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Abstract

Priest [1976] demonstrated that a more general version of Goodman’s
grue-paradox exists for the standard solution to the ‘traditional’ curve-
fitting problem (which says that we ought to choose the simplest curve
that passes through all observed data points). Forster and Sober [1994]
argue that this problem is ill-posed and that their solution (the Akaike In-
formation Criterion (AIC)) to the ‘real’ curve-fitting problem—the prob-
lem of balancing accuracy and simplicity—avoids the kind of paradox
described by Priest [1976].

DeVito [1997] argued that there is, in fact, a version of the grue para-
dox for AIC. However, Forster [1999] and Kieseppä [2001] show that De-
Vito’s arguments do not warrant his conclusion. Despite these results, I
will argue that there is indeed a version of the grue paradox for AIC which
is quite similar to the problem that Priest originally identified. However,
this problem is not unique to AIC. Indeed, I will argue that any solution
to the curve-fitting problem will be susceptible to a version of the grue
paradox.

1. Introduction

In Fact, Fiction and Forecast Goodman introduced his now famous New Riddle
of Induction.1 The riddle raised a serious problem for any hope of a purely syn-
tactic theory of inductive logic, such as the one Carnap was trying to develop
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1One version of Goodman’s New Riddle of Induction: Suppose that every emerald so far

observed is green. From these observations, it seems we could infer that every emerald is
green. But equally compatible with our observations is the hypothesis that all the observed
emeralds before 2070 are green and all others are blue. The riddle is commonly taken to be
that we want to say that the latter hypothesis is absurd whilst the former is respectable; but
why?



1.1 The Traditional Curve-Fitting Problem

(see e.g., Carnap [1945]). Many, including Carnap, tried to resolve this riddle by
invoking the use of the notion of simplicity of hypotheses. Goodman responded
with what is sometimes called the Grue Paradox: the simplicity of a hypothesis
depends on the choice of language it is formulated in [ref]. Many have tried to
deflate the paradox by giving one language a privileged status. For example,
Lewis [1984] invokes the notion of a natural predicate to privilege a language.
Goodman used his theory of entrenched predicates to attain a privileged lan-
guage, in which to compare hypotheses. Such moves make a theory of induction
language dependent. While this is perhaps regrettable, it is typically seen as a
necessary feature of any theory of induction.

In the contemporary literature, a particular problem of inductive inference—
the curve-fitting problem—has been the focus of much attention, and it is
claimed that a solution has been provided which does not suffer from the kind of
language dependence problems that purely syntactic theories of induction suffer
from. In this paper I will argue that this solution to the curve-fitting problem
(and any other solution, except subjective Bayesian ones) is language depen-
dent, but that this shouldn’t be seen as a reason to reject such solutions. Some
of the problems of language dependence for curve-fitting are, in a way, much
worse than the same type of problems for purely syntactic theories of inductive
logic, but in §3 I outline a way in which they may be overcome through the use
of symmetry considerations. First though, it will be necessary to go over a few
preliminaries.

1.1. The Traditional Curve-Fitting Problem

Curve-fitting is a very common form of inductive inference. Traditionally,
curve-fitting has been the process of inferring from a finite set of particular
observations of two quantities—which are represented as points in a coordinate
system—to a generalised hypothesis about the relationship between the two
quantities—and this hypothesis is represented as a curve that passes through
each point (e.g., see Popper [1959], p. 124; Glymour [1981], p. 322). What
makes this process of inference interesting is that no matter how many observa-
tions we have made, (assuming there is only ever a finite number of observations)
there are always infinitely many curves which pass through each data point in
the coordinate system. We are thus confronted with the problem of deciding
which curve, out of the infinite number available, is the curve that represents
the true relationship between the two quantities.
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1.2. Gruesome Simplicity

The standard solution to this problem—which I will call the traditional curve-
fitting problem—has been to choose the simplest curve which passes through
each data point (see e.g., Priest [1976], p. 432; Popper [1959], p. 124). For ex-
ample, the reason why we ought to choose a straight line which passes through
each data point over a ‘bumpy’ curve, which also passes through each data
point, is that the former is simpler than the latter. The idea is that the simplic-
ity/complexity of a curve represents the simplicity/complexity of the hypothesis
that the curve itself represents.

However, Priest [1976] demonstrated that the simplicity of the curve that
represents a hypothesis depends on the language we choose to formulate the
hypothesis in. He did this by using the following example:

“We observe a moving particle and note its velocity v, and momentum p. It is

found that when v = 2, p = 6 and when v = 3, p = 8. We now ask what the

best prediction is for its momentum when v = 4. Obviously the curve that best

fits the data is the straight line:

p = 2v + 2

and hence we predict that when v = 4, p = 10.

But now suppose we decide to correlate the velocity with the (classical) kinetic

energy of the particle E(= pv/2), computed from the same data. We have that

when v = 2, E = 6 and when v = 3, E = 12. Again the curve that best fits this

data is a straight line:

E = 6v − 6

Hence we predict that when v = 4, E = 18. But since E = pv/2, p = 2E/v, so

the corresponding value for p is 9. This is clearly incompatible with our previous

‘best’ prediction.” Priest [1976], pp. 432–3

When we translate the (‘best’) hypothesis about the relationship between mo-
mentum and velocity, p = 2v + 2, into a hypothesis about the relationship
between kinetic energy and velocity, we get a curve more complicated than a
straight line, E = 12(1− v2). And similarly in the other direction.

As Priest points out (Priest [1976], p. 435), the above example highlights
a problem which is a more general version of Goodman’s grue paradox. To see
this, think of all the green emerald observations we have seen so far as points in
the (time, light frequency) plane, the green hypothesis as the straight line which
passes through all of these data points, and the grue hypothesis as a curve which
passes through all of the points but drops to the light frequency of the colour
blue after some future time t.

In this representation, the green hypothesis appears to be simpler than the
grue hypothesis—it’s a straight line whilst the grue hypothesis is a step function.
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But, with a suitable change of representation, the grue hypothesis appears to
be simpler than the green hypothesis—it is now the grue hypothesis which is
the straight line, and the green hypothesis is now a step function.2

Actually, in a way, this is worse than Goodman’s original Grue Paradox.
When comparing ‘grue’ and ‘green’, we could at least say that ‘green’ is more
natural or more entrenched etc., than ‘grue’. But how could we say that the ve-
locity/momentum system of representation is more natural or entrenched than
the velocity/kinetic energy system of representation, or vice versa? Both sys-
tems seem perfectly natural and equally entrenched. I will return to this issue
in §3.

1.3. Bertrand’s Paradox

Interestingly, while Priest’s example does seem to be very similar to the Grue
Paradox, it is also reminiscent of another famous paradox: Bertrand’s Paradox.
Bertrand’s Paradox is a paradox for the Principle of Indifference (which says
that in the absence of evidence to the contrary, we should assume each possible
outcome equally likely). The paradox is needlessly complicated for the point it
makes. The following example adapted from van Fraassen ([1989], p. 303) is
simpler, but makes the same point.3 Suppose there is a box factory which pro-
duces cubes of side-length between 0 and 1 metre. We do not know any further
details about the box factory. What probability should we assign to the event
of the box next produced having a side-length between 1/2 and 1 metre? The
Principle of Indifference says that we ought to assign this event a probability
of 1/2. This is because we have no reason to suppose it any more probable
that the box has a side-length between 0 and 1/2 metre than for it to have a
side-length between 1/2 and 1 metre. Since these two options exhaust the space
of possibilities, their probabilities must sum to 1. And since their probabilities
are equal, they must both be 1/2. An important part of this reasoning—which
is often played down—is that the two events have the same number of ways of
occurring, even though this requires comparing two sets that both have contin-
uum many points. This is sometimes justified by the fact that the sets [0, 1/2]
and [1/2, 1] have the same Lebesgue measure, or length according to the Eu-
clidean metric. But suppose we represent the scenario in a slightly different way
(without changing any facts), so that instead of speak of side-lengths, we speak
about side-areas. The box factory produces cubes of side-area between 0 and 1
square metre. What is the probability that the box next produced as a side-area
between 0 and 1/4 square metres? The Principle of Indifference says that we

2See Priest [1976], p. 435 for one particular way of formally setting up a similar scenario.
3See Gillies [2000], pp. 37–49 for a detailed discussion of Betrand’s Paradox

4



1.3 Bertrand’s Paradox

ought to assign this event a probability of 1/4, which obviously contradicts our
previous assignment. The reason why is similar to before. There are four possi-
bilities which we have no reason to think are not equi-probable—the side-area is
between (i) 0 and 1/4 square metres, (ii) 1/4 and 1/2 square metres, (iii) 1/2 and
3/4 square metres, or (iv) 3/4 and 1 square metre. Since these options exhaust
the space of probabilities and are to be equi-probable, they each have to have a
probability of 1/4. Which probability assignment we should make—according
to the Principle of Indifference—depends on how we represent the scenario, just
as which curve we should choose—according to the simplicity solution to the
curve-fitting problem—depends on how the curves are represented. Note that
the justification of the equi-probability of the events of the side-length being in
[0, 1/2] or [1/2, 1] was in terms of the Lebesgue measure, or Euclidean met-
ric. But these provide the very same justification of the equi-probability of the
events of the side-area being in [0, 1/4], [1/4, 1/2], [1/2, 3/4], or [3/4, 1]. We see
then that the notion of the size of a set of possibilities—measured by a measure
function, or metric—is representation dependent.

This type of paradox is also used as a standard objection to any theory of
logical probability which relies on the Principle of Indifference (see e.g., Gillies
[2000], p. 37). This brings us to another point of relevance which can be seen
when we look at the details of Popper’s simplicity solution to the curve-fitting
problem. Instead of attributing simplicity to curves, Popper attributed sim-
plicity to families of curves, which I will call models. For example, the set of
straight lines, LIN, is one model, and the set of parabolas, PAR, is another.
Popper wanted to identify the simplicity of a model with its falsifiability. Ac-
cording to Popper, the falsifiability of a model is complementary to its logical
probability of containing the true curve (hypothesis) (Popper [1959], p. 102).
(From here on, I will simply speak of a model’s probability). So for example,
LIN has a lower logical probability than PAR because it is a proper subset of
PAR, thus it is more falsifiable and simpler than PAR.4 But this relation be-
tween simplicity and falsifiability forced Popper into a dilemma: either he had
to adopt a theory of logical probability based on an indifference principle, or
restrict the theory so that it only applied to hypotheses that are related by the
subset (entailment) relation. Such an indifference principle would ultimately
rely on a measure function, or metric over the hypothesis space. On this point
Popper writes:

“I still believe that the attempt to make all statements comparable by introduc-

ing a metric must contain an arbitrary, extra logical element. [...] For it can be

shown that the metric of content or falsifiability would have to be a function of

the metric of the predicate; and the latter must always contain an arbitrary, or

4It’s a theorem of probability that if A ⊂ B, then P (A) < P (B).
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at any rate an extra-logical element.” Popper [1959] (edition?), pp. 101–2

Popper’s refusal to make use of an extra-logical metric meant that his simplicity
solution to the curve-fitting problem could only at best be a partial solution,
since curves of the forms y = αx and y = αx2 + βx3 + γx4 (for instance),
could not be compared with respect to their simplicity/falsifiability, as they
do not stand in the subset relation. If however, Popper had wanted to make
such comparisons, he would have required an indifference principle (or just some
general principled way of assigning probabilities to models), which would thus
infect his solution to the curve-fitting problem with the probability paradoxes
mentioned above.

One might take the upshot of all this to be that the simplicity solution to
the traditional curve-fitting problem cannot be correct, since Priest’s example
shows that the hypothesis which the simplicity solution dictates depends on
which system of representation we choose. I will say more about this in §4.

1.4. The Real Curve-Fitting Problem

The traditional curve-fitting problem is an idealised version of a problem of
inductive inference that occurs frequently in scientific practice. It is idealised in
the respect that the problem assumes that the curve which ought to be chosen
must pass through each data point exactly. As Goodman points out, this is not
typical:

“Seldom does the chosen curve pass exactly through each of the points plotted;

sometimes it may miss them all. Rather than choosing the simplest among the

complex curves that fit the evidence, we choose among simple curves the one

that comes nearest to fitting the evidence.” Goodman [1972], p. 346

This is because quite often there is error in the data; the points plotted do not
perfectly represent the true values of the quantities in question. The problem
then is to somehow ‘see’ through the noise in the data and pick out the trend
(assuming there is one) that captures the true relationship between between the
two quantities. I will call this problem the real curve-fitting problem.

1.5. Gruesome Accuracy

The real curve-fitting problem is interesting, philosophically, because certain
conceptual issues arise which were hidden in the traditional version of the prob-
lem. The first issue is that we now need to understand what it means for a
curve to be the curve that ‘comes nearest to fitting the evidence’. Clearly, there
are curves that are nearer than others to fitting the data. So we need some way
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of comparing how close curves are to fitting the data (to be able to find the
closest). I will call how close a curve is to fitting the data its accuracy.5

One common way to measure the distance between a curve and the data is
by the sum of squared residuals (SSR):

SSR(f) =
N∑

i=1

(f(xi)− yi)
2

where (xi, yi) are the N data points, and f is the function associated with the
curve in the (x, y) plane. To find the curve which is closest to the data, we find
the curve which minimises this sum.6

Miller [1975] famously showed that SSR, as a measure of accuracy, is in-
appropriate because the measure of accuracy it assigns to any particular curve
depends on how that curve is represented. SSR can be written in terms of the
Euclidean metric, d, on y:

SSR(f) =
N∑

i=1

d(f(xi), yi)2

where d : R× R→ R s.t

d(y1, y2) = |y1 − y2|

If we represent the data in a different plane, say (x, Y ), then SSR can be written
in terms of the Euclidean metric, d′, on Y . When we transform d′ onto the y
plane we find that, for some choices of Y , d′ 6= d. Thus, SSR applied to the
data in the (x, Y ) plane can give a different result from the result delivered by
SSR when it is applied to the data in the (x, y) plane. Hence SSR depends on
how we represent the data.

A somewhat disturbing consequence of this representation dependence is
that we can make any false theory, f , be as close to the data as we like (i.e.,
make SSR(f) as small as we want). All we need to do is find a particular (x, Y )
so that according to the Euclidean metric on Y , SSR(f) is as small as we want
it to be. Even more disturbingly, we can find a particular (x, Y ) so that if f is
closer to the data in (x, y) than g, then g is closer to the data in (x, Y ) than
f—our choice of variables can reverse the comparative accuracy of two curves.
Note the similarity between this problem and the problem for the simplicity
solution to the traditional curve-fitting problem, and Bertrand’s Paradox.

In light of this result, a popular response has been to measure accuracy by
5It is not necessary that a measure of accuracy provide precise numerical values, a compar-

ative measure may suffice. But common measures do in fact provide precise numerical values,
as we will see.

6Of course, it may not be unique.
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the Maximum Likelihood Estimator (MLE), or its cousin: the Maximum Log-
Likelihood Estimator (MLLE) (Good [1975], pp. X; Forster [1999], pp. 98–99).
Curves are now associated with error distributions. For example, the model
LIN—the family of straight lines—is defined as:

LIN(x, y) = {y = f(x)|f(x) = αx+ β + µ;α, β ∈ R}

where µ is an error term, which has an associated probability distribution.
MLLE works by selecting the curve, f , which maximises:

MLLE(f) = Log-Likelihood(f ; Data) = log(P (Data|f))

This will be the curve which makes the observed data most probable. MLLE
is more general than SSR and the two measures give the same results when
the error term, µ, is Gaussian. It can be shown that MLLE, as measure of
accuracy, has some nice transformation invariance properties which SSR lacks
(Good [1975], p. X).

However, the drawback is that MLLE requires us to have more information
than that which SSR does. In the absence of this information, MLLE is either
unusable or becomes dependent on how we choose to represent the data. For
example, when we have no information about the error term, it is quite common
to just assume that the error term is Gaussian. But it cannot be both Gaussian
over y and also Gaussian over some non-affine 1-1 transformations of y. So in a
large class of cases we still only have measures of accuracy which are represen-
tation dependent.7 For the most part of the rest of this paper, I will put aside
the problems of finding a representation independent measure of accuracy, for I
want to focus on the second issue which arises in the real curve-fitting problem
and did not in the traditional one.

1.6. Balancing Accuracy and Simplicity

This second issue is that while it is in some sense ‘good’ for a curve to come
close to fitting the data, sometimes a curve can come too close to fitting the
data. We typically do not want to choose a curve which passes through each
data point since this would be tracking the noise and not the truth behind
the noise—this is the danger known as ‘over-fitting’. Figure 1 illustrates the
problem of over-fitting. We don’t want the chosen curve to be too close to the
data, and we obviously don’t want the chosen curve to be nowhere near the
data, so a balance must be found. Characterising this balance turns out to be a

7I don’t want to rule out the possibility of a measure which is not representation dependent,
but the prospects appear dim.
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Figure 1: The Danger of Over-Fitting. The ‘bumpy’ curve clearly does not
capture the trend n the data.

tricky business. What we need is a way to recognise patterns, or ‘trends’ in the
data. Curves that fit the data too well, capturing whatever structure happens
to be in the noise, tend to be overly complex. But on the other hand, curves
that are very simple usually fit the data quite poorly—completely missing the
trend (if there is one). So there is a tension between the accuracy of the curve
to be chosen and its simplicity, and we need a way to find a balance between
these two virtues.

One solution to this problem is to fix upon a particular family of curves, Γ,
and find the curve in this set which is closest to the data points. By doing this,
we decide what the form of the curve will be (a straight line, parabola, etc.)
and thus we will have chosen not to consider curves that are too complicated.
Γ is usually such that there is no curve in it which fits the data perfectly. So
our choice of Γ determines how close our curve can get to the observed data.

Sometimes we may have a background theory that suggests that the true
relationship between the quantities in question is of a particular form. For
example, in mathematical psychology, one model proposed for the relationship
between a subject’s ability to correctly recall some experience and the time
elapsed after the experience is the power model:

p(t) = w1t
−w2

where p(t) is the probability of a correct recall at time t, and w1 and w2, are
adjustable parameters. Given some data, the task is then to estimate values for
the parameters w1 and w2 so as to choose a curve from the above model which
best fits the data.

However, it is not always the case that we have a model for which we are
estimating the values of its parameters, as Glymour points out:
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Figure 2: Graphical version of the data presented in Hubble [1929].

“The business of parameter estimation is well studied, and its themes are familiar

ones to every student of statistics. In contrast, there is very little technical work

in the literature on the business of choosing a form of relation, or what is the

same, specifying an initial parametric family of relations. Sometimes, no doubt,

this family or form is dictated by theoretical considerations, but often it is not,

and the exceptions can be important ones: witness Kepler, Boyle, Hubble, and

their laws.” Glymour [1981], p. 323

Before Hubble discovered that the universe was expanding, it was ‘understood’
that the universe was static. This meant that there should have been no trend
between the distances and recessional velocities of extra-galactic nebulae. How-
ever, Hubble found that there was, in fact, a linear relationship between these
two quantities. In his famous 1929 paper, Hubble writes:

“The data in the table indicate a linear correlation between distances and veloci-

ties, whether the latter are used directly or corrected for solar motion, according

to the older solutions. This suggests a new solution for the solar motion in which

the distances are introduced as coefficients of the K term, i.e., the velocities are

assumed to vary directly with the distances, and hence K represents the velocity

at unit distance due to this effect.” Hubble [1929], p. 170

Figure 2 includes the graph from Hubble’s paper which shows the linear rela-
tionship between extra-galactic nebulae distance and recessional velocity. It is
clear that any one of a number of other models could have been fitted to Hub-
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ble’s data. And each of these would also be in conflict with the static-universe
background theory.8 But it is also clear that there is something right about the
straight line fitted to Hubble’s data, and something wrong about some other
more complicated curve fitted to Hubble’s data.

So the problem is to come up with a method for extracting trends out of
data which can have noise in it, and formalising what is more ‘right’ about some
curves than others. As Forster and Sober [1994] put it:

“We know that any curve with perfect fit is probably false, but this does not

tell us which curve we should regard as true. What we would like is a method

for separating the ‘trends’ in the data from the random deviations from those

trends generated by error. A solution to the curve fitting problem will provide

a method of this sort.” (Forster and Sober [1994], p. 5)

As we have just seen, such a method must also work in cases where we have
just the data, and no background theoretical considerations.

1.7. The Akaike Information Criterion

Forster and Sober [1994] introduced a solution to this problem based on the work
of Akaike [1976]. The solution makes use of the Akaike Information Criterion
(AIC). AIC is a way of balancing the accuracy of a model, Γ, with its simplicity.
It does this by measuring the accuracy of a model by MLLE, the simplicity
of a model by the parameter dimension of the model, and characterising the
trade-off between accuracy and simplicity as:

AIC(Γ) =
1
N

(log(P (Data|L(Γ))− k)

where L(Γ) is the closest curve in Γ, k is the parameter dimension of Γ, and N is
the number of data points.9 We then choose the model, Γ, which maximises AIC.
The parameter dimension, k, of a family of curves, Γ, is (roughly) the number
of adjustable parameters of Γ. So for instance, the parameter dimension of LIN
is 2 and the parameter dimension of PAR is 3. The idea behind this solution

8It may be countered that the linear relationship between extra-galactic nebulae distance
and recessional velocity was one of the many models suggested by the background theory at
the time—the background theory being Einstein’s equations. It is quite common in physics,
and other sciences, to ignore solutions to equations which don’t ‘make sense’. Solutions which
permit negative length, negative energy, etc. are ignored since they contradict common sense,
or central assumptions that are in place. These solutions are not part of the overall theory. For
example, before Dirac seriously entertained negative energy solutions to what is now known
as the Dirac Equation, and predicted anti-matter, anti-matter was not part of the theory of
physics. Similarly, before Hubble, it was ‘common sense’ that the universe was static—indeed
this is why Einstein introduced the cosmological constant into his equations, making what he
later called the “biggest blunder” of his life.

9Throughout the rest of this paper I will use the notation L(Γ) to pick out the curve in
the model Γ which is closest to the data, k to denote the number of parameters of a model,
and N to denote the number of data points.
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to the curve-fitting problem is that AIC(Γ) measures the expected predictive
accuracy of Γ and it is the goal, or at least, a goal of science to make accurate
predictions.10

An example will help illustrate how AIC works. Suppose we are deciding
which of the two models, LIN and PAR, best captures the trend in some data
that we have collected. LIN has only two parameters, whilst PAR has three, so,
on this definition of simplicity, LIN is simpler than PAR, and it is also contained
in PAR. But because LIN is inside PAR, PAR is more ‘flexible’ than LIN, so it
will tend to be able to fit the data better. For us to be justified in choosing a
curve in the more complicated family, PAR, the trend in the data will have to be
sufficiently more parabolic than linear—and AIC will tell us exactly how much
more ‘sufficiently more’ is. It gives a reward for how close the closest curve in a
family is (that’s the log(P (Data|L(Γ)) part of the equation) but gives a penalty
for complexity (that’s the −k part of the equation)—the factor 1/N plays no
role in the trade-off and can be ignored.

There are many other ways of characterising the trade-off between simplicity
and accuracy. For example, the Bayesian Information Criterion (BIC) defines
the trade-off between simplicity and accuracy as:

BIC(Γ) =
1
N

(
log(P (Data|L(Γ))− k log(N)

2

)
giving more weight to the simplicity of models. These criteria disagree about
how the trade-off between simplicity and accuracy should work, but agree on
how these quantities are defined. I do not want to enter the debate about how
the trade-off between simplicity and accuracy is meant to work. As Forster
[2001] notes, it is not clear that the various information criteria are in conflict
with each other, since they arise from different views as to what the goal(s)
of science are, or should be. For example, AIC is said to maximise expected
predictive accuracy and BIC is said to maximise probability of truth. I won’t
take a stance on which ought to be the goal(s) of science.

Forster and Sober [1994] argue that their solution to the real curve-fitting
problem avoids the kind of problem—demonstrated by Priest [1976]—which the
simplicity solution to the traditional curve-fitting problem suffers from (Forster
[1999], p. 86). They argue that attributing simplicity to families of curves as
opposed to individual curves (like Popper, see §1.2) allows them to avoid Priest’s
problem:

“We emphasize that Akaike’s Theorem solves the curve-fitting problem without

attributing simplicity to specific curves; the quantity k, in the first instance, is

a property of families. (Footnote: Thus, the problems of defining simplicity of

10See Forster and Sober [1994] for more on the philosophy of science behind the equation.
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curves described by Priest [1976] do not undermine Akaike’s proposal.)” Forster

and Sober [1994], p. 11

DeVito [1997] argued that Forster and Sober’s solution to the real curve-fitting
problem is susceptible to a version of the grue paradox. This was very similar
to the problem that Priest showed that the simplicity solution to the traditional
curve-fitting problem had. However, Forster [1999] and Kieseppä [2001] argued
convincingly that DeVito’s arguments were flawed. Subsequently, it seems that
the final consensus is that there is no grue-like paradox for AIC. For example,
Kieseppä writes:

“[...] the analogy of the riddle [Goodman’s new riddle of induction] has little to

do with the model selection criteria [AIC] [...]” Kieseppä [2001] p. 787

And Forster [1999] goes into considerable detail to investigate whether or not
AIC is language invariant11, and concludes that it is:

“In summary, the property of language invariance is an important desideratum

for any criterion of model selection. [...] Fortunately, language invariance is built

in [to AIC] at the very beginning. [...]” Forster [1999] p. 100

The main point of this paper is to argue that there is indeed a version of the grue
paradox for AIC, which is very similar to the one Priest originally identified.
I will argue for this point in §2.1 and §2.2. My main target in this paper is
AIC, but my objections apply to other approaches to curve-fitting which merely
balance accuracy with paucity of parameters (of a family of curves).

2. A Gruesome Problem For Curve-Fitting

According to Akaikean methodology, we should choose the model that max-
imises the AIC function (this will be the model with the highest estimated
predictive accuracy), and choose the curve in this model which is closest to the
data:

“A literal reading of Akaike’s Theorem is that we should use the best fitting

curve from the family with the highest estimated predictive value.” Forster and

Sober [1994], p. 18

To literally do this though, we need to consider all families of curves. Practical
problems aside, this cannot be right, because we get absurd results.

11Language invariance is the property of not having what I have been calling representation
dependence.
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2.1 Russian Families

2.1. Russian Families

The first of the absurd results is known as the sub-family problem (Forster and
Sober [1994], p. 18).12 The problem is that in any sufficiently complicated
family of curves (i.e., a family with a large number of adjustable parameters)
there is a sub-family which contains only one curve with all of its parameters set
so that the only curve in this sub-family passes through each data point. This
sub-family has no adjustable parameters—all of its parameters are adjusted—
so, by the lights of AIC, it is a very simple family whose closest curve (i.e., the
only curve in the family) fits the data perfectly. Thus, it is a family with a very
high expected predictive accuracy.

Another way to see the problem is to suppose that AIC has chosen a partic-
ular family, Γ, which has (say) four adjustable parameters and has consequently
selected the curve γ. Then there is another family inside Γ—let’s call it ∆—
which has only three adjustable parameters and contains the curve γ. For
example, let:

Γ = {y = f(x)|f(x) = α0 + α1x+ α2x
2 + α3x

3}

and:

γ = 1 + 2x+ 3x2 + 4x3

and let:

∆ = {y = f(x)|f(x) = 1 + α1x+ α2x
2 + α3x

3}

It is easy to see that γ ∈ Γ, γ ∈ ∆ and that ∆ has fewer adjustable param-
eters than Γ. Since ∆ contains γ, the log-likelihood of ∆ is the same as the
log-likelihood of Γ. Yet, ∆, by construction, is simpler than Γ, so AIC must
recommend ∆ over Γ. But there is another family:

Θ = {y = f(x)|f(x) = 1 + 2x+ α2x
2 + α3x

3}
12In the literature, the name ‘the sub-family problem’ appears to refer to two distinct

problems. For example, Dowe et al [forthcoming] write:

“The sub-family problem is a generalised version of the curve-fitting problem.
Consider any model selection problem in which one family of models, A, is a
subset of another family, B. Then for any consistent assignment of priors and
for any possible data p(B|data) ≥ p(A|data). How, ask Forster and Sober [...],
can Bayesians explain the fact we sometimes prefer model family A to model
family B?” Dowe et al [forthcoming] p. 45

While Forster and Sober do ask this question of the Bayesian, this is not what they take the
sub-family problem to be. I will describe their sub-family problem below, and when I refer to
the sub-family problem, I mean the one defined by Forster and Sober.
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2.1 Russian Families

which is inside ∆ and has only two adjustable parameters and contains the
curve γ. So AIC has to recommend Θ over ∆. It’s easy to see that AIC is
forced to play this game of russian dolls—or rather, Russian families—until it
is left with a family that has no adjustable parameters and still contains γ, i.e.,
the singleton family {γ}. Such a singleton family appears to be ad hoc, since
the family is constructed around a curve which fits the data really well—too
well.

As Forster and Sober note, if AIC has to play this game of Russian familes,
then we are pushed back to selecting complicated curves that fit the data exactly
(ibid). This is precisely what a solution to the curve-fitting problem shouldn’t
do. To avoid trouble with Russian families, Forster and Sober introduce what
they call the Error Theorem. They use the Error Theorem to show that:

“[...] The Akaike estimates of the predictive accuracy of [the curve, f ] obtained

by viewing [f ] as the best fitting case in the ad hoc hierarchy of subfamilies

of F tend to be too high. [...] [So, we] have good reason not to trust the

Akaike accuracy estimates for ad hoc subfamilies constructed by fixing adjustable

parameters at their maximum likelihood values. We emphasize that this has

nothing to do with when subfamilies are constructed, or who constructs them.”

Forster and Sober [1994], p. 21

To understand the Error Theorem, we first need a definition:

Definition: The error of the estimated predictive accuracy of a family, F ,
is the AIC estimation of the predictive accuracy of family F minus the true
predictive accuracy of F . This error is written as Error[Estimated(A(F))].

The Error Theorem allows us to decompose this error into three parts:

The Error Theorem: Error[Estimated(A(F))] = Residual Fitting Error(F) +
Common Error + Sub-Family Error(F)

The Common Error is a constant so we can ignore it when making comparisons
across families. The Residual Fitting Error is both statistically and epistemically
unbiased.13 The trouble, according to Forster and Sober, is with the Sub-Family
Error.

To understand the Sub-Family Error, consider a family, K, with n parame-
ters that contains every family we would like to apply AIC to, and the true curve.
(The following paragraphs are drawn largely from Foster and Sober [1994] p.
20). Every curve in this family can be represented as a point in a n-dimensional
vector space—one dimension for each parameter. So for example, if K = LIN,
then n = 2 and the vector (c,m) represents the curve y = mx+ c.

13An estimator is epistemically biased if it over or under estimates the quantity it estimates
(see Forster and Sober [1994], p. 16]).
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Suppose that the true curve is represented by the vector τ = (τ1, τ2, ..., τn)
and let us center a coordinate system on this vector (as Forster and Sober do
[ibid]). So now, to represent the curve y = mx+c we use the vector (c−τ1,m−
τ2). Let L(K) denote the vector which represents the best fitting curve in K,
and let A(Fmax) denote the vector which represents the curve in F with the
highest predictive accuracy. The Sub-Family Error of F is then defined as:

Sub-Family Error(F ) = L(K) ·A(Fmax)

where ‘·’ denotes the dot product. Forster and Sober claim that the danger here
is that the tips of these two vectors (which represent curves in K) may be close
together, in which case the Sub-Family Error is large and positive (Forster and
Sober [1994], p. 20). (This reference to a measurement of distance between
curves should ring alarm bells). So for example, (to take an extreme case) if we
let Θ be the ad hoc singleton family of curves, {L(K)}, then A(Θmax) = L(K),
and so:

Sub-Family Error(Θ) = L(K) ·A(Θmax) = ||L(K)||2

will be large and positive (where || · || is the usual norm). Thus ad hoc families
have large and positive sub-family errors.

The problem with all this is that the dot product of two vectors is relative
to a choice of basis vectors for the vector space. A (trivial) mathematical fact
is that there can be more than one basis for a vector space.14 Although the
dot product is invariant under certain transformations of the basis vectors, it
is not invariant under all transformations. For example, consider the vectors
α = α1 · e1 + α2 · e2 and β = β1 · e1 + β2 · e2, where e1 and e2 are the usual
basis vectors for R2. Their dot product is: α · β = α1β1 + α2β2. However,
consider the same vectors but expressed in terms of the basis vectors e′1 = e1

and e′2 = e1 + e2: α = α1 · e′1 + (α2 − α1) · e′2 and β = β1 · e′1 + (β2 − β1) · e′2.
Now the dot product of the two vectors is: α · β = α1β1 + (α2 − α1)(β2 − β1).
It’s easy to see that for some choices of α and β, this transformed dot product
is not the same as the original. Since the Sub-Family Error is defined as a dot
product, it too is subject to this lack of invariance.

Another way to see this is to look at the definition of the Sub-Family Error
when a definition of the dot product is used:

Sub-Family Error(F ) = ||L(K)|| · ||A(Fmax)|| cos(θ)

where θ is the angle between the vectors L(K) and A(Fmax). If our coordinate
14For example, both {(0, 1), (1, 0)} and {(0, 1), (1, 1)} are bases for R2.
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system on the parameter space is centered on the true curve, then ||L(K)|| will
be non-zero, but if the coordinate system is centered on the best fitting curve in
K, then ||L(K)|| will be zero. In the former case, the Sub-Family Error(F ) can
be non-zero, and in the latter the Sub-Family Error(F) has to be zero. If AIC
is meant to be representation independent, then surely the results it delivers
should not depend on our choice of coordinate system on the parameter space.

Another way to see how the Sub-Family Error is representation dependent
is to re-parameterise the vector space which represents the curves in K. For
example, in the above example where K = LIN, use (d = 2c,m) instead of
(c,m). (4, 3) in the (d,m) space picks out the same curve (y = 3m+ 4/2) that
(2, 3) picks out in the (c,m) space (y = 3m+ 2). Suppose the curve in F which
is most predictively accurate is y = 1. The vector in the (d,m) space which
picks out this curve is (2, 0) and in the (c,m) space it is (1, 0). So, in the (d,m)
space the dot product between L(K) and A(Fmax) is: 4× 2 + 3× 0 = 8, and
in the (c,m) space it is: 2× 1 + 3× 0 = 2.

One may object that there could be some other way of formally showing
that there is something wrong with these ad hoc singleton families. However,
there is a very nice argument due to Kieseppä [2001] which shows that resorting
to any such formal result must, ultimately, be unsuccessful. As we will see, the
main thrust of his argument will appear very familiar.

Before we see Kieseppä’s argument, we first need to look at a problem which
is very similar to the sub-family problem. Consider a case where we use AIC to
choose among the various polynomial models: Mpol-0,Mpol-1,Mpol-2, ...,Mpol-N ;
where we have a large number of data points, and N is also large. (I have
switched notation to match Kieseppä’s. Mpol-n = POLY-n = {y = f(x)|f(x) =∑n

i=0 αix
n}.) Assume that the curve which passes closest to the data is in

Mpol-N—call this curve h—and further assume that it doesn’t fit the data per-
fectly. Due to the nature of the data, h will be a very ‘bumpy’ curve. Denote the
model which contains all vertical transformations of h (i.e., h plus a constant)
Mh+const. Both Mh+const and Mpol-0 have only one adjustable parameter, but
there is a curve in Mh+const which passes closer than any other curve in the
polynomial models, namely h, and there is no such curve in Mpol-0, so AIC
chooses Mh+const over Mpol-0. This is like the sub-family problem because we
constructed the model Mh+const around the curve h so that AIC treats it as
though it is as simple as Mpol-0. From now on I will refer to this problem—the
problem that AIC will choose models like Mh+const—as the Ad Hoc Family
Problem (the sub-family problem is a special case of the Ad Hoc Family Prob-
lem). Clearly we, or at least Forster and Sober, would like a mathematical result
(such as the Error Theorem) which would rule out Mh+const from the scope of
AIC whilst leaving Mpol-0 in. We are not so lucky, as Kieseppa points out:
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“Unfortunately, no such mathematical results can exist. This is because the sup-

posedly relevant feature of the models Mh+const and Mpol-0—i.e. the number

of ‘bumps’ of their curves—depends on the way one chooses to represent these

models.” (my emphasis) Kieseppä [2001], p. 783

As Kieseppä notes, this is a consequence of the fact that a straight line can
be transformed into a curve, and at the same time, a curve transformed into a
straight line by simply changing the coordinate system which they are in—this
was originally pointed out by Priest [1976]. However, later on Kieseppä also
writes:

“This point can also be formulated more positively by stating that there is noth-

ing inherently wrong with the unusual model Mh+const, and that any argument

which shows that it is more rational to include in [the scope of AIC] the model

Mpol-0 than to include in it the model Mh+const must be specific for the par-

ticular application that one has in mind. Such an argument must show that in

that particular application it is more rational to assume that the true curve is

approximately a horizontal line than to assume that it is approximately a curve

which has the unusual shape that all curves of Mh+const have, instead of show-

ing that models like Mpol-0 have some mathematical feature which models like

Mh+const lack.” (emphasis in original) Kieseppä [2001], p. 791

The problem with this though is that if we have an argument (in a particular
application) that the true curve is approximately a horizontal line, then we have
an argument for why all complicated models, such as Mpol-N , should not be in
the scope of AIC in the first place (for the particular application). In some
cases we may have such arguments but it clearly isn’t the case that we always
have some argument for why complicated models should not be in the scope of
AIC. For what might such an argument look like? The argument may be an
argument from background theory to a particular form which the true curve
must be (as in the mathematical psychology example mentioned in §1.5). But
as we have already seen, sometimes there are no (relevant) background theories
(e.g., the discovery of Kepler’s, Boyle’s, and Hubble’s laws (Glymour [1981], p.
323)). Forster in particular, also thinks that AIC can be applied to cases where
there are no background theories:

“In fact, we may suppose that there are no background theories. All that is

required is that the models share the common goal of predicting the same data.”

Forster [2001], p. 101

Alternatively, the argument may be one from a trend in the data to the form
of the true curve—but this is exactly what a solution to the (real) curve-fitting
problem is to provide. (I can think of no other reasonable way to argue that
the true curve should be of a particular form). Moreover, to suppose we always
have an argument for why the true curve is of a particular form, would be to
suppose that we never have to choose between simple and complicated models!
The model to be chosen would already be given to us by the argument.
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Since there is no general mathematical argument for why models likeMh+const

should be banned from the scope of AIC, and since it is absurd to suppose that
in every application we will have an argument for why the true curve should
be of a particular form (or forms) we are left only with the option of ruling
Mh+const out on the basis of Mh+const having certain representation dependent
properties. Of course, any scientist would reject Mh+const straight away, but as
Forster notes, the challenge is to understand the rationality of such practices
(Forster [1995], p. 35).

Note that this problem of representation dependence is not unique to AIC.
Any solution to the curve-fitting problem that is subject to the Ad Hoc Family
Problem will be representation dependent. The Bayesian Information Criterion
(BIC), for example, is also subject to the Ad Hoc Family Problem, so it too
must be representation dependent.

In this section I have argued that for AIC to be a solution to the curve-fitting
problem, it must avoid the Ad Hoc Family Problem. I have also argued that any
general way of doing this will result in the representation dependence of AIC. In
the next section, I will demonstrate how Priest’s original problem comes back
at the level of families.

2.2. Gruesome Families

Forster and Sober’s running example in their 1994 paper is the application of
AIC to the choice between LIN and PAR:

“A typical inference problem is that of deciding, given a set of seen data (a set

of number pairs, where the first number is a measured x-value, and the second

number is a measured y-value), whether to use LIN or whether PAR is better

for the purpose of predicting new data (a set of unseen (x, y) pairs). Since LIN

and PAR are competing models, the problem is a problem of model selection.

[...] The philosophical problem is to understand exactly how scientists should

compare models.” Forster [2001], p.85

Let’s consider how AIC is meant to work for the choice between LIN and PAR.
First we have some data, D(x, y) = {(xi, yi)|i = 1, ...,m}, over continuous
variables x and y, where m is the number of data points. Then we identify the
two families, LIN and PAR, over x and y:

LIN(x, y) = {y = f(x)|f(x) = α+ βx+ µ}

PAR(x, y) = {y = f(x)|f(x) = α+ βx+ γx2 + µ}

where paramters α and β are assumed to be real, and µ is an error term. Having
identified these two families, we then measure the estimated predictive accuracy
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of each family using AIC:

AIC(LIN(x, y)) =
1
m

(log(P (D(x,y)|L(LIN(x, y)))− 2)

AIC(PAR(x, y)) =
1
m

(log(P (D(x,y)|L(PAR(x, y)))− 3)

If AIC(LIN(x, y)) ≥ AIC(PAR(x, y)), then AIC recommends L(LIN(x, y))
as our final theory, and if AIC(LIN(x, y)) < AIC(PAR(x, y)), then AIC rec-
ommends L(PAR(x, y)) as our final theory.

But we didn’t have to represent the data using the x and y variables. We
could represent the data as D(X,Y ), where X and Y are non-affine one-to-one
transformations of x and y respectively. If we had represented the data this
way, then we identify the two families, LIN and PAR, over X and Y , instead
of x and y:

LIN(X,Y ) = {y = f(X)|f(X) = α+ βX + µ}

PAR(X,Y ) = {y = f(X)|f(X) = α+ βX + γX2 + µ}

Again, we then need to measure the estimated predictive accuracy of each family
using AIC:

AIC(LIN(X,Y )) =
1
m

(log(P (D(X,Y)|L(LIN(X,Y )))− 2)

AIC(PAR(X,Y )) =
1
m

(log(P (D(X,Y)|L(PAR(X,Y )))− 3)

Now either AIC(LIN(X,Y )) ≥ AIC(PAR(X,Y )), in which case AIC recom-
mends L(LIN(X,Y )) as our final theory, orAIC(LIN(X,Y )) < AIC(PAR(X,Y )),
in which case AIC recommends L(PAR(X,Y )) as our final theory. It is easy to
find examples where both L(LIN(X,Y )) 6= L(PAR(x, y)) and L(PAR(X,Y )) 6=
L(PAR(x, y)), so that the curve AIC recommends depends on how we choose
to represent the data.

The following is such an example. It is a very simple extension of the prob-
lem which Priest [1976] used to demonstrate that a grue problem existed for the
simplicity solution to the traditional curve-fitting problem. In fact, the example
is exactly the same, except that there is one more data point to consider. Sup-
pose we observe the following velocities: v = 2, v = 3, v = 4, and corresponding
momenta: p = 2, p = 4, p = 14 of a moving particle. This data can be seen in
figure 3. Since kinetic energy is momentum times velocity divided by two, we
also observe the following kinetic energies: E = 6, E = 12, and E = 28. The
data in terms of v and E can be seen in figure 3.
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Figure 3: Left: The (v, p) plane. Right: The (v,E) plane.

When we use AIC to decide between LIN(v, p) and PAR(v, p) and to choose
a curve from whichever family has the highest estimated predictive accuracy,
AIC selects the curve in figure 3 denoted by L(PAR(v, p)). However, when we
apply AIC to decide between LIN(v,E) and PAR(v,E) the theorem selects the
curve in figure 3 denoted by L(PAR(v,E)). It can be seen from both graphs
in figure 3 that these curves do not represent the same function. So, AIC gives
us inconsistent15 results, the results depending on which plane we decide to
represent the data in.

Note that this problem is different to the problem DeVito [1997] tries to
present Forster and Sober with. Forster’s reply [1999] to DeVito, I think, ad-
equately shows that DeVito presents no problem for AIC. DeVito makes two
claims: (i) that AIC doesn’t solve the curve fitting version of Goodman’s New
Riddle of Induction, and (ii) the notion of simplicity that AIC uses is language
dependent. Both claims, I believe, are true. But the truth of (i) is no chal-
lenge to AIC, as Forster argues ([1999], pp. 91–95), and the argument DeVito
presents for (ii) does not warrant the conclusion, as Forster also argues ([1999],
p. 95). I will review Forster’s reply to DeVito’s second claim here because it
is brief and I want to stress that it doesn’t apply to my objection, which may
easily be confused with DeVito’s. This is the problem DeVito presents:

“Take the data set D, where the curve in family of curves LIN (lines) that

best fits the data is H1 = α0 + α1x and the curve in family of curves PAR

(parabolas) that best fits the data is H2 = β0 +β1x+β2x2. Let us assume that

the log-likelihood of H1 equals the log-likeihood of H2. Then, Akaike’s theorem

tells us to choose H1 over H2 because LIN is simpler than PAR.

[...]

H1 and H2 were originally compared in the standard Cartesian coordinate

system [X,Y ]. If we change the coordinate system to [X′, Y ], where X′ =

β1x + β2x2, we find that H2 is preferred over H1. In [X′, Y ], there is a family

of curves PAR′, to which H′1 (≡ H1) belongs, and a family of curves LIN ′, to

15Not statistically inconsistent results.
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which H′2 (≡ H2) belongs. H′1 is the member of PAR′ that best fits the data

and H′2 is the member of LIN ′ that best fits the data. [...]

Since both H′1 and H′2 fit the data equally well and H′1 is a member of a more

complex family curves than H′2, Akaike’s theorem tells us to choose H′2 over H′1.

But this result is inconsistent with the result achieved in the [X,Y ] coordinate

system. Once again Akaike’s theorem leads to different results when we compare

the hypothesis using different conceptualizations of the world.” DeVito [1997],

p. 394

In reply to DeVito, Forster points out that the transformation which DeVito
uses cannot be one to one, since it does not preserve the subset relation (Forster
[1999], p. 95). Before the transformation, T , LIN ⊂ PAR, but after the trans-
formation T (LIN) 6⊂ T (PAR). I agree entirely with Forster here. But as I
mentioned earlier, my objection is not the same as DeVito’s and so cannot be
replied to in the same way. My example does not apply the transformation to
the families LIN and PAR. My example shows that there at least two coordinate
systems (planes), (x, y) and (X,Y ) (which are related by a one-to-one non-affine
transformation), in which we can construct the families LIN and PAR; hence
the extra notation: LIN(x, y), PAR(x, y), LIN(X,Y ), and PAR(X,Y ).

The problem comes from the fact that, in general, it is not always clear how
we are to choose between the coordinate systems, and that the curve which AIC
recommends depends upon this choice. Sometimes we may have background
information that suggests which coordinate system to construct LIN and PAR
in. For example, if X and Y are quantities with no recognised theoretical
significance, then we have at least some principled reason for not constructing
LIN and PAR in the (X,Y ) plane. However, Priest’s example, and my extension
of Priest’s example to the level of families, show that there are cases where
both (x, y) and (X,Y ) have theoretical significance. As I mentioned earlier,
this is actually worse than Goodman’s original grue paradox. For we at least
have the intuition that somehow the green/blue system of representation is
privileged over the grue/bleen system of representation. How could we say
that the velocity/momentum system of representation is privileged over the
velocity/kinetic energy system of representation, or vice versa? Both systems
seem perfectly natural.

We saw in the previous section that the space of models to which AIC is
applied must be restricted to exclude ad hoc models for it to be a viable solution
to the curve-fitting problem. In the next section, I will argue that there is yet
another way in which the space of models to which AIC is applied needs to be
restricted. In doing so, I hope to motivate the claim that any solution to the
curve-fitting problem will be representation dependent because representation
dependence is part of the very job description of a solution to the curve-fitting
problem.
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Figure 4: SIN is simpler and can fit the data better than PAR

2.3. SIN is Always Best

Another absurd result arises from the fact that AIC uses a definition of simplicity
that is only appropriate for comparing models of a particular type. To see this,
consider the family:

SIN = {y = f(x)|f(x) = α sin(βx); α, β ∈ R}

For any consistent16 set of data points, we can choose a curve in SIN that
passes arbitrarily close to the data—by only making use of two adjustable pa-
rameters! Hence according to the ‘literal’ reading of the Akaike Theorem, we
should never choose a curve in PAR because there will always be a curve in
SIN that is simpler—according to simplicity defined as the parameter dimen-
sion of the family—and passes closer to the data than L(PAR).17 Figure 4
compares a SIN curve fitted to the data with a PAR curve fitted to the data.
AIC recommends the SIN curve.

In response to this, one might insist that we just restrict our attention to
polynomials. However if we do this, then all SIN functions are now infinitely
complex. This is because SIN functions are infinite sums of polynomials. For
example, the Taylor expansion of sin(x) is:

∞∑
n=1

(−1)n

(2n+ 1)!
x(2n+1)

16Consistent here means that for every x value, there is one unique y value.
17Harman and Kulkarni (2003) p.3 make this point.
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Figure 5: Observed Data

So, instead of always choosing a SIN curve over a PAR curve, we now should
never choose a SIN curve over PAR. It gets much worse than this because
SIN is not the only family of curves which are infinite sums of polynomials—
all transcendental functions are infinite sums of polynomials. So curves which
are, intuitively, quite simple also should never get chosen—for example, y = ex

should never be chosen over any curve in PAR.
The next example shows that even in very simple, realistic cases, we need a

notion of simplicity which is more fine grained than simplicity at level of families
of curves. Consider the following scenario. A mine site has an unknown amount
of salt as a byproduct from its mining practices. It is illegal for the mine to
dump its salt in the nearby freshwater river. However, we suspect that they
are discharging salt into the river and are interested in whether or not this is
having a detrimental affect to the environment down river from the mine site.
To assess the environmental impact of the salt, we need to know how the salt
concentration varies over time. We collect some data for the salt content in
the water at some point not too far down river from the mine. This data is
plotted in figure 5. Intuitively, the curve shown in figure 6 would be an ideal
curve for this data. But we will see that AIC picks something ridiculous instead.
Consider the following two models18:

SIN -1 = {s = f(t)|f(t) = α sin(βt) + c}

SIN -2 = {s = f(t)|f(t) = α sin(βt) + γ sin(δt) + c}
18Let us ignore the practical problem of not being able to consider the entire set of SIN -n

models. SIN -1 and SIN -2 will be enough for creating serious trouble.
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Figure 6: s = sin(0.2t)

Given our data, it is easy to see that AIC will recommend SIN-1 over SIN-
2 if L(SIN-2) doesn’t fit the data much better than L(SIN-1). This seems
right. The problem however, is that AIC delivers absurd results. The curve
AIC tells us to choose is nothing like the curve in figure 6. This is because a
curve from SIN-1 with a very high value for β can fit the data better than a
curve from SIN-1 with a more intuitively appropriate value for β. The high
frequency curve can be seen in Figure 7. The important point to recognise
is that both the high frequency curve and the low frequency curve are in the
same family, SIN-1. Intuitively, s = 1.06 sin(3.34t) is a much more complicated
curve than s = sin(0.2t).19 So clearly we want to make a distinction between
s = 1.06 sin(3.34t) and s = sin(0.2t). AIC sees no such distinction. The problem
is that within the family SIN-1, there are both the curves which capture the
trend in the data, and the curves which fit the data perfectly, giving too much
weight to the noise in the data. The above example shows that Forster and
Sober’s proposed solution to the curve fitting problem is not “a method for
separating the ‘trends’ in the data from the random deviations from those trends
generated by error” (Forster and Sober [1994], p. 5). AIC does not recommend
the curve (or any nearby curve) which captures the ‘trend’ in the data. It
picks out a curve that is obsessed with the random deviations. This is because
the definition of simplicity that it uses does not capture the difference between

19If you are not willing to grant that it is simplicity at work here, surely you grant that
s = sin(0.2t) is at least more plausible to s = 1.06 sin(3.34t), and that any approach to curve-
fitting—which is worth its salt!—would capture this difference in plausibility. At any rate, I
sympathise with Sober when he writes: “The idea is that choosing the simpler theory means
[according to philosophers] regarding it as more plausible than its more complex rival.” (Sober
[2001], p. 13).
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Figure 7: s = 1.06 sin(3.34t)

curves such as s = 1.06 sin(3.34t) and s = sin(0.2t). So much for the claim that
AIC solves the curve-fitting problem. Clearly, AIC has only limited successes,
if it has any at all.20

It seems that in these cases we need to put a simplicity ordering over the
SIN curves which correlates with their frequencies—high frequency curves being
more complicated than low frequency curves.21 Something like this does seem
right, but such an ordering will depend on the way the curves are represented.
Imagine that for the past month we have looked up at the sky at midnight
and seen a satellite in roughly the same position every night. Two competing
hypotheses which are compatible with these observations are (i) the orbit of the
satellite is geostationary and (ii) it has some particular non-geostationary orbit.
If we think of these two hypothesis from the point of view of a coordinate system
that rotates with the Earth, then we can represent them mathematically as:

GEOS : x = cos(0t)

y = sin(0t)

20Kieseppä [1999] points out that periodic models do not satisfy certain assumptions built
into the Akaike framework, so these results should not be that surprising. One may complain
then that I am being unfair to AIC. If AIC were not paraded as a solution to the curve-
fitting problem, then I think this would be a reasonable complaint. However, it is, and so the
limitations it has need to be pointed out. Also, I will soon use periodic models to argue that
any solution to the curve-fitting problem must be representation dependent.

21Daniel Nolan suggested this to me in personal correspondence. At this point, the meaning
of ‘simplicity’ may be being stretched quite a bit. It does not matter though, all we need is
some preference ordering. After all, the problem is to get trends out of the data, not to make
simplicity solve every aspect of the curve-fitting problem.

26



A Guide to Truth

¬GEOS : x = cos(ωt)

y = sin(ωt)

where ω is a fixed angular velocity. The geostationary hypothesis has a lower
frequency than the non-geostationary hypothesis. But of course if we think
of the two competing hypotheses in terms of a coordinate system that doesn’t
rotate with the Earth we get:

GEOS : X = cos(ωt)

Y = sin(ωt)

¬GEOS : X = cos(0t)

Y = sin(0t)

and now it is the non-geostationary orbit with the lower frequency. Which hy-
pothesis is simpler, depends on how we represent them. We may introduce a
richer notion of simplicity to distinguish the two hypothesis. For example, the
geostationary hypothesis may entail the existence of more causal mechanisms
(orbit stabilizing jets, etc.) than the non-geostationary hypothesis. But that
goes beyond the original curve-fitting problem: to make an inference from the
data to the true curve—even without the aid of background theoretical consid-
erations.

Another possibility is to compare the number of turning points of the curves.22

High frequency periodic models have curves with more turning points than the
curves in low frequency periodic models (of course this has to be restricted to
a bounded domain, otherwise both have infinitely many turning points). How-
ever, this too relies on representation dependent properties of the curves that
represent the hypotheses, as we saw in Priest’s example.

3. A Guide to Truth

Representation dependence seems to be taken to be quite a bad feature to have:

“Unfortunately, this kind of simplicity depends on the mode of representation—

it is language dependent, whereas truth and other epistemic virtues such as

predictive accuracy are language independent. That is why pragmatic simplicity

is no good as an indicator of truth.” Forster (MS), p.36

The idea, I think, is that if a solution to the curve-fitting problem depends on
how the data and curves are represented, then a degree of subjectivity is intro-

22This was suggested to me by Alan Hájek.
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duced, and subjectivity is bad. Similarly for ways of measuring accuracy. SSR
is taken to be a bad measure of accuracy because we can change the represen-
tation of the data to make any theory as close to the observations we like. If we
order theories according to how close they are to the observations, then we can
even change this ordering by changing the way the data is represented. But note
that scientists were successfully using SSR as a measure of accuracy long before
any apparently representation independent measures of accuracy (like MLLE)
entered the picture (and it is not clear that MLLE is representation indepen-
dent anyway, §1.4). So representation dependence can’t be that bad. Also note
that the Principle of Indifference (which is also representation dependent) has
been used with great success in science. For instance, Jaynes uses an interesting
example to make this point:

“[G]iven the average particle density and total energy of a gas, predict its vis-

cosity. The answer, evidently, depends on the exact spatial and velocity dis-

tributions of the molecules (in fact, it depends critically on position-velocity

correlations), and nothing in the given data seems to tells us which distribution

to assume. Yet physicists have made definite choices, guided by the Principle

of Indifference, and they have led us to correct and nontrivial predictions of

viscosity and many other physical phenomena.” Jaynes [1973], pp. 478–9

Of course, if we cannot avoid representation dependence, then some system of
representation must be privileged. Actually, this point has already been made
(even in the context of curve-fitting) long ago by Post [1960] (an important
paper that appears to be overlooked by the contemporary literature):

“The need for some restriction on the choice of basis-language is apparent from

the following: We could, of course, always reduce a curve to a straight line and

at the same time change a straight line into a curve by an appropriate change

of co-ordinates, thus inverting the order of simplicity.” Post [1960], p. 38

However, this cannot be the whole story, as we have seen that on the standard
way of determining a choice of basis-language (i.e., naturalness and entrench-
ment), there can still be competing systems of representation. For instance, in
Priest’s example, how are we to decide between the momentum/velocity and
kinetic energy/velocity systems of representation?

One way in which we may solve this problem for curve-fitting comes from
a solution to Betrand’s Paradox in probability theory. Remember that van
Fraassen’s box factory version of the problem was that by using the Principle of
Indifference over possible side-lengths we get a different probability assignment
to the one we get when we use the principle over possible side-areas. Poincaré
[ref] and Jaynes [ref] introduced a method of symmetry considerations to solve
Bertrand’s Paradox. Van Fraassen [ref] uses this method to solve the box factory
problem. The method is essentially that we suppose that there is a solution,
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and consider what symmetries should be true of the solution. For example,
whatever the distribution over possible boxes is, it should dilation invariant. It
turns out that the only distribution which has this property is the log uniform
distribution. So we get a unique solution to the problem.

Similar reasoning can help us solve Priest’s problem. We suppose that there
is a unique hypothesis and consider what symmetries should be true of it. What-
ever the hypothesis we should choose in Priest’s problem is, it should be dilation
invariant (i.e., it should not matter if we use kinetic energy instead of velocity,
and vice versa). It turns out that if we choose the simplest curve in a logarithmic
scale, then we get a unique hypothesis.

In the literature on the Principle of Indifference, this success was limited. For
it was quickly pointed out that there were other paradoxes which this method
of symmetry considerations could not solve. One such paradox is von Mises’s
Water & Wine Paradox. Suppose we have a glass with 10 cc watered down wine
in it. There is at least 1 cc of water in the glass, and at least 1 cc of wine. What is
the probability that there is at least 5 cc of water? If we are to use the Principle
of Indifference here, then there at least four different quantities we could apply
it to: the proportion of (i) wine to total, (ii) water to total, (iii) wine to water,
(iv) water to wine. And on each application the Principle of Indifference gives
us a different answer (see van Fraassen [1989], p. 314 for details). As van
Fraassen points out, symmetries won’t help us here (ibid). This because the
four quantities in question are related by both dilations and translations, and
there is no distribution that is invariant under both transformations.

Mikkelson [2004] has proposed a solution to the von Mises Water & Wine
paradox by suggesting that water/wine ratios supervene on water and wine
quantities, and we should privilege the application of the Principle of Indiffer-
ence over the more fundamental quantities, water and wine. Ratios supervene
on quantities because we cannot change a ratio without changing the quantities
of which it is a ratio of, but we can change the quantities (double each, for
instance) without changing the ratios. But what are the quantities? Mikkelson
seems to think that it is a settled matter that they are water and wine. But we
can easily carve the world up using different quantities. For example, consider
the quantities wane and witer, defined as:

wane = water/wine

witer = wine/water

Wane and witer ratios supervene on the quantities wane and witer, and of course
the two wane and witer ratios correspond to what we normally call water and
wine. This problem can be avoided if we are prepared to say that water and
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wine are more natural (or entrenched, etc.) than wane and witer.
These two different classes of paradoxes—grue-like paradoxes and Bertrand-

style paradoxs—are thus quite related, and progress made on one class can be
turned into progress on another. I hope to have shown in this section that for
both types of problems, if we privilege a natural (or entrenched, etc.) language,
make use of symmetry considerations and use simplicity, then we make a great
deal of headway. Of course I have not shown that if we do this, then there are
no more remaining problems to overcome.

4. Conclusion

In §2.1, I argued that AIC suffers from the Ad Hoc Family Problem, and as
a result, is representation dependent. In §2.2, I argued that even when we
restrict AIC to a choice between LIN and PAR, the results it delivers turns
out to be representation dependent. In §2.3, I argued that AIC fails to handle
periodic models and that any approach to the curve-fitting problem which could
handle these models, would need to rely on properties of the models that are
representation dependent. The overall purpose of these arguments was to try to
convince the reader that all existing approaches to the curve-fitting problem are
representation dependent, and that all future ones will also be representation
dependent. What I have hope to have shown is that the idea that we can create
a representation independent statistical ‘black box’ into which we can pump
raw data and get the best of theories out (the ‘trends’ in the data) is doomed
to failure. Just as is the idea of a purely syntactic theory of inductive logic is
doomed to failure. At some point, some kind of semantic content needs to be
added. But if this is done via the use of the naturalness or entrenchment of
predicates, then problems still remain. In §3 I showed that the use of symmetry
can help overcome these problems. In the end, it seems we need a combination
of a privileged basis language, symmetry, and simplicity.23
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