(1− ρθ,θ′),

where the supremum ranges over focus points θ′ and n(θ′) is the maximum number

of retractions for which θ′ is a focus point. Now choose acceptance zones to

mininize unexcused retractions at every possible parameter value. This theory is

a natural extension of the deterministic theory described above, but in this case

no fixed notion of consistency with the evidence is presupposed and yet some

objective balance between simplicity and fit is implied. Nor is there anything

in the account that could be accused of a prior bias in credence toward simple

worlds or answers. The focus points presuppose only convergence to the truth
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and the metric for defining excused retractions reflects only how distinguishable

two sampling distributions are, which has nothing to do about which is simpler.

The linchpin of the argument is an invariant feature of converging to the truth

in a model selection problem, namely, that the focus points for larger numbers

of retractions are simpler worlds.

Solving for the essential balance between simplicity and fit in problems of

genuine interest, such as the inference of causal networks (Spirtes et al. 2000)

is not trivial analytically, but it remains possible to run computer simulations

of model selection techniques on large numbers of samples at increasing sample

sizes and to examine the histogram of theory choices at each sample size. Such

histograms do not purport to show the impossible: that the method reliably finds

the true model no matter how the parameters of the various models are adjusted,

but rather, that the methods do or do not approach the theoretically optimum

performance of one retraction in chance per free parameter. To the extent that

a strategy falls short of the optimum, there is pressure to improve it, as in the

preceding example.
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