(GENERAL PURPOSE) AUTOMATED REASONING IN MODAL LOGICS

Branden Fitelson

Department of Philosophy San José State University

Е

Automated Reasoning Group

Mathematics & Computer Science Division

Argonne National Laboratory

fitelson@facstaff.wisc.edu
philosophy.wisc.edu/fitelson

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

Overview of Presentation

- Brief Background on AR (first-order syntax, OTTER notation, clauses)
- Propositional Modal Logics
 - Axiomatic Approaches
 - * AR in Hilbert-style systems
 - * Proofs & Models
 - Semantical Approaches
 - * AR involving Kripke translations
 - * Proofs & Models
 - Application of Axiomatic Methods to Interpretability Logics
- Other, "special purpose" approaches
- Challenge problems and Open Questions
- References

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

Automated Resoning in Modal Logics

Brief Background on AR I

• Basic Notation (OTTER syntax in parens):

Predicates	A, B, C (A, B, C)	Constants	<i>a</i> , <i>b</i> , <i>c</i> (a, b, c)
Variables	$x, y, z (\mathbf{x}, \mathbf{y}, \mathbf{z})$	Functions	f, g, h (f, g, h)
Quantifiers	∀,∃(na)	Connectives	$\land, \rightarrow, \lor, \neg, = (na, na, , -, =)$

• Formulas vs Clauses (quantifier elimination and CNF)

Formula	Clause (Otter — Q -free, and CNF)	
$(\forall x)(Px \to Gx)$	$-P(x) \mid G(x)$.	
$(\exists x)(Px \wedge Gx)$	P(a). G(a). (two clauses, new "a")	
$(\forall x)(\exists y)(Rxy \lor x \neq y)$	$R(x,f(x)) \mid -(x = f(x)). \text{ (new "f")}$	
$(\forall x)(\forall y)(\exists z)(Rxyz \land Rzyx)$	R(x,y,f(x,y)). R(f(x,y),x,y). (new "f")	

• See chapters 1 and 10 of Kalman's recent book [11], and McCune's OTTER user manual [13] for details on OTTER's clause notation and syntax.

Automated Resoning in Modal Logics

Brief Background on AR II

- OTTER implements many rules of inference and strategies (see [11]). For our purposes (for now), it will suffice to discuss just one of these.
 - Hyperresolution [11, chapter 2] is a generalization of disjunctive syllogism in classical logic. Here are some examples:

– In $\mathcal{N}_1 | \dots | \mathcal{N}_n$, \mathcal{S} , $\therefore \mathcal{R}$, $\mathcal{N}_1 | \dots | \mathcal{N}_n$ is the *nucleus*, \mathcal{S} (may be a set) is the *satellite*, and \mathcal{R} (may be non-literal) is the *hyperresolvent*.

3

Proving Theorems in Hilbert-Style Sentential Logics I

- As our last example shows, hyperresolution is the perfect rule for reasoning about sentential logical calculi (in Hilbert-Style).
- For instance, classical sentential logic can be axiomatized using only hyperresolution, and the following four clauses (see [17], and [11, ch. 8]):

```
MP. -P(i(x,y)) | -P(x) | P(y).
```

```
L_1. P(i(i(x,y),i(i(y,z),i(x,z)))).
```

- \mathcal{L}_2 . P(i(x,i(n(x),y))).
- \mathcal{L}_3 . P(i(i(n(x),x),x)).
- In recent years, we (at Argonne) have used OTTER to prove lots of new results in a wide variety of sentential logics (see [6], [5], [8], [4], [7]).
- Even simple logical calculi can involve very difficult proofs (see [20] for a nice survey of challenging problems, and powerful strategies for attacking them). We can prove all the theorems in [15, Appendix I] using OTTER.

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

Proving Theorems in Hilbert-Style Sentential Logics II

- Here's a simple but non-trivial OTTER proof of P(i(n(x)),x)) in E:
 - 1 [MP] -P(i(x,y)) | -P(x) | P(y).
 - 2 [$\{1\}$] P($\{i(x,y),i(i(y,z),i(x,z))\}$).
 - 3 [$£_2$] P(i(x,i(n(x),y))).

 - 5 [2,2,1] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).
 - 6 [3,2,1] P(i(i(i(n(x),y),z),i(x,z))).
 - 7 [4,2,1] P(i(i(x,y),i(i(n(x),x),y))).
 - 8 [5,5,1] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).
 - 9 [6,5,1] P(i(i(x,n(y)),i(y,i(x,z)))).
 - 10 [7,6,1] P(i(x,i(i(n(n(x)),n(x)),y))).
 - 11 [7,5,1] P(i(i(x,y),i(i(n(i(y,z)),i(y,z)),i(x,z)))).
 - 12 [7,4,1] P(i(i(n(i(n(x),x)),i(n(x),x)),x)).
- 13 [9,6,1] P(i(x,i(y,i(n(x),z)))).

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

Automated Resoning in Modal Logics

```
14 [10,8,1] P(i(i(x,i(n(n(y)),n(y))),i(y,i(x,z)))).
```

- 15 [11,8,1] P(i(i(x,i(n(i(y,z)),i(y,z))),i(i(u,y),i(x,i(u,z))))).
- 16 [13,2,1] P(i(i(i(x,i(n(y),z)),u),i(y,u))).
- 26 [13,12,1] P(i(x,i(n(i(i(n(i(n(y),y)),i(n(y),y)),z))).
- 17 [16,14,1] P(i(n(x),i(x,i(y,z)))).
- 18 [26,15,1] P(i(i(x,i(n(i(n(y),y)),i(n(y),y))),i(z,i(x,y)))).
- 19 [17,11,1] P(i(i(n(i(i(x,i(y,z)),u)),i(i(x,i(y,z)),u)),i(n(x),u))).
- 20 [18,18,1] P(i(x,i(i(n(y),i(n(i(n(y),y)),i(n(y),y))),y))).
- 21 [20,19,1] P(i(n(n(x)),x)).
- This is a shorter proof than the one Łukasiewicz reports in [17]. To give you a feel for a *hard* problem in this area, try to prove that the following single axiom [14] is sufficient (with MP) to derive \pounds_1 – \pounds_3 .

```
P(i(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).
```

The shortest known proof of this theorem is 41 steps long, and was found (from scratch) by Larry Wos using Otter [6]. Wos's Otter proof is simpler (in various ways) than the proof reported by Meredith in [14].

Automated Resoning in Modal Logics

Proofs in Hilbert-Style Sentential Modal Logics I

- Sentential modal logics are just simple extensions of classical sentential logic. The new connectives "□" (we'll use "L" in Otter) and "♦" (we'll use "M" in Otter) are added to the stock of classical connectives.
- All "normal" modal logics add the following rule of inference and the following axiom to classical sentential logic (OTTER notation):

```
RN. -P(x) \mid P(L(x)).
```

K.P(i(L(i(x,y)),i(L(x),L(y)))).

- Otter performs best with minimal sets of connectives. So, I will use only $\{i, n, L\} [M(x) = n(L(n(x)))]$ to characterize sentential modal logics.
- Other systems of interest add some or all of the following axioms:

```
D. P(i(L(x),n(L(n(x))))).
```

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

4. P(i(L(x),L(L(x)))).

T. P(i(L(x),x)).

5. P(i(n(L(n(x))),L(n(L(n(x)))))).

G. P(i(L(n(L(n(x)))), n(L(n(L(x)))))). B. P(i(x, L(n(L(n(x)))))).

1 2

3 3

3

1

1 2

*3

Finding Matrix Models for Sentential Modal Logics: S5 & G

0 0 0 3

2-element S5 Kripke

model in which G fails:

L(x)

3 2 1

-x

 $\Box \Diamond p$

Proofs in Hilbert-Style Sentential Modal Logics II

1. $\vdash p \rightarrow (q \rightarrow (p \& q))$
--

PL Tautology

2.
$$\vdash \Box(p \rightarrow (q \rightarrow (p \& q)))$$

1, RN

3.
$$\vdash \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)))$$

K axiom

4.
$$\vdash \Box(p \to (q \to (p \& q))) \to (\Box p \to \Box(q \to (p \& q)))$$

5.
$$\vdash \Box p \rightarrow \Box (p \rightarrow (p \& q))$$

3, Subst. 2, 4, MP

6.
$$\vdash \Box(q \to (p \& q)) \to (\Box p \to \Box(p \& q))$$

7. $\vdash \Box p \to (\Box q \to \Box(p \& q))$

3, Subst. 5, 6, "PL"

8.
$$\vdash (\Box p \& \Box q) \rightarrow \Box (p \& q)$$

7, "PL"

- This K "proof" [2, page 35] is missing many steps, and it contains the connective "&", which we are not using in our OTTER representation.
 Exercise (hard!): represent "⊢ (□p & □q) → □(p & q)" in our OTTER notation, and try to find a *proof* of it in our system K above (44 steps?).
- Note: almost all of the complexity is in the *non*-modal *PL reasoning*.

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

• McKinsey's axiom G cannot be expressed [2] as a (first order) constraint

on the accessibility relation R in Kripke frames (: using Kripke

translations to find such models automatically will not work, see below).

• I found the logical matrices above using John Slaney's special purpose

matrix finder for implicational logics MaGIC [16], and verified them with Bill McCune's general first order model finder Mace [12] (a companion to Otter, which takes Otter input). I found the Kripke model by hand.

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

Automated Resoning in Modal Logics

- 1

Automated Reasoning with Kripke Translations

• Many (but not all: *e.g.*, G and Löb) interesting modal formulae correspond to first-order conditions on relations *R* in Kripke frames:

$D. \Box p \to \Diamond p$	<i>R</i> is serial. $[(\forall x)(\exists y)Rxy]$
$T. \Box p \to p$	R is reflexive. $[(\forall x)Rxx]$
$B. p \to \Box \Diamond p$	R is symmetric. $[(\forall x)(\forall y)(Rxy \rightarrow Ryx)]$
$4. \ \Box p \to \Box \Box p$	<i>R</i> is transitive. $[(\forall x)(\forall y)(\forall z)((Rxy \& Ryz) \rightarrow Rxz)]$
$5. \diamondsuit p \rightarrow \Box \diamondsuit p$	R is euclidean. $[(\forall x)(\forall y)(\forall z)((Rxy \& Rxz) \rightarrow Ryz)]$

- These correspondences can allow us to (automatically) find proofs and countermodels more easily than with "pure" axiomatic techniques.
- Exercises: (1) Prove that all serial, symmetric, euclidean *R*s are reflexive and transitive. (2) Prove that some serial, euclidean *R*s are not transitive. Then, prove the *syntactic analogues* of (1) and (2), *i.e.*, (1') prove **KDB5** ⊢ T, and **KDB5** ⊢ 4; and, (2') show **KD5** ⊬ 4 using logical *matrices*. (1') and (2') are much harder.

Automated Resoning in Modal Logics

Application of Axiomatic Methods to Interpretability Logics I

- Interpretability logics (see [18] and [10]) are propositional modal logics with an additional, binary modal operator "▷" ("I" in Otter).
- ullet The basic system IL is K4 + the following axioms (Otter notation):
 - Löb. P(i(L(i(L(x),x)),L(x))).
 - J_1 . P(i(L(i(x,y)),I(x,y))).
 - J_2 . P(i(n(i(I(x,y),n(I(y,z)))),I(x,z))).
 - $\label{eq:control_control_control} J_3. \quad P(\text{i}(\text{n}(\text{i}(\text{I}(\text{x},\text{y}),\text{n}(\text{I}(\text{z},\text{y})))),\text{I}(\text{i}(\text{n}(\text{x}),\text{z}),\text{y}))).$
 - J_4 . P(i(I(x,y),I(n(L(n(x))),n(L(n(y))))).
 - J_5 . P(I(n(L(n(x))),x)).
- Other formulas of interest in this context include:
 - P. P(i(I(x,y),L(I(x,y)))).
 - M. P(i(I(x,y),I(n(i(x,n(L(z)))),n(i(y,n(L(z)))))).
 - W. P(i(I(x,y),I(x,n(i(y,n(L(n(x)))))))).
 - P_0 . P(i(I(x,n(L(n(y)))),L(I(x,y)))).
 - M_0 . P(i(I(x,y),I(n(i(n(L(n(x))),n(L(z)))),n(i(y,n(L(z)))))))

Automated Resoning in Modal Logics

Application of Axiomatic Methods to Interpretability Logics II

- The Kripke semantics for interpretability logics is much less tractable (from a first order perspective) than it was for "normal" modal logics.
- So, we are pressured to use axiomatic methods of (automated) proof and model finding. Here, OTTER, MaGIC, and Mace can be very useful.
- The following can be shown pretty easily, using OTTER and MaGIC.
 - (i) IL + I(i(n(x),n(L(n(x)))),x) (ii) $IL \not\vdash P$

(iii) IL + M

- (iv) IL ⊬ W
- Difficult problems (not yet solved with automated reasoning): (vii) Axiom 4 is dependent in **IL** (known), (viii) Some pair of $\{W, P_0, M_0\}$ implies the third, in **IL** (OPEN), (ix) **IL** \nvdash P₀ (known), (x) **IL** \nvdash M₀ (known).
 - (C) i(I(x, n(L(n(y)))), L(I(x, n(L(n(y))))).
 - (xi) $ILP \vdash C$, and (xii) $ILM \vdash C$ (known). See [18] for more problems.

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

Some Other Approaches & Some More Challenge Problems

- Automated theorem proving (and model finding) for modal logics have been studied extensively in the last few decades ([9], [1], [19]).
- Typically, the focus has been on *special-purpose* provers and finders. Such systems essentially "hard code" the structures of particular logics.
- While this may lead to faster programs, it sacrifices generality. We'd like to see more work done on making general purpose techniques effective.
- Two more (known) \(\mu\) problems. Find logical matrices which establish that (a) **KTB** $\not\vdash$ 5 or (b) **KTB** $\not\vdash$ 4 (there are 3-element kripke models).
- More (known) + problems in **IL**+. Show any of the following: (c) **ILM** + W, (d) **ILP** \vdash W, (e) **ILM** \vdash P₀, (f) **ILP** \vdash P₀, (g) **ILM** \vdash M₀, (h) **ILP** \vdash M₀.
- One more reference. See [3] for a general survey of propositional logics.
- See http://philosophy.wisc.edu/fitelson/modal.htm for files, etc.

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

BF @ AR @ MCS @ ANL & Philosophy @ SJSU

May 16, 2002

Automated Resoning in Modal Logics

References

- [1] M. Abadi and Z. Manna, Modal theorem proving, 8th international conference on automated deduction (Oxford, 1986), Springer, Berlin, 1986, pp. 172-189.
- [2] P. Blackburn, M. de Rijke, and Y. Venema, *Modal logic*, Cambridge University Press, 2001.
- [3] R. L. Epstein, Propositional logics. The semantic foundations of logic, second ed., Wadsworth/Thomson Learning, Belmont, CA, 2001, With the assistance and collaboration of Walter A. Carnielli, Itala M. L. D'Ottaviano, Stanisław Krajewski and Roger D. Maddux.
- [4] Z. Ernst, B. Fitelson, K. Harris, and L. Wos, Shortest axiomatizations of implicational S4 and S5, submitted to the Notre Dame Journal of Formal Logic.
- _____, A concise axiomatization of RM→, Bull. Sect. Logic Univ. Łódź **30** (2001), 191–194.
- [6] B. Fitelson, K. Harris, R. Veroff, D. Ulrich, and L. Wos, Advances in logic through automated reasoning, Journal of Automated Reasoning (special issue) 27 (2001), no. 2.
- [7] B. Fitelson and L. Wos, Automated reasoning and the discovery of missing and elegant proofs, book manuscript, to be published (soon, we hope!) by Rinton Press.
- [8] ______, Finding missing proofs with automated reasoning, Studia Logica 68 (2001), 329–356.
- [9] M. Fitting, Proof methods for modal and intuitionistic logics, D. Reidel, Dordrecht, 1983.
- [10] J. J. Joosten and A. Visser, The interpretability logic of all reasonable arithmetical theories. The

Automated Resoning in Modal Logics

- new conjecture, Erkenntnis 53 (2000), no. 1-2, 3-26.
- [11] J. A. Kalman, Automated reasoning with Otter, Rinton Press, 2001.
- [12] W. McCune, MACE: Models & Counterexamples, http://www.mcs.anl.gov/AR/mace/.
- [13] _____, Otter 3.0 Reference Manual and Guide, Tech. Report ANL-94/6, Argonne National Laboratory, Argonne, IL, 1994, http://www.mcs.anl.gov/AR/otter/.
- [14] C. A. Meredith, Single axioms for the systems (C,N), (C,0), and (A,N) of the two-valued propositional calculus, J. Computing Systems 1 (1953), 155-164.
- [15] A. N. Prior, Formal Logic, Clarendon Press, Oxford, 1962.
- [16] J. Slaney, MaGIC, matrix generator for implication connectives: Release 2.1 notes and guide, technical report tr-arp-11-95, Tech. report, Automated Reasoning Project, Australian National University, 1995, http://arp.anu.edu.au/~jks/magic.html.
- [17] J. Łukasiewicz, Elements of mathematical logic, Pergamon Press, 1963, English translation of the second edition (1958) of Elementy logiki matematycznej, PWN, Warsaw.
- [18] A. Visser, An overview of interpretability logic, Advances in Modal Logic '96 (M. Kracht, M. de Rijke, and H. Wansing, eds.), CSLI Publications, Stanford, 1997, pp. 307–359.
- [19] L. A. Wallen, Automated deduction in nonclassical logics, MIT Press, Cambridge, MA, 1990.
- [20] L. Wos, A fascinating country in the world of computing: Your guide to automated reasoning, World Scientific, 1999.