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Brief Background on AR | I \

e Basic Notation (@rer syntax in parens):

///'

Predicates| A, B,C (A, B, Q) Constants a,b,c(a,b, )
Variables XY, 2(x,y,2z) Functions f,o,h(£,9,h)
Quantifiers ¥, d(na) Connectives| A, —,V, -, =(na, na,|, -, =)

e Formulasvs Clauses (quantifier elimination and CNF)

Formula ‘ Clause (@ter — Q-free, and CNF)

(VX)(Px — GX) -P(x) | G().
@X)(Px A Gx) P(a). G(a). (two clauses, newd")
(VXA (Rxy v X # Y) R(x,£(x)) | -(x = £(x)). (new “f")
(VX)(¥Y)(FD(Ryz A Rzyx) | R(x,y,£(x,y)). R(£(x,¥),x,y). (new “f")

e See chapters 1 and 10 of Kalman'’s recent book [11], and McCune’s

\ Orrer user manual [13] for details oni@r'’s clause notation and synta}
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Brief Background on AR 11 I

e Orter implements many rules of inference and strategies (see [11]). Fpr
our purposes (for now), it will sftice to discuss just one of these.

— Hyperresolutior{11, chapter 2] is a generalization of disjunctive

syllogism in classical logic. Here are some examples:

-P | M. -P(x) | M(&x). -L(x,f()) | L(x,f)).
P. P(s). L(y,f(y)).
SM. S M(s) . S L(b,f(a)).

PAE,Y)) | P | P(Y).
PGGEGE,Y),1(y,2)),1(x,2))).
PAGEGEGE,Y),x),¥)).
SPA,x)).

-P(x) | P(L(x)).
P(i(x,x)).
SPLEx,x))).

—InN1| ... [Ny S, R, N1 | ... | Ny is thenucleus, S (may be a set)

is thesatellite, andR (may be non-literal) is thbyperresolvent.
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/ Proving Theoremsin Hilbert-Style Sentential Logics| I \

e As our last example shows, hyperresolution is the perfect rule for

reasoning about sentential logical calculi (in Hilbert-Style).

For instance, classical sentential logic can be axiomatized using only
hyperresolution, and the following four clauses (see [17], and [118]¢h
MP.-P(i(x,y)) | -P(x) | P(¥).

b PAGEG,Y),130EEY,2),1(x,2)))).

L2, PAG,1((x),¥))) .

L. PAEH M) ,X),x)).

In recent years, we (at Argonne) have usade® to prove lots of new
results in a wide variety of sentential logics (see [6], [5], [8], [4], [7]).

Even simple logical calculi can involwery difficult proofs (see [20] for a
nice survey of challenging problems, and powerful strategies for attacking
them). We can prove all the theorems in [15, Appendix I] usinge®. j
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/ Proving Theoremsin Hilbert-Style Sentential Logicsl| I\

K 13 [9,6,1] PG (x,i(y,i(m(x),2)))). j

e Here’s a simple but non-trivial @er proof of P(i (n(n(x)),x)) in k:

[MP] -P(A(x,y)) | -P() | P(y).

[£1] PAGEE,Y,10EG,2),1(x,2)))).

[E2] PAG,i(m&x),y))).

(k3] PGEW),x),x)).

[2,2,1] PGAGEGEG,Y,i(z,y)),w),i{(z,x),W)).
[3,2,1] PGEUEMEX),Y),2),1(x,2))).

[4,2,1] PGAGEG,Y),1EWEX),x),¥))).

[5,5,11 PGAGEK,1(y,2)),iGEW,y),1i(x,1(u,2))))).
[6,5,1] PGAGEG,n(y)),i(y,1(x,2)))).

10 [7,6,1] PAx,iGE(M@&)),nx)),y))).

11 [7,5,1] PAGEE,Y),iEWMAEY,2)),1(y,2)),i(x,2)))).
12 [7,4,1] PGAMAEWME),x)),i(nx),x)),x)).

O 00 N O v b W N =
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15 [11,8,1] PAGEG,i(n@(y,2)),1(y,2))),i(A(,y),i(x,i(u,2))))).

16 [13,2,1] PGEGEG, i) ,2)),w,i(y,w)).

26 [13,12,1] PAE,i(EEOEOO),M),i@®),v)),¥)),2))).

17 [16,14,1] P ((x),1i(x,i(y,2)))).

18 [26,15,1] PAEGx,i(mEM(y),y)),i((y),y))),i(z,i(x,y)))).

19 [17,11,1] PAEMAEGEG,1(y,2)),w),i(&E,i(y,2)),w),i&),w)).
20 [18,18,1] PUAx,iG (), i(nGE ),y)),i(m(y),y))),¥))).

21 [20,19,1] PA(m((x)),x)).

This is a shorter proof than the one Lukasiewicz reports in [17]. To givg
you a feel for ehard problem in this area, try to prove that the following
single axiom [14] is stficient (with MP) to derive £t 3.
PAGEGEGEGAG,Y),i(n(2),n(W)),2),v),i(i(v,x),i(u,x)))).
The shortest known proof of this theorem is 41 steps long, and was fojyind

(from scratch) by Larry Wos usingi@kr [6]. Wos’s Orrer proof is
simpler (in various ways) than the proof reported by Meredith in [14]/
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/ Proofsin Hilbert-Style Sentential Modal Logics| I \

e Sentential modal logics are just simple extensions of classical sentent
logic. The new connectivest” (we'll use “L” in Orter) and “¢” (we'll
use ‘M” in Orter) are added to the stock of classical connectives.

o All “normal” modal logics add the following rule of inference and the
following axiom to classical sentential logic (@r notation):
RN.-P(x) | P(L(x)).

K.PGLAEE,y)),1(LE,LyIIND.

e Orrer performs best with minimal sets of connectives. So, | will use only

{i,n, L} [M(x) = n(L(n(x)))]to characterize sentential modal logics.
e Other systems of interest add some or all of the following axioms:

4. P(A(L(),LLEII)D.
5 PAMEALMx))),LL®(x)III).

D. PGAL&),n(L((x))))).
T PAQE),xX)).
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/ Proofsin Hilbert-Style Sentential Modal Logics|| I \

1 rp->@—(p&a) PL Tautology
2. ro(p—(Q—(p&0) 1, RN

3. +oO(p— ) — (Op— 0Og))) K axiom

4. ro(p—-(g— (p&Q)) - (@p—-o(@— (p&q))) 3, Subst.

5 rop—-o(p— (pP&Q) 2,4,MP

6. ro(@—(p&q)— (@p—o(p&q) 3, Subst.

7. roOp-(0g- 0(p&qg) 5,6, “PL"

8. r(op&og) — o(p&q) 7, “PL"

e ThisK “proof” [2, page 35] is missing many steps, and it contains the
connective “&”, which we are not using in ourf@r representation.
Exercise (hard!): represent (op& 0g) — oO(p& q)” in our OrTerR
notation, and try to find aroof of it in our systenK above (44 steps?).

\. Note: almost all of the complexity is in theon-modalPL reasoning. j
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/Finding Matrix Modelsfor Sentential Modal Logics: S5 & G\I

ilo 12 3 x|o 123 x|o 1 2-+3
0/3 3 3 3 Lo o0 3 -x[3 21 0
12 3 2 3 _ Q Q
211 1 3 3 | Godelimwhih & fals: o P
*3l0 1 2 3 0o-p

e McKinsey's axiom G cannot be expressed [2] as a (first order) constra|nt
on the accessibility relatioR in Kripke frames (. using Kripke
translations to find such models automatically will not work, see below).

¢ | found the logical matrices above using John Slaney’s special purposée
matrix finder for implicational logics MGIC [16], and verified them with
Bill McCune's general first order model finderask [12] (a companion
K to Orrer, which takes @rer input). | found the Kripke model by hany
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Automated Reasoning with Kripke Translations' \

e Many (but not all:e.g., G and Lob) interesting modal formulae
correspond to first-order conditions on relatidgim Kripke frames:

D.op—- <op Ris serial. [{X)(3y)Rxy]

T.op—p Ris reflexive. [/ X)RxX]

B.p— oop Ris symmetric. [¢X)(Vy)(Rxy — Ryx)]

4.o0p —» oop | Ris transitive. [FX)(Yy)(Y2)((Rxy & Ryz) — Rx2)]
5.0p— o¢p | Riseuclidean. [{x)(Vy)(V2)((Rxy & Rx2) — Ryz)]

/

o

e These correspondences can allow us to (automatically) find proofs an
countermodels more easily than with “pure” axiomatic techniques.

e Exercises: (1) Prove that all serial, symmetric, eucliddamare reflexive and
transitive. (2) Prove that some serial, euclid&arare not transitive. Then, prove
the syntactic analoguesf (1) and (2),.e, (1) proveKDB5+ T, andKDB5 + 4;
\ and, (2) showKD5 ¢ 4 — using logicalmatrices. (1) and (2) are much harder/
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f Application of Axiomatic Methodsto I nterpretability Logics | I \

o Interpretability logics (see [18] and [10]) are propositional modal logics
with an additional, binary modal operatos™(“ I” in Otter).

e The basic systerfL is K4 + the following axioms (@rer notation):
Léb. PEAECLME),x)),L(x))).
Ji. PGAQAGEG,y)),IE,¥))).
J2. PA(@GEIE,y),n(Iy,2)))),I(x,2))).
J3. PAMAAGE,y),n(1(z,y)))),IGEMWMEX),2),y))).
Ja. PEAAE,Y), IMLME))),nLm(y)IIII).
Js. POM@LM(x))),x)).

e Other formulas of interest in this context include:
P. PA(I(x,y),L(Ix,y)))).
M. PAIE,Y), IMm3AEE,nlL(2)))),ndlE(y,nL(2))))))).
W. PGAGE,Y),IE,nGEy,nLdE)IINIIID.
Po. P@EAIGx,n(L((y)))),LI,y)))).
K Mo. P(i(I(X.y),I(n(i(n(L(n(X))),n(LCZ)))),n(i(y.n(LCZ)))))))J
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e The Kripke semantics for interpretability logics is much less tractable

e S0, we are pressured to usdomatic methods of (automated) proof and

e The following can be shown pretty easily, usingrék and MaGIC.

o Difficult problems (not yet solved with automated reasoning): (vii) Axiom

1
Application of Axiomatic Methodsto Interpretability Logicsl| I \

(from a first order perspective) than it was for “normal” modal logics.

model finding. Here, ©Er, MAGIC, and Mce can be very useful.

() IL r IEM&),nLM(x)))),X)
(i) IL ¥ M

(i) IL ¢ P
(iv) IL ¥ W

4 is dependent ihL (known), (viii) Some pair ofW, Py, Mg} implies the
third, inIL (OPEN), (ix)IL ¥ Py (known), (X)IL ¥ Mg (known).

© 1(I(x, n(L(n(y))), L(I(x, n(L(n(y))))))-
(xi) ILP+ C, and (xii))ILM + C (known). See [18] for more problemsy
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/Some Other Approaches & Some More Challenge Pr oblems\l

e Automated theorem proving (and model finding) for modal logics have,
e Typically, the focus has been special-purpose provers and finders.

e While this may lead to faster programs, it sacrifigeserality. We'd like

been studied extensively in the last few decades ([9], [1], [19]).

Such systems essentially “hard code” the structures of particular logics.

to see more work done on makiggneral purpose techniques ective.

e Two more (known) problems. Find logical matrices which establish tha
e More (known)+ problems inL+. Show any of the following: (c)LM +

e One more reference. See [3] for a general survey of propositional logi¢s.

Ko Seehttp://philosophy.wisc.edu/fitelson/modal.htm for files, etc. j

—

(@)KTB ¥ 5 or (b)KTB ¥ 4 (there are 3-element kripke models).

W, (d)ILP+W, (€)ILM F Py, (f) ILP+ Py, (g) ILM + Mo, (h)ILP + M.
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